
Abstract—Adaptive control is an effective method of 
controlling unknown dynamical systems. While many research 
results on one-dimensional (1-D) adaptive control are available, 
little has been accomplished in the area of 2-D system theory. 
The main reason is due primarily to the difficult algebra of 2-D 
systems and the complexity of the underlying theory. In 
particular, when both independent variables in the 2-D space 
are unbounded, the problem is very involved. In this paper, we 
propose a model reference adaptive control scheme for 2-D 
discrete systems which are described by Roesser state space 
model and their both independent variables are unbounded. 
The input of the underlying 2-D system is assigned according to 
a closed-loop control law incorporating the system state and the 
reference model state as well as input. In this closed-loop 
control law, certain feedback gains are fixed, but others are 
adjustable. Those adjustable feedback gains are updated two-
dimensionally subsequently, utilizing the gradient approach 
and based on the error between the actual system and its 
corresponding reference model. The stability of the presented 
2-D model reference adaptive control (2-DMRAC) system is 
analyzed. 

I. INTRODUCTION

N the past three decades, a growing interest has 
developed in two-dimensional (2-D) systems [1-3]. The 

evolution of 2-D systems theories from the concepts and 
results in 1-D systems is well known. Correspondingly, such 
topics as modeling, stability, stabilization by the state and 
output feed-back, controllability and observability, pole 
placement and model matching, optimal control problems, 
observer and state estimation, transfer function identification 
widely studied in 1-D systems are studied in 2-D systems as 
well [4,5]. Many applications in image processing, 2-D filter 
design, iterative learning and some industrial processes 
modeling and control are reported [5-8]. However, there are 
many unsolved problems in 2-D systems in contrast with 
their corresponding 1-D case. 

In this paper, we consider the designing 2-D control 
systems. The various approaches as stabilization by state and 
output feedback [9,10], pole assignment [11-13], exact 
model matching and model following [14-16], optimal 
control methods [17,18] and robust control [19,20] are 
studied in this category. 

Adaptive control is an effective method of controlling 
unknown dynamical systems. Similar to the 1-D case [21-
23], we can use the adaptive techniques to control the 2-D 
unknown systems. In the 1-D case, adaptive control systems 
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are accomplished either by self-tuning or model reference 
approaches. There, the self-tuning adaptive control systems 
are constructed by combination of an on-line procedures to 
estimate the system unknown parameters and a traditional 
control policy. While in the model reference approach the 
parameter estimation is not accomplished but the system 
input is assigned by an adaptive control law which includes 
adjustable gains, and these gains are updated so that the 
system follows a given model. 

These rather classical 1-D approaches can be extended to 
the 2-D systems. Indeed, it is possible to propose both the 
self-tuning and model reference ideas for controlling the 2-D 
unknown dynamical systems. For instance, a 2-D self-tuning 
adaptive controller can be obtained by combining a 2-D on-
line parameter estimation algorithm and any 2-D classical 
controller, as shown in [24]. Similarly, we may determine 
the system input by an adaptive control law so that the 
system output follows a given reference model, without 
estimating the system unknown parameters. 

Several on-line parameter estimation algorithms are 
presented for 2-D systems [25,26], which in order to 
construct the corresponding 2-D self-tuning adaptive 
controller we can combine any kind of them with any kind 
of the 2-D traditional controllers.  

In [24], algorithms are given for setting in the self-tuning 
mode by combining them with recursive parameter 
estimation, and forgetting factors are given for these 
algorithms. But no convergence and stability analyses are 
given to these algorithms and also one of the independent 
variables of the underlying 2-D systems is assumed to be 
bounded. In [27] and [28], the problem of model reference 
adaptive control for 2-D systems is investigated, but there 
exist two limitations in these approaches. First, the 
parameters of the under control 2-D system are assumed to 
be known and hence the formulated problem is not truly an 
adaptive one. Secondly, one of the independent variables of 
the underlying 2-D systems is bounded. In [29], a similar 
problem is formulated and solved for 2-D continuous-time 
systems in a special case, in which one of the 2-D space 
coordinates is bounded. The self-tuning adaptive control of a 
simple class of a 2-D shift-invariant system which is finite 
along one dimension and infinite along the other dimension 
are studied in [30]. 

However, since one of the independent variables of the 
underlying 2-D systems is assumed to be bounded in all 
above investigations, these are not applicable in the general 
case where the both independent variables are unbounded. 
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The aim of this paper is to extend the model reference 
adaptive control approach to the 2-D case when both of the 
independent variables of the underlying 2-D system are 
unbounded. The paper is organized as follows. Section 2 
formulates our 2-D model reference adaptive control (2-
DMRAC) problem. In section 3, we solve the 2-DMRAC 
problem. The stability is analyzed in section 4. Conclusion is 
deferred to section 5. 

II. POBLEM STATEMENT

The most popular two-dimensional state space models are 
the discrete models which are proposed by Roesser [1], 
Fornasini-Marchesini [2] and Kurek [3]. In this paper we 
consider the Roesser model. In the Roesser model the local 
state of the system is decomposed into two components, 
namely the horizontal state hx and the vertical state vx .
This model is as follows [1]. 

1 2 1
3 4 2

( 1, ) ( , ) ( , )
( , 1) ( , )

, 0,1,...

h h

v v
A A Bx i j x i j u i jA A Bx i j x i j
i j

    (1) 

where i  and j  are non-negative integer-valued 

horizontal and vertical coordinates; 
hh mx and

vv mx are the state components which are propagated 

respectively horizontally and vertically by a set of first-order 

difference equations; u  is the control input. The 

coefficient matrices kA  (for 1,2,3,4k ) and lB  (for 

1,2l ) are real with appropriate dimensions. The global 

boundary conditions for (1) are given by: 

(0, ) ( ,0) , 0,1,...h vx j and x i i j       (2) 

We assume that the following reference model is given: 

0 01 02 0 01
03 04 020 0

( 1, ) ( , ) ( , )
( , 1) ( , )

, 0,1,...

h h

v v
x i j A A x i j B r i jA A Bx i j x i j

i j
(3)

where 0
hh mx  , 0

vv mx  and r .

For simplicity, we choose the following notations: 

01 02 011 2 1
0 0

3 4 2 03 04 02

, 1

, , ,

h v h vm m m q m m
A A BA A BA B A BA A B A A B

and: 

0
0

0

0
0

0

( , )( , )( , ) , ( , )
( , ) ( , )

( 1, )( 1, )( , ) , ( , )
( , 1) ( , 1)

hh

v v

hh

v v

x i jx i jx i j x i j
x i j x i j

x i jx i jx i j x i j
x i j x i j

      (4) 

Now, we define the 2-D model reference adaptive control 
(2-DMRAC) problem as follows. 

Problem formulation: 

Let the coefficient matrices A  and B of the system (1) be 
unknown, and the local states hx  and vx  be measurable. 
Determine the control input of (1) so that the following 
tracking can be established: 

0lim ( ( , ) ( , )) 0 , 0,1,...
/

C x i j x i j i j
i and or j    (5) 

where 1 mC is a known constant matrix . 

The solution procedure of the above problem will be 
presented in the next section. 

Here, it should be pointed out that in (5), C  must be 
chosen based on the system controlling aim. For example, if 
it is desired that the sum of the first and last components of 

( , )x i j  track the 0 ( , )x i j  then C  must be chosen as: 

[1 0 0 0 0 1]C

However, we assume that the scalar CB  is nonzero. 

The coefficient matrices 0kA  (for 1,2,3,4k ), 0lB
(for 1,2l ), the input sequence ( , )r i j  and the boundary 

conditions 0 (0, )hx j  , 0 ( ,0)vx i  (for , 0,1,...i j ) of the 
reference model (3) are properly selected, so that the 
resulted solution for 0 ( , )Cx i j  indicates the desired 

trajectory for ( , )Cx i j  and also the scalar 0CB  be 
nonzero.

III. SOLUTION PROCEDURE OF THE 2-DMRAC PROBLEM

As solution method of any control problem, using the 
feedback is considered as the basic idea for solving our 2-
DMRAC problem. Therefore, we choose the input of (1) as 
following: 

0( , ) ( , ) ( , ) ( , ) ( , ) ( , )u i j Q i j i j x i j P x i j r i j (6)

where 1( , ) mi j  and ( , )Q i j are adjustable 

and the * 1 mP  is constant. 

Substituting for ( , )u i j  from (6) into (1) yields: 

*
0

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

, 0,1,...

x i j A BQ i j i j x i j
BQ i j P x i j BQ i j r i j

i j
          (7.1) 

Multiplying the above relation from left side by C
results: 

*
0

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

, 0,1,...

Cx i j C A BQ i j i j x i j

CBQ i j P x i j CBQ i j r i j
i j

     (7.2) 
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Also from (3) we have: 

0 0 0 0( , ) ( , ) ( , ) , 0,1,...Cx i j CA x i j CB r i j i j (8)

The comparison of (7.2) and (8) yields that in order to 
satisfy (5), the adjustment of the matrix ( , )i j  and the 

scalar ( , )Q i j  must be such that these to come close 
respectively to a constant matrix and a constant scalar, 
namely * 1 m  and *Q , so that: 

* * * * *
0 0( ) 0, ,C A BQ CBQ P CA CBQ CB

or: 
*

0

1
CA

CB
  , *

0
0

1
P CA

CB
  , * 0CB

Q
CB

   (9) 

Considering that A  and B  are unknown, P  will be 
known, but  and Q  are unknown. After obtaining P
from (9), the closed-loop control law (6) can be applied for 
determining the system input. 

Now, the main problem is constructing a 2-D adaptive 
law for updating the ( , )i j  and ( , )Q i j  using all available 
information, so that (5) can be established. We assume that 
the scalar ( , )Q i j  is assigned so that it is nonzero. 

We define the tracking error between the system (1) and 
reference model (3) as follows: 

0( , ) ( , ) ( , ) , 0,1,...e i j C x i j x i j i j   (10) 

Using (6), (7.2), (8) and (9), the tracking error equation is 
obtained as follows: 

0( , ) ( , ) ( , ) , 0,1,...e i j CB i j z i j i j    (11) 
where

*
( , )

( , ) ( , ) , ( , ) ( , )
( , )

h

v

x i j
z i j u i j i j i j

x i j
      (12.1) 

1

1
1 2

* * * *
1 2

( , ) ( , ) ( , ) ( , )i j i j Q i j i j

Q
     (12.2) 

1 ( , )i j  , *
1  are respectively the hm  first components 

and 2 ( , )i j  , *
2  are respectively the vm  last components 

of the ( , )i j  and *  , i.e. 
* * *

1 2 1 2

* 1 * 1
1 1 2 2

( , ) ( , ) ( , ) ,

( , ) , , ( , ) ,
h vm m

i j i j i j

i j i j
      (13) 

The scalars 1 ( , )Q i j  and 
1*Q  are respectively the 

inverses of the ( , )Q i j  and *Q .

Considering the error equation (11), we try to adjust the 
( , )i j  instead of ( , )i j  and ( , )Q i j .

The matrix ( , )i j , we name the adjustable feedback 
gain matrix, has one row and q  columns and q  is defined 
in (4) which is at least three. For constructing a 2-D adaptive 
adjusting law, we decompose the columns of ( , )i j  into 
two blocks, namely the horizontal and vertical blocks. Let 

( , )h i j and ( , )v i j  denote the horizontal and vertical 
blocks respectively: 

1 1

( , ) ( , ) ( , )

( , ) , ( , )
h v

h v

h q v q

h v

i j i j i j

i j i j
q q q

        (14.1) 

We accomplish similar decomposition for  as follows: 

* * * * 1 * 1,
h v h h v vq q    (14.2) 

We adjust the ( , )h i j  and ( , )v i j  respectively along 

the horizontal ( )i and vertical ( )j directions, as follows. 

( 1, ) ( , 1) ( , ) ( , ) ( , )

, 0,1,...

h v h vi j i j i j i j i j

i j
 (15) 

where ( , )i j  is a modifier term, and it must be 
determined in a suitable manner. 

The relation (15) is a 2-D algorithm, in which ( , )h i j

and ( , )v i j are adjusted along horizontally and vertically 
directions respectively. For running this 2-D algorithm, the 
quantities (0, )h j  and ( ,0)v i are needed, in addition to 

the modifier term ( , )i j . We call the quantities 

(0, ), 0,1,...h j j  and ( ,0), 0,1,...v i i  the 

boundary conditions of the (15), which must be adjusted 
according to a suitable manner. 

The adjustment of the boundary conditions (0, )h j  and 

( ,0)v i is a 1-D adjusting problem, and we consider that as 
follows. 

0(0, 1) (0, ) ( ) 0,1,...h h hj j j j  (16.h) 

0( 1,0) ( ,0) ( ) 0,1,...v v vi i i i      (16.v) 

where 0 ( )h j  and 0 ( )v i are appropriate modifier 
quantities. 

Thus, the 2-D adjusting algorithm needs the two minor 1-
D adjusting algorithms for its boundary conditions, while in 
the 1-D case there is no the boundary conditions problem. 
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This is a principal difference between the 1-D and 2-D 
adjustment algorithms. 

For completing the underlying algorithm, the modifier 
terms ( , )i j , 0 ( )h j  and 0 ( )v i  must be determined. 

Determination of the ( , )i j

The modifier term ( , )i j in (15) should be chosen such 
that with increasing i  and/or j , the value of tracking error 

( , )e i j  , which is defined in (10), to be decreased. We know 
that Moving against the gradient direction causes the 
maximum decrease. We use this fact in order to obtain an 
appropriate amount for ( , )i j . For this purpose the 

following quadratic cost function is considered on ( , )e i j :

21
( , ) ( , ) , 0,1,...

2
g i j e i j i j        (17) 

Here, ( , )i j  is chosen as following: 
( , )

( , ) ( , ) ( ) , 0,1,...
( , )

g i j
i j i j i j

i j
   (18) 

where ( , )i j  is a positive scalar named the algorithm 

step size, g demonstrates the gradient of g with respect 

to .

Using (11) and (17) it is easy to show 

0
( , )

( , ) ( , )
( , )

T T Tg i j
B C e i j z i j

i j
          (19) 

Finally, from (18) and (19) the 2-D algorithm (15) will 
become as follows: 

0

( 1, ) ( , 1) ( , ) ( , )

( , ) ( , ) ( , )

h v h v

T T T

i j i j i j i j

i j B C e i j z i j
  (20) 

Determination of the 0 ( )h j  and 0 ( )v i

Considering the form of the 2-D algorithm (20), its 
boundary conditions adjustment manners, that are the 1-D 
algorithms (16.h) and (16.v), are offered as follows: 

0(0, 1) (0, ) (0, ) (0, ) (0, )
Th h T T hj j j B C e j z j (21.h)

0( 1,0) ( ,0) ( ,0) ( ,0) ( ,0)
Tv v T T vi i i B C e i z i      (21.v) 

where ( , )hz i j  and ( , )vz i j  respectively consist of the 

first hq  and the last vq  components of the ( , )z i j , i.e. 

( , )( , ) ( , ) , ( , )
( , )

h vh h q v q
v

z i jz i j z i j z i j
z i j

    (22) 

IV. STABILITY ANALYSIS OF THE PRESENTED 2-DMRAC
PROCEDURE

In this section the stability of the presented 2-DMRAC 
procedure that consists of the control law (6), the 2-D 
adjusting algorithm (20) and the 1-D adjusting algorithms 
(21.h), (21.v) is analyzed. 

The proof of Theorems is not given here for limitation in 
the paper pages number and we will give it in the journal 
version of paper. However, interested readers can find it in 
[31]. 

A. The Concept of the Stability and a Sufficient Condition 
for Stability 

The Stability of the presented 2-DMRAC procedure is 
defined follows: 

Definition 1- The presented 2-DMRAC procedure is 
stable, if the desired relation (5) to be satisfied, i.e. 

lim ( , ) 0
and/or

e i j
i j                           (23) 

Theorem 1- The presented 2-DMRAC procedure is stable 
if the following conditions hold: 

1- In the 2-D adjusting algorithm (20), the step size 
( , )i j  is chosen in the following interval: 

2
0

2
0 ( , ) , 0,1,...

( , ) ( , )T
i j i j

CB z i j z i j
 (24) 

2-The adjusting algorithms of the boundary conditions 
(0, )h j  and ( ,0)v i , which are the 1-D algorithms 

(21.h) and (21.v), are such that the following relations will 
be satisfied: 

lim ( ) 0f k
k

                           (25) 

where:

( ) (0, ) ( ,0)
(0, ) (0, ) (0, )
( ,0) ( ,0) ( ,0)

T

T

h v

h h h

v v v

f k V k V k
V k k k
V k k k

0,1,...k    (26) 

and ( , )h i j  , ( , )v i j  respectively denote the 
horizontal and vertical blocks of ( , )i j , which is defined 
in (12), i.e. 

* *

( , ) ( , ) ( , )

( , ) ( , ) , ( , ) ( , )

h v

h h h v v v

i j i j i j

i j i j i j i j
(27)
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B. Determination of the Requirements Conditions for the 
Boundary Conditions Adjustment Algorithms 

The condition (25) is used in the proof of the Theorem1. 
The sequence ( )f k  depends on the 1-D adjusting 
algorithms (21.h) and (21.v). We must obtain some 
conditions for these algorithms, such that the conditions 
guaranty the requirement (25). 

Theorem 2.h- The algorithm (21.h) results: 

lim (0, ) 0hV k
k

                             (28) 

if the three following conditions hold: 

1- The step size (0, )j  is chosen in the following 
interval: 

2
0

2
0 (0, ) 0,1,...

(0, ) (0, )T
j j

CB z j z j
(29)

2-The boundary condition (0, )hx j  of the system (1), 

and the boundary condition 0 (0, )hx j  and the boundary 
input (0, )r j  of the reference model (3) are sufficiently 

general so that there exists a natural number as *hn  such 

that the matrix 
** ( 1)(2 1) ( 1)( , )

h hh h m m nR k n ,
which is defined below, has full row rank for any beginning 
point k .

*

*
0 0 0

*

*

** 0 0 0
*

(0, ) (0, 1) (0, )
(0, ) (0, 1) (0, )
(0, ) (0, 1) (0, )

(0, 1) (0, 2) (0, 1)
(0, 1) (0, 2) (0, 1)( , )
(0, 1) (0, 2) (0, 1)

(0, )

h h h h

h h h h

h

h h h h

h h h hh h
h

h

x k x k x k n
x k x k x k n
r k r k r k n

x k x k x k n
x k x k x k nR k n
r k r k r k n

x k m x *

*
0 0 0

*

(0, 1) (0, )
(0, ) (0, 1) (0, )
(0, ) (0, 1) (0, )

h h h

h h h h

h

k m x k m n
x k m x k m x k m n
r k m r k m r k m n

     (30) 
3- In the decomposition (14) we have: 

1h hq m                           (31) 

that is the ( , )hz i j  does not consist of any component 

of the ( , )vx i j .

Theorem 2.v- The algorithm (21.v) results: 

lim ( ,0) 0vV k
k

                            (32) 

if the following conditions hold: 

1- The step size ( ,0)i  is chosen in the following 
interval: 

2
0

2
0 ( ,0) 0,1,...

( ,0) ( ,0)T
i i

CB z i z i
   (33) 

2-The boundary condition ( ,0)vx i  of the system (1), and 

the boundary condition 0 ( ,0)vx i  and the boundary input 
( ,0)r i  of the reference model (3) are sufficiently general so 

that there exists a natural number as *vn  such that the 

matrix 
** ( 1)(2 1) ( 1)( , )

v vv v m m nR k n , which is 
given below, has full row rank for any beginning point k .

*

*
0 0 0

*

*

** 0 0 0
*

( ,0) ( 1,0) ( ,0)
( ,0) ( 1,0) ( ,0)
( ,0) ( 1,0) ( ,0)

( 1,0) ( 2,0) ( 1,0)
( 1,0) ( 2,0) ( 1,0)( , )
( 1,0) ( 2,0) ( 1,0)

( ,0)

v v v v

v v v v

v

v v v v

v v v vv v
v

v

x k x k x k n
x k x k x k n
r k r k r k n

x k x k x k n
x k x k x k nR k n
r k r k r k n

x k m x *

*
0 0 0

*

( 1,0) ( ,0)
( ,0) ( 1,0) ( ,0)
( ,0) ( 1,0) ( ,0)

v v v

v v v v

v

k m x k m n
x k m x k m x k m n
r k m r k m r k m n

                 (34) 
3- In the decomposition (14) we have: 

1v vq m                        (35) 

that is the ( , )vz i j  does not consist of any component 

of the ( , )hx i j .

Comment 1- If the conditions of Theorems 2.h and 2.v are 
satisfied then we have: 

lim ( ) lim (0, ) ( ,0) 0h vf k V k V k
k k

Thus, the requirement (25) will be guarantied. 

Comment 2-The conditions 1 of Theorems 2.h and 2.v are 
not new conditions but theses are a part of the condition 1 of 
Theorem 1. 

Comment 3- Considering the conditions 3 of Theorems 
2.h and 2.v we must choose the dimensions of the 
decomposition (14), i.e. hq  and vq  as follows: 

1, or , 1h h v v h h v vq m q m q m q m  (36) 

Comment 4-The conditions 2 of Theorems 2.h and 2.v are 
the PE (persistence of excitation) conditions of the presented 
2-DMRAC system, and considering these the following 
definition is given: 

Definition 2- The reference model (3) is said to be 
tractable by the system (1) if there exist *hn  and *vn  so 
that *( , )h hR k n  and *( , )v vR k n , which are respectively 
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given in (30) and (34), have full row rank for any beginning 
point k .

V. CONCLUSION

In this paper the 2-DMRAC problem is formulated in a 
general case, when both of the 2-D space coordinates are 
possibly unbounded, and the corresponding solution is 
presented. In this solution procedure, the system input is 
assigned as a closed-loop control law in terms of the system 
state and reference model state and input vectors. There 
exist some adjustable feedback gains in this control law, 
which are augmented into a matrix form, and is called the 
adjustable feedback gain matrix.  

For adjusting the feedback gain matrix, in two 
dimensions, its columns are decomposed into the horizontal 
and vertical blocks. Based on this decomposition a 2-D 
recursive algorithm is proposed to adjust the feedback gain 
matrix in the manner that the horizontal and vertical blocks 
are adjusted along the horizontal and vertical directions, 
respectively. This approach to adjust in two dimensions can 
be interpreted as a generic 2-D adjustment law. It is 
observed that this 2-D adjusting algorithm needs the two 
minor 1-D adjusting algorithms for its boundary conditions; 
while in the 1-D case this problem does not exist. This is a 
principal difference between the 1-D and 2-D adjustment 
algorithms. The proper values for the modifying these terms; 
are obtained by utilizing the gradient approach based on the 
error between the system and reference model. 

The stability of the presented 2-DMRAC procedure is 
analyzed and stability conditions are obtained in terms of 
algorithm step size range; and the properties of the system 
boundary conditions as well as its reference model boundary 
conditions and boundary inputs. 
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