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Abstract— This paper addresses stability of sampled-
data piecewise-affine (PWA) systems consisting of a
continuous-time plant and a discrete-time emulation of
a continuou-time state feedback controller. The paper
presents conditions under which the trajectories of the
sampled-data closed-loop system will exponentially con-
verge to a neighborhood of the origin. Moreover, the size
of this neighborhood will be related to bounds on per-
turbation parameters related to the sampling procedure,
in particular, related to the sampling period. Finally, it
will be shown that when the sampling period converges
to zero the performance of the stabilizing continuous-time
PWA state feedback controller can be recovered by the
emulated controller.

I. INTRODUCTION

PWA systems are multi-model systems that offer a
good modeling framework for complex dynamical systems
involving nonlinear phenomena. State and output feedback
control of continuous-time PWA systems have received
increasing interest over the last years. The research work
has concentrated on Lyapunov-based controller synthesis
methods for continuous-time PWA systems [3], [7], [8],
[12], [13]. However, none of these approaches would be
applicable directly to controller synthesis for computer-
controlled or sampled-data PWA systems. This is the
scenario mostly encountered in applications given the
flexibility of control implementation in a microprocessor.
References [3], [7], [8], [12], [13] consider continuous-
time processes controlled by continuous-time controllers
while the implementation in a microprocessor requires
emulation of a continuous-time controller as a discrete-
time controller. Although linear sampled-data systems are
a well-studied matter [2], controller emulation for systems
with possible discontinuities at the switching, such as
sampled-data PWA systems, has not had many research
contributions. In fact, only recently these systems have
started to be addressed in the literature in references
such as [4], [5], [6], [15], [16], [17]. The approach by
Sun and Ge [15] established that, under certain conditions,
the controllable subspaces of a continuous-time switched
linear system and its discrete-time counterpart are the
same. Canonical forms of switched linear systems based
on controllability are presented in the more recent work
of Sun [16]. The approach by Zhai et. al [17] considers
stability analysis of switched systems that can switch
between a set of continuous-time plants and a set of
discrete-time plants but does not handle sampled-data
systems involving a cascade of a discrete-time system
between a sample-and-hold and a continuous-time system.

Furthermore, it does not address controller design. The
approach by Imura et. al. [4], [5], [6] was probably
the first where the term ”sampled-data PWA systems”
is used, although the systems described in his work do
not posses the typical structure of a continuous-time plant
being controlled by a discrete-time controller. The problem
addressed in [4], [5], [6] is one where the controller is
continuous-time and the switching events are the ones
controlled by the system logic inside a computer. In other
words, in these systems it is assumed that the designer
has command over the switching times of the system,
such as in the case of filling up two tanks and deciding
when to switch the water between them. For this class
of systems reference [6] presents a probabilistic analysis
of controllability. This is not the case of interest in the
current paper. The preliminary study of Imura [4], [5] is
important as it highlights important limitations of current
discrete-time PWA control methodologies when applied
to the control of a physical continuous-time system. As
mentioned in [4] unexpected phenomena such as chattering
can occur, depending on the switching times. This increases
the interest in studying computer implementations of
controllers designed in continuous-time, as is suggested in
this paper.

The problem that we propose to address is the one
corresponding to the classical structure of a sampled-
data system whereby the system is continuous and the
controller is being implemented (emulated) in discrete-time
inside a computer. Previous approaches to this classical
structure of sampled-data control can be classified into two
categories: i) discrete-time controller design to a discrete-
time approximation of the continuous-time plant and ii)
continuous-time controller design to a continuous-time
plant followed by discrete-time emulation of the controller.
To the best of the author’s knowledge the only previous
work in sampled-data PWA systems is the work of Imura
et. al. [4], [5], [6] which, as already stated, does not address
the classical structure of interest in this paper. For papers
in sampled-data control for nonlinear systems (but not
switched and therefore not applicable to PWA systems)
that fall into category i) we refer the reader to [10] and
references therein. For papers in sampled-data control
for nonlinear systems (but not switched) that fall under
category ii) we refer the reader to the recent paper by
Khalil [9] and references therein. Note that these papers
represent pioneering approaches in the field of nonlinear
sampled-data control systems but always assume the plant
dynamics to be locally Lipschitz. Therefore they do not
include the possibility of having PWA dynamics that are
switched with possible discontinuities in the plant dynamics

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA10.4

0-7803-9568-9/05/$20.00 ©2005 IEEE 4487



at the switching. The interesting recent paper by Nesic
and Teel [11] also falls under category i) described above
but offers the advantage of treating the plant model as a
differential inclusion, thus possibly enabling the treatment
of discontinuous vector fields. In fact, one of the examples
described in [11] deals with a hysteresis switched controller.
Although potentially applicable to PWA systems, reference
[11] does not address the problem of interest here, namely
stability and performance recovery by emulation of a
continuous-time PWA controller. Furthermore, to be able
to embed PWA systems in the framework of [11], the plant
dynamics would have to be embedded in a differential
inclusion, which can potentially lead to conservative results
instead of handling the PWA dynamics directly.

The paper starts by stating the problem assumptions.
Then, the stability of the sampled-data system when a
continuous-time controller is emulated in discrete-time
is analyzed. Finally, the paper finishes with an example
illustrating how the results can be used in practice, followed
by the conclusions

II. PROBLEM ASSUMPTIONS

It is assumed that a PWA system and a corresponding
partition of the state space with polytopic cells Ri, i ∈
I = {1, . . . , M} are given (see [14] for generating such a
partition). Following [7], [3], each cell is constructed as the
intersection of a finite number (pi) of half spaces

Ri = {z | HT
i z − gi < 0}, (1)

where Hi = [hi1 hi2 . . . hipi ], gi = [gi1 gi2 . . . gipi ]
T .

Moreover the sets Ri partition a subset of the state space
X ⊂ IRn such that ∪M

i=1Ri = X , Ri ∩ Rj = ∅, i �= j,
where Ri denotes the closure of Ri. Within each cell the
dynamics are affine of the form

ż(t) = Aiz(t) + bi + Biu(t), (2)

where z(t) ∈ IRn and u(t) ∈ IRm. For system (2), we adopt
the definition of trajectories or solutions presented in [7].

Definition 2.1: [7] Let z(t) ∈ X be an absolutely
continuous function. Then z(t) is a trajectory of the system
(2) on [t0, tf ] if, for almost all t ∈ [t0, tf ] and Lebesgue
measurable u(t), the equation ż(t) = Aiz(t) + bi + Biu(t)
holds for all i such that z(t) ∈ Ri. �

Any two cells sharing a common facet will be called
level-1 neighboring cells. Let Ni = {level-1 neighboring
cells of Ri}. It is also assumed that vectors cij ∈ IRn

and scalars dij exist such that the facet boundary between
cells Ri and Rj is contained in the hyperplane described
by {z ∈ IRn | cT

ijz − dij = 0}, for i = 1, . . . , M , j ∈ Ni.
A parametric description of the boundaries can then be
obtained as [3]

Ri ∩ Rj ⊆ {z = lij + Fijs | s ∈ IRn−1} (3)

for i = 1, . . . , M , j ∈ Ni, where Fij ∈ IRn×(n−1) (full
rank) is the matrix whose columns span the null space of
cT
ij and lij ∈ IRn is given by lij = cij

(
cT
ijcij

)−1
dij . It is

further assumed that matrices Ei and fi exist such that
Ri ⊆ εi,

εi = {z| ‖Eiz + fi‖ ≤ 1}. (4)

This ellipsoidal covering is especially useful in the case
where Ri is a slab because in this case the matrices Ei

and fi are guaranteed to exist and the covering (having one
degenerate ellipsoid εi) is exact, i.e., εi ⊆ Ri and Ri ⊆ εi.
More precisely, if Ri = {z | d1 < cT

i z < d2}, then the
degenerate ellipsoid is described by Ei = 2cT

i /(d2 − d1)
and fi = −(d2 + d1)/(d2 − d1). Finally it is assumed,
without loss of generality, that the control objective is to
stabilize the system to the origin.

III. STABILITY OF SAMPLED-DATA PWA SYSTEMS

In this section a stability result is presented for the
closed-loop sampled-data system that is obtained when a
continuous-time state feedback controller is implemented
on a digital computer. It is assumed that a continuous-time
state feedback controller of the form

u = Kiz + mi, z ∈ Ri (5)

has already been designed such that the continuous-
time closed-loop system is exponentially stable.1 It is also
assumed that the state z of the system is measured at a
sampling rate fs = T−1, T > 0, and that the controller in
the feedback loop appears between a sampler and a zero-
order-hold. For the sampling instants, the plant state and
the sampled state are the same and therefore the sampled-
data system is described by the differential equation

ż = Ajz + bj + BjKjz(kT ) + Bjmj , (6)

for z(t) ∈ Rj , z(kT ) ∈ Rj . However, for a given time t
that is not a sampling instant, the general situation that
should be considered is the one in which the state of the
plant is in region Ri and the most recently sampled state
is in region Rj with possibly i �= j. The system is then
described by the differential equation

ż = Aiz + bi + BiKjz(kT ) + Bimj , (7)

for z(t) ∈ Ri, z(kT ) ∈ Rj . This equation can be rewritten
in the perturbed form

ż = Āiz + b̄i + Biδij , (8)

for z(t) ∈ Ri, z(kT ) ∈ Rj , where Āi = Ai + BiKi, b̄i =
bi + Bimi and

δij = Kj (z(kT ) − z(t)) + (Kj − Ki) z(t) + (mj − mi) .
(9)

Note that the first term in (9) represents the perturbation
due to the error between the last available sample of the
state and its current value. The second and third terms are
associated with the perturbation due to the state and its
most recent sample being possibly in different regions. The
second term represents the perturbation due to a difference
in the gain matrices in regions Ri and Rj and the third
term represents the perturbation due to a difference in
the affine control terms in the same regions. Given a
continuous-time controller of the form (5), the first step
in the procedure outlined in this paper is to search for a
quadratic Lyapunov function of the form

V (z) = zT Pz (10)

1For optimization programs whose solution (when it exists) yields
exponentially stabilizing PWA controllers see [12], [13].
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that proves stability of the continuous-time closed-loop
system. This can be done by solving for fixed α ≥ 0 the
following set of LMIs (see for example [13] for details on
the derivation of these conditions):

P = P T > 0, λi < 0, i = 1, . . . , M,[
ĀT

i P + PĀi + αP + λiE
T
i Ei P b̄i + λiE

T
i fi

(P b̄i + λiE
T
i fi)

T −λi

(
1 − fT

i fi

) ]
<0. (11)

The results that follow assume that such a Lyapunov
function can be found. Note however that not all
continuous-time PWA systems that are stable admit a
globally quadratic Lyapunov function (see [7] for counter-
examples).

A. Conditions Independent of the Sampling Period
We now present the first result of this section. It gives

conditions under which the trajectories of the sampled-
data system (7) converge to a region around the closed-
loop equilibrium point. Furthermore, it relates the size of
this region to a measure of the perturbation term in the
closed-loop system.

Theorem 3.1: Assume a Lyapunov function of the form
(10) is found and is defined in X ⊆ IRn. Let the
condition number of P be χ (P ) = σmax(P )

σmin(P )
. Assume

there are finite constants Nij > 0, ∆Kij > 0 such
that ‖δij‖ ≤ Nij + ∆Kij‖z‖, i, j = 1, . . . , M . Let N =

maxi,j=1,...,M (Nij) , ∆K = maxi,j=1,...,M

(
∆Kij

)
, B =

maxi=1,...,M ‖Bi‖. Define

µθ =
2χ(P )B

αθ − 2χ(P )B∆K
N

and the region

Sθ = {z ∈ X | ‖z‖ ≤ µθ}
for any positive constant θ < 1 that verifies

∆K <
αθ

2χ(P )B

Then, the trajectories of the closed-loop sampled-data
system (8) converge exponentially to the set

Ω =
{
z ∈ X | V (z) ≤ σmax(P )µ2

θ

}
Proof: Using the dynamics (8), the derivative of the can-
didate Lyapunov function (10) for z(t) ∈ Ri, z(kT ) ∈ Rj

along the trajectories of the system is

V̇ (z) =

[
z
1

]T [
ĀT

i P + PĀi P b̄i

(P b̄i)
T 0

] [
z
1

]
+2zT PBiδij

However, note that if a quadratic Lyapunov function is
found by solving (11), using the S-procedure (see [13] for
details) it can be shown that for z ∈ Ri[

z
1

]T [
ĀT

i P + PĀi P b̄i

(P b̄i)
T 0

] [
z
1

]
< −αzT Pz.

Therefore, for z ∈ Ri, z(kT ) ∈ Rj it follows that

d

dt
V (z) < −αzT Pz + 2zT PBiδij

Taking norms and using the bounds

‖δij‖ ≤ Nij + ∆Kij‖z‖ ≤ N + ∆K‖z‖
and −zT Pz ≤ −σmin(P )‖z‖2 yields

d

dt
V (z) < −ασmin(P )‖z‖2+2‖z‖σmax(P )B (N + ∆K‖z‖)

or, for any positive constant θ < 1

d

dt
V (z) < −(1 − θ)ασmin(P )‖z‖2 − θασmin(P )‖z‖2 +

2‖z‖σmax(P )B (N + ∆K‖z‖) .

Therefore, for 0 < θ < 1, we have

d

dt
V (z) < −(1−θ)ασmin(P )‖z‖2 ≤ −(1−θ)αV (z) (12)

for
‖z‖ >

2χ(P )B

αθ − 2χ(P )B∆K
N

provided

∆K <
αθ

2χ(P )B
. (13)

As a result of (12), for z ∈ IRn \ Sθ ,

V (z(t)) < V (z(t0))e
−(1−θ)α(t−t0)

Using the relation σmin(P )‖z‖2 ≤ V (z) ≤ σmax(P )‖z‖2

we can conclude that for z ∈ IRn \ Sθ ,

‖z(t)‖ ≤ ‖z(t0)‖χ 1
2 (P )e−0.5(1−θ)α(t−t0)

Thus, there will be a positive and finite time tθ
1 such that

z(tθ
1) ∈ Sθ for any positive constant θ < 1 that verifies (13).

Note that Sθ ⊆ Ω. This can be proved by contradiction.
Assume that it is not true that Sθ ⊆ Ω. Then, there exists
at least one z0 ∈ Sθ for which zT

0 Pz0 > σmax(P )µ2
θ , a

contradiction. Since V̇ ≤ 0 at the boundary of Ω, Ω is an
invariant set for system (8). Consequently, since z(tθ

1) ∈
Sθ ⊆ Ω, z(t) ∈ Ω for all t ≥ tθ

1 and for all 0 < θ < 1 that
verifies (13). �

Remark 1: This result relates the size of the region
to which the trajectories converge with the size of the
perturbations. The smaller the size of the perturbations the
smaller the size of the region, as expected. Note that for
the case where Ki = Kj , ∆K = 0 and condition (13) is
automatically verified. �

Remark 2: Bounds on δij can be easily obtained in the
case where all polytopic regions are bounded, by noticing that
‖z(kT )−z(t)‖ ≤ maxx∈Ri,y∈Rj ‖x−y‖. These bounds are
however potentially conservative and better ways of obtaining
them should be investigated. In particular, the bound should
depend on the sampling period T . �

The next section relates the bound on ‖z(kT ) − z(t)‖
to the sampling period T and offers a less conservative
result that enables us to prove that if the sampling
period converges to zero then the system is practically
exponentially stable to the origin and the continuous-time
behavior is recovered.
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B. Conditions Dependent of the Sampling Period
Integrating equation (7) for t ∈ [kT, (k + 1)T ] yields

z(t) − z(kT ) =

∫ t

kT

Ai(τ)z(τ )dτ +

∫ t

kT

bi(τ)dτ +∫ t

kT

Bi(τ)dτ (Kjz(kT ) + mj) (14)

Therefore, letting A = maxi=1,...,M ‖Ai‖, b =
maxi=1,...,M ‖bi‖, B = maxi=1,...,M ‖Bi‖ yields

‖z(t) − z(kT )‖ ≤ A

∫ t

kT

‖z(τ )‖dτ +

(t − kT ) (b + B‖Kjz(kT ) + mj‖) (15)

Since all possible dynamics in a PWA system are affine,
finite escape times cannot occur and therefore there will
be a finite constant Z(k, T ) > 0 such that

‖z(t)‖kT≤t≤kT+T ≤ Z(k, T ) (16)

Using the bound (16) in expression (15) leads to

‖z(t) − z(kT )‖ ≤ (t − kT )(AZ(k, T ) + b +

B‖Kjz(kT ) + mj‖) (17)

Remark 3: Note that the smaller the sampling time T the
smaller the bound Z(k, T ) and when T → 0, Z(k, T ) →
‖z(kT )‖. Note further that the Euler approximation for
integration would lead to Z(k, T ) = ‖z(kT )‖ because∫ t

kT
‖z(τ )‖dτ � ‖z(kT )‖(t − kT ). �

Letting K = maxi=1,...,M ‖Ki‖, m =
maxi=1,...,M ‖mi‖ yields

‖z(t) − z(kT )‖ ≤ (t − kT )(AZ(k, T ) + b +

BK‖z(kT )‖ + Bm) (18)

The worst possible (highest) bound is the one correspond-
ing to t = (k + 1)T , which leads to

‖z(t) − z(kT )‖ ≤ T (AZ(k, T ) + b + BK‖z(kT )‖ + Bm)
(19)

Recall that the expression for the perturbations developed
in (9) was

δij = Kj (z(kT ) − z(t)) + (Kj − Ki) z(t) + (mj − mi) .
(20)

Let now ∆Kij = ‖Kj − Ki‖ , ∆mij = ‖mj − mi‖. Then
we can write

‖δij‖ ≤ K‖z(t) − z(kT )‖ + ∆Kij‖z(t)‖ + ∆mij (21)

and therefore using (19) this finally yields

‖δij‖ ≤ Nij(k, T ) + ∆Kij ‖z‖, i, j = 1, . . . , M (22)

where

Nij(k, T ) = ∆mij + KT
(
AZ(k, T ) + BK‖z(kT )‖ + b̄

)
(23)

and b̄ = b + Bm. Using this bound and Theorem 3.1 the
following result can now be stated.

Corollary 3.1: Assume a Lyapunov function of the form
(10) is found and is defined in X ⊆ IRn. Let the condition
number of P be χ (P ) = σmax(P )

σmin(P )
. Let Nij(k, T ) =

∆mij + KT (AZ(k, T ) + b + BK‖z(kT )‖ + Bm) where
‖z(t)‖kT≤t≤kT+T ≤ Z(k, T ) and

A = max
i=1,...,M

‖Ai‖, b = max
i=1,...,M

‖bi‖, B = max
i=1,...,M

‖Bi‖,
∆Kij = ‖Kj − Ki‖ , ∆mij = ‖mj − mi‖ .

Furthermore, let N(k, T ) = maxi,j=1,...,M (Nij) , ∆K =
maxi,j=1,...,M

(
∆Kij

)
, ∆m = maxi,j=1,...,M

(
∆mij

)
. De-

fine
µθ(k, T ) =

2χ(P )B

αθ − 2χ(P )B∆K
N(k, T )

and the region

Sθ(k, T ) = {z ∈ X | ‖z‖ ≤ µθ(k, T )}
for any positive constant θ < 1 that verifies

∆K <
αθ

2χ(P )B

Then, in the absence of sliding modes, it follows that:
1) The trajectories of the closed-loop sampled-data

system (8) converge exponentially to the set

Ω(k, T ) =
{
z ∈ X | V (z) ≤ σmax(P )µ2

θ(k, T )
}

.

2) When T → 0, the trajectories of the closed-loop
sampled-data system (8) are practically exponentially
convergent to the origin. By this it is meant that
µθ(k, T ) → 0 almost everywhere when T → 0.

Proof: Result 1) follows directly from the proof of Theorem
3.1. Result 2) follows from the facts that:

• In the absence of sliding modes, chattering phenom-
ena is ruled out in closed-loop. Therefore, z(t) cannot
stay at a region boundary for any time interval with
positive Lebesgue measure.

• From the previous point, we conclude that for any
T > 0, k ≥ 0 the Lebesgue measure of the set Sk,T =
{t ∈ [kT, (k + 1)T ] | ∆Kij (t) > 0, ∆mij (t) > 0} is
zero since this set is composed of the time instants
for which z(t) crosses a region boundary in the time
interval [kT, (k + 1)T ].

• From the previous point, we conclude that ∆Kij →
0, ∆mij → 0 as T → 0 except on a set of time
instants that has Lebesgue measure zero. Therefore,
the measure of the set of times t for which i(t), j(t)
are different converges to zero as T → 0 so i = j a.e
when T → 0 and i = j when T = 0.

• Z(k, T ) → ‖z(kT )‖ when T → 0 and, as seen before,
∆mij → 0 a.e as T → 0. This together with the fact
that ‖z(kT )‖ is bounded for any k ≥ 0 implies that
N(k, T ) → 0 a.e when T → 0. Thus µθ(k, T ) → 0 a.e
when T → 0, which finishes the proof. �

Remark 4: This result formally establishes the very im-
portant and desired property that a sampled-data PWA system
converges to a closed-loop continuous-time PWA system
when the sampling period converges to zero. As desired, all
the stability guarantees for the closed-loop continuous-time
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system can be recovered in a very specific sense, which in
this case leads to practical exponential convergence to the
origin. �

Remark 5: The result assumes the absence of sliding
modes. Sliding modes can indeed be ruled out in feed-
back if the component of the vector fields perpendicular
to the boundaries is continuous across the boundaries.
This idea was first suggested for PWA systems in [12] to
avoid the generation of sliding modes in closed-loop. If
the feedback construction suggested in [12] is used, it can
be shown following the reasoning explained in [12] that
sliding modes are still ruled out in feedback for sampled-
data PWA systems if the additional constraints Bi = Bj =
B, cT

ijB (Kj − Ki + mj − mi) = 0, ∀i = 1, . . . , M, ∀j ∈
Ni are verified. Notice that these constraints are linear in
the controller parameters and can easily be included in the
optimization procedure suggested in [12] for systems with a
constant input matrix B (such as the one presented in the
example of the next section). �

Remark 6: Note that for the case of continuous PWA sys-
tems, the continuous vector field from the state equation (2)
given by f(z, u) = Aiz + bi + Biu and f(z(kT ), u(kT )) =
Ajz(kT ) + bj + Bju(kT ) is locally Lipschitz in z with
Lipschitz constant L = maxi=1,...,M ‖Ai‖. In this case,
following the ideas presented in [9], the Gronwall-Bellman
inequality applied to the integral of the dynamical equation
(2) between kT and t ≤ KT + T

z(t) = z(kT ) + (t − KT )f(z(kT ), u(kT )) +∫ t

kT

[f(z(τ ), u(kT )) − f(z(kT ), u(kT )]dτ

enables us to show that

‖z(t) − z(kT )‖ ≤ 1

L

[
e(t−KT )L − 1

]
·

‖Ajz(kT ) + bj + Bju(kT )‖, kT ≤ t ≤ KT + T

When the control input is replaced by its value u(kT ) =
Kjz(kT ) + mj , it finally yields the bound

‖z(t) − z(kT )‖ ≤ 1

L

[
eTL − 1

] [
‖Āj‖‖z(kT )‖ + ‖b̄j‖

]
.

(24)
where we have used the fact that t−KT ≤ T for kT ≤ t ≤
KT + T and Āj , b̄j are defined as before. Following the
reasoning leading to (23) a new value for Nij(k, T ) can be
found as

Nij(k, T ) = ∆mij +
K

L

[
eTL − 1

] [
‖Āj‖‖z(kT )‖ + ‖b̄j‖

]
(25)

Note that (23) and (25) become very similar (Ā, b̄ are
replaced by ‖Āj‖, ‖b̄j‖) for very small T if the Euler
approximation is used in (23) to approximate Z(k, T ) by
‖z(kT )‖. Note however that (23) is more general and less
restrictive than (25) because it is valid even for discontinuous
PWA systems that are therefore not locally Lipschitz. The
important point to make is that from expression (25) when
T → 0, Nij → 0 a.e. since ‖z(kT )‖ is bounded and
z(kT ) → z(t) so that i, j become the same, except on a
set of measure zero. This leads to the same result obtained
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Fig. 1. x − y trajectory with continuous-time controller, ψ0 = π
2

,
r0 = 0 rad/s, y0 = 1 m

in Corollary 3.1 when one replaces (23) by (25) for the
special case of continuous PWA systems. �

IV. EXAMPLE

The objective of this example is to design a controller
that forces a cart on the x− y plane to follow the straight
line y = 0 with a constant velocity U0 = 1 m/s. It is
assumed that a controller has already been designed to
maintain a constant forward velocity. The cart’s path is
then controlled by the torque u about the z-axis according
to the following dynamics:[

ψ̇
ṙ
ẏ

]
=

[
0 1 0
0 − k

I
0

0 0 0

][
ψ
r
y

]
+

[
0
0

U0 sin(ψ)

]
+

[
0
1
I
0

]
u,

(26)
where ψ is the heading angle with time derivative r,
I = 1 Kgm2 is the moment of inertia of the cart with
respect to the center of mass and k = 0.01 Nms is the
damping coefficient. Note that for this example Bi = Bj =
B, cT

ij = [1 0 0], cT
ijB = 0. The state of the system

is (z1, z2, z3) = (ψ, r, y). Assume the trajectories can start
from any possible initial angle in the range ψ0 ∈ [− 3π

5
, 3π

5
]

and any initial distance from the line. The function sin(ψ)
is approximated by a PWA function (see [14]) yielding

R1 =
{

z ∈ IR3 | z1 ∈
(
−3π

5
,−π

5

)}
,

R2 =
{

z ∈ IR3 | z1 ∈
(
−π

5
,− π

15

)}
,

R3 =
{

z ∈ IR3 | z1 ∈
(
− π

15
,

π

15

)}
,

and R4 is symmetric to R2 and R5 is symmetric to R1,
all with respect to the origin. A controller was designed to
stabilize the origin (inside region R3) yielding

K1 = [ −49.908 −9.467 −13.926 ] m1 = 2.70 × 10−6

K2 = [ −48.316 −9.330 −13.812 ] m2 = 3.75 × 10−7

K3 = [ −50.148 −9.468 −13.742 ] m3 = 0.00 × 100

K4 = [ −48.316 −9.330 −13.812 ] m4 = −m2 × 100

K5 = [ −49.908 −9.468 −13.926 ] m5 = −m1 × 100
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Fig. 2. x − y trajectory for a sampling period of T = 0.05s

The trajectory in the x − y plane using this controller is
shown in figure 1 where it is clear that the controller makes
the cart trajectory converge to the desired straight line.
For a sampling period of T = 0.05s the same controller
was emulated in discrete-time between a sampler and a
zero-order-hold and the results of the corresponding x−y
trajectory are shown in figure 2. It can be seen that the
trajectory still follows approximately the one obtained with
the continuous-time controller. When the sampling period
is further increased to T = 0.2s the simulation of the x−y
trajectory close to the line is zoomed in figure 3. It is clear
that the trajectory converges to a region around the desired
straight line, as predicted by the results of this paper.

V. CONCLUSIONS

This paper has presented for the first time stability
results for closed-loop sampled-data PWA systems under
state feedback. It was shown that the emulation of a
state feedback controller designed in continuous-time to
exponentially stabilize the system to a target point would
still exponentially stabilize the system to a region around
the target point. The size of this region was related to the
sampling period. It was shown that when the sampling
period converges to zero the exponential stability results
for the closed-loop continuous-time system are recovered.
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