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Abstract— In this article we present sufficient conditions for
the existence of an error feedback controller which solves an
output regulation problem for infinite-dimensional systems and
bounded uniformly continuous reference/disturbance signals.
The given sufficient conditions involve strong stability of the
closed loop semigroup and solvability of two pairs of regulator
equations; one for the plant and one for the error feedback
controller. The proof of this sufficient condition relies on an
argument originally due to Francis, in which the error feedback
output regulation problem is solved as a feedforward control
problem for the extended system. A delay-differential equation
example is presented to illustrate the theory.

I. INTRODUCTION

The term output regulation is usually associated to sta-
bilization of a dynamical system and asymptotic tracking
of a given class of reference signals under a given class
of disturbances. Controllers which achieve output regulation
are often either of feedforward or feedback type. For finite-
dimensional linear systems and simple reference/disturbance
signals generated by systems of linear ordinary differential
equations, such output regulation problems were studied
intensively in the 1970s. A complete solution now exists for
both feedback and feedforward controllers, e.g. in the work
of Francis, Wonham and Davison [7], [9], [10], [22].

The work of Francis and Wonham initiated what is nowa-
days known as geometric output regulation theory. This
terminology stems from the fact that they studied output
regulation problems in geometric terms, such as subspace
inclusions. During the past two decades several authors have
extended this theory for infinite-dimensional systems. In the
early 1980s Schumacher [21] constructed finite-dimensional
controllers for infinite-dimensional plants in which the sys-
tem operator has compact resolvent and a complete set
of generalized eigenfunctions. His solution of the output
regulation problem is also expressed in geometric terms
(cf. Theorem 3.1 in [21]). Several years later Byrnes et al.
[3] generalized Francis’ theory [9] for infinite-dimensional
systems in such a way that the geometric conditions were re-
placed by the so called regulator equations. These equations
(which are in fact also present in the finite-dimensional case
[9]) express the geometric conditions in an algebraic way,
hence simplifying solution of the output regulation problem.
Byrnes et al. [3] showed that solvability of the feedforward
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regulation problem, solvability of the error feedback regula-
tion problem and solvability of the regulator equations are
all equivalent to each other provided that the plant and the
finite-dimensional exogenous signal generator have sufficient
stabilizability properties.

In the above approaches towards solving output regulation
problems the class of admissible signals is rather small.
The reference/disturbance signals are assumed to be gen-
erated by finite-dimensional exogenous systems, and they
can be e.g. ramps, constant signals or sinusoids. Recently
the feedforward output regulation theory of Byrnes et al.
[3] has been generalized for infinite-dimensional exogenous
systems in [4], [5], [11], [13], [14]. In [4], [5] the 1-D
wave equation is generating reference signals. In the present
paper, as well as in [11], [13], [14], the exogenous system is
purpose-built so that any bounded and uniformly continuous
reference functions can be treated. This class of reference
signals is essentially larger than those resulting from the use
of finite-dimensional exosystems; for example it is possible
to consider the asymptotic tracking of arbitrary sufficiently
smooth periodic reference signals.

In this article we provide sufficient conditions for the solv-
ability of the error feedback regulation problem for bounded
uniformly continuous signals. The sufficient conditions that
we obtain in our main result (Theorem 4.1) are closely
related to the well-known ones: Suitable closed loop stabilty
and solvability of certain regulator equations guarantee solv-
ability of the output regulation problem. The fundamental
idea in our proof of these sufficient conditions is originally
due to Francis [9]. We first provide sufficient conditions for
the solvability of a related feedforward regulation problem
in Theorem 3.1. As we observe that the error feedback reg-
ulation problem can be considered a feedforward regulation
problem for the extended system, the sufficient conditions
in Theorem 3.1 are easily adapted for the error feedback
regulation problem to yield Theorem 4.1.

The sufficient conditions in Theorem 4.1, which guarantee
solvability of the error feedback regulation problem, are more
general than the existing ones, e.g. those provided in [3] for
finite-dimensional exogenous systems. Instead of exponential
stability, we only require the closed semigroup to be strongly
stable. Furthermore, we do not fix the parameters F, G and
J of the error feedback controller, but we show that they
only need to satisfy another set of regulator equations —
the regulator equations for the error feedback controller. We
shall show in Corollary 4.2 that one possible choice then
is an observer-based error feedback controller, as shown by
Byrnes et al. [3] for the case of finite-dimensional exogenous
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systems.
The reason for our requiring only strong stability of the

closed loop semigroup lies in the fact that the controller
dynamics may contain a stabilized copy of the exogenous
system dynamics in accordance with the internal model
principle [9], [10], [22]. In the case of a finite-dimensional
exogenous system [3] this is not a problem — it is reasonable
to require the closed loop semigroup to be exponentially
stable. However, in our setting one may be required to
stabilize an operator having an unbounded spectrum on the
imaginary axis (see the example in Section V). Such an
operator cannot be exponentially stabilized using compact
feedback operators (cf. Corollary 3.58 in [16]). However,
it is well-known that in many cases such operators can be
strongly stabilized [2].

A. Notation and preliminaries

For Banach spaces E and F , L(E, F ) denotes the space
of bounded linear operators E → F . The resolvent set of
a closed linear operator A : E → F is denoted by ρ(A).
R(λ, A) denotes (whenever it exists) the resolvent operator
(λI −A)−1. If Ẽ is a subspace of E, then A|

Ẽ
denotes the

restriction of A to Ẽ.
A strongly continuous (or C0) semigroup TA(t) in E is

strongly stable if limt→∞‖TA(t)x‖ = 0 for each x ∈ E.
TA(t) is weakly stable if limt→∞ f(TA(t)x) = 0 for each
x ∈ E and every functional f ∈ L(E, C). If A generates a
C0−semigroup in E and B ∈ L(F, E), then the pair (A, B)
is strongly stabilizable if there exists K ∈ L(E, F ) such that
A+BK generates a strongly stable semigroup in E. If C ∈
L(E, F ), then the pair (A, C) is approximately observable if
{ x ∈ E | CTA(t)x = 0 for all t ≥ 0 } = {0}. �(z) denotes
the real part of a complex number z. BUC(R, E) denotes
the Banach space (with respect to sup-norm) of bounded
uniformly continuous functions f : R → E.

II. THE OUTPUT REGULATION PROBLEMS

In this section we define the infinite-dimensional plant and
the infinite-dimensional exogenous system which we assume
is generating the reference and disturbance signals. We also
define two output regulation problems: The feedforward and
the error feedback regulation problems. We shall use the
former to solve the latter in Section IV.

A. The plant

We consider a plant described by the following possibly
infinite-dimensional control system (for t ≥ 0):

ż(t) = Az(t) + Bu(t) + Udist(t), z(0) ∈ Z (1a)

y(t) = Cz(t) + Du(t) (1b)

Here A generates a C0−semigroup TA(t), t ≥ 0, in a
complex Banach space Z . The continuous input u : R+ → H

and continuous output y : R+ → H take values in a complex
Banach space H . The control operator B ∈ L(H, Z), the
observation operator C ∈ L(Z, H) and the feedthrough
operator D ∈ L(H). The continuous function Udist is a
disturbance (to be defined shortly). Equation (1a) is to be
considered in the mild sense.

B. The exogenous system

Let H be a Banach space which is continuously em-
bedded in BUC(R, H) (observe that H need not have the
sup−norm). In symbols, let H ↪→ BUC(R, H). We let
TS(t) denote the shift C0−group in BUC(R, H) defined
as TS(t)f = f(· + t); its infinitesimal generator is S = d

dx

with a suitable domain of definition D(S) ⊂ BUC(R, H).
If H is invariant for TS(t) and the restrictions TS(t)|H
to H constitute an isometric C0−group we denote this by
H s

↪→BUC(R, H). In this case the generator of TS(t)|H is
denoted by S|H.

Let H s
↪→BUC(R, H), and let Q denote the point evalua-

tion at the origin in H, i.e Qf = f(0) for f ∈ H. Clearly
Q is linear and ‖Qf‖H = ‖f(0)‖H ≤ ‖f‖∞ ≤ c‖f‖H
for some c ≥ 0 (because H ↪→ BUC(R, H)) and so
Q ∈ L(H, H). Moreover, QTS(t)|Hf = f(x+t)|x=0 = f(t)
for every f ∈ H and t ∈ R. This leads us to the following
definition.

Definition 2.1 (The exogenous system): Assume that
H s

↪→BUC(R, H) and let P ∈ L(H, Z) be a known
disturbance operator. The exogenous system generating
reference signals yref and disturbance signals Udist is
defined on the state space H as

ẇ(t) = S|Hw(t), w(0) = w0 ∈ H (2a)

yref (t) = Qw(t) (2b)

Udist(t) = Pw(t) (2c)

where equation (2a) is to be considered in the mild sense.
By the above discussion it is easy to see that every

reference signal yref in H can be obtained from (2b) by
choosing w(0) = yref . Throughout the rest of this article,
we assume that H s

↪→BUC(R, H) is fixed.

C. The feedforward regulation problem (FRP)

The task in the feedforward regulation problem is to find
operators K ∈ L(Z, H) and L ∈ L(H, H) having the
following properties.

1) The pair (A, B) is strongly stabilizable using K , i.e.
A + BK generates a strongly stable C0−semigroup
TA+BK(t) on Z .

2) As the control law u(t) = Kz(t) + Lw(t) is applied,
in the extended system on Z ×H given for t ≥ 0 by

ż(t) = (A + BK)z(t) + (BL + P )w(t) (3a)

ẇ(t) = S|Hw(t) (3b)

the tracking error e(t) = y(t) − yref (t) = (C +
DK)z(t) + (DL − Q)w(t) → 0 as t → ∞ regardless
of the initial conditions z(0) ∈ Z and w(0) ∈ H.

We hasten to emphasize that in the formulation of the
feedforward regulation problem above, we do not require
exponential stabilizability of the pair (A, B), as in [3], [14].
The concept of strong stability is more general than that of
exponential stability, and it may be the more realistic one
in applications. For example, for many partial differential
equations it is known that solutions are stable, but no
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uniform decay rate exists [17]. Furthermore, that we do
not require exponential stabilizability of (A, B) turns out
to be important in solution of the error feedback regulation
problem described in the next subsection.

D. The error feedback regulation problem (EFRP)

In practice the state z(t) of the plant, which is used in the
FRP, is usually not directly available for measurement. In
this subsection we pose an output regulation problem which
only relies on information on the outputs of the systems.

In the EFRP we seek an error feedback controller

ẋ(t) = Fx(t) + Ge(t), x(0) ∈ X, t ≥ 0 (4a)

u(t) = Jx(t) (4b)

on some Banach state space X where F generates a
C0−semigroup, G ∈ L(H, X) and J ∈ L(X, H). The
controller must satisfy the following requirements:

1) In the closed loop system for t ≥ 0

ż(t) = Az(t) + BJx(t) + Pw(t) (5a)

ẋ(t) = GCz(t) + (F + GDJ)x(t) − GQw(t) (5b)

ẇ(t) = S|Hw(t) (5c)

e(t) = Cz(t) + DJx(t) − Qw(t) (5d)

the semigroup TA(t) generated by A =
(

A BJ
GC F+GDJ

)
in Z × X is strongly stable.

2) The tracking error e(t) → 0 as t → ∞ for any initial
conditions z(0) ∈ Z , x(0) ∈ X and w(0) ∈ H.

Byrnes et al. [3] considered a similar error feedback regu-
lation problem for finite-dimensional exosystems. However,
they require exponential stability of TA(t) and D = 0. It
turns out that in our case exponential stability of TA(t) is
difficult to achieve if we plan to use the controller proposed
by Byrnes et al. [3]. This is because their operator F

contains a copy of S|H which in our case is difficult to
stabilize (see the example in Section V). In fact, it is well
known that if H is infinite-dimensional, then S|H + ∆ does
not generate an exponentially stable C0−semigroup for any
compact operator ∆ ∈ L(H) (cf. Corollary 3.58 in [16]).

III. SUFFICIENT CONDITIONS FOR THE SOLVABILITY OF

THE FRP

In this section we show that if the so called regulator
equations can be solved, and the pair (A, B) can be strongly
stabilized, then the FRP can be solved.

Theorem 3.1: Assume that the pair (A, B) is strongly
stabilizable using K ∈ L(H, Z). If there exist Π ∈ L(H, Z)
and Γ ∈ L(H, H) such that Π(D(S|H)) ⊂ D(A) and the
following regulator equations are satisfied:

AΠ + BΓ + P = ΠS|H in D(S|H) (6a)

CΠ + DΓ = Q in H (6b)

then the control law u(t) = Kz(t) + (Γ − KΠ)w(t) solves
the FRP.

Proof: Since by assumption A + BK generates the
strongly stable C0−semigroup TA+BK(t), we only need to

verify the condition 2 in the definition of the FRP. Let L =
Γ−KΠ ∈ L(H, H). Since ΠS|H = (A+BK)Π+BL+P

in D(S|H), we have that ΠS|H − (A + BK)Π = BL + P

in D(S|H) and hence∫ t

0

TA+BK(t − τ)(BL + P )TS(τ)|Hwdτ = (7)∫ t

0

d

dτ
TA+BK(t − τ)ΠTS(τ)|Hwdτ = (8)

ΠTS(t)|Hw − TA+BK(t)Πw (9)

for every w ∈ D(S|H) and t ≥ 0. By suitable density
arguments it is in fact true that∫ t

0

TA+BK(t − τ)(BL + P )TS(τ)|Hwdτ = (10)

ΠTS(t)|Hw − TA+BK(t)Πw (11)

for every w ∈ H and t ≥ 0.
Consider then the composite operator A on the extended

state space Z ×H (see (3)) defined as

A =

(
A + BK BL + P

0 S|H

)
(12)

Since A + BK generates the C0−semigroup TA+BK(t) on
Z and S|H generates the C0−(semi)group TS(t)|H on H, it
is clear that A generates a C0−semigroup TA(t) on Z ×H,
because BL+P ∈ L(H, Z) (see also [6] Lemma 3.2.2). An
easy calculation reveals that this semigroup is given by

TA(t) = (13)(
TA+BK(t)

∫ t

0 TA+BK(t − τ)(BL + P )TS(τ)|Hdτ

0 TS(t)|H

)
=

(14)(
TA+BK(t) ΠTS(t)|H − TA+BK(t)Π

0 TS(t)|H

)
(15)

Let z(0) = z0 ∈ Z and w(0) = w0 ∈ H be arbitrary.
Then

TA(t)
(

z0

w0

)
=

(
TA+BK(t)(z0 − Πw0) + ΠTS(t)|Hw0

TS(t)|Hw0

)
(16)

Since by (6b) we have (C + DK)Π + DL − Q = CΠ +
DΓ − Q = 0, the explicit expression for the norm of the
tracking error e(t), t ≥ 0, is as follows:

‖e(t)‖ = ‖(C + DK)TA+BK(t)(z0 − Πw0) (17)

+ (CΠ + DΓ − Q)TS(t)|Hw0‖ (18)

= ‖(C + DK)TA+BK(t)(z0 − Πw0)‖ (19)

Since TA+BK(t) is strongly stable and C +DK ∈ L(Z, H),
we have that e(t) → 0 as t → ∞. This shows that
the tracking condition in the definition of the FRP is also
satisfied. The proof is then complete.

Remark 3.2: In the SISO case it is sufficient in Theorem
3.1 for asymptotic tracking to occur that the pair (A, B) is
merely weakly stabilizable. In this case C +DK ∈ L(Z, C)
and so for every z ∈ Z limt→∞(C + DK)TA+BK(t)z = 0
(see (19)).
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Remark 3.3: If the pair (A, B) can be exponentially sta-
bilized, then also the converse of Theorem 3.1 holds [3],
[11].

IV. SUFFICIENT CONDITIONS FOR THE SOLVABILITY OF

THE EFRP

In this section we present out main results, namely suffi-
cient conditions for the solvability of the EFRP. In Theorem
4.1 we obtain a rather complete description of suitable error
feedback controllers (4) in terms of solutions to another
regulator equations — the so called regulator equations for
the error feedback controller — which have the same form
as the regulator equations (6) for the plant. We point out
that to our knowledge no such description has been available
for infinite-dimensional plants: Byrnes et al. [3] for example
give one possible choice for the stabilizing and regulating
dynamic controller (4) for a finite-dimensional exosystem.
Notable in the proof of Theorem 4.1 is the use of a marvelous
argument due to Francis (see also Byrnes et al. [3]): The error
feedback regulation problem is interpreted as a feedforward
regulation problem for the extended system and this problem
is then solved in terms of the FRP and Theorem 3.1.

Theorem 4.1: Assume that there exist Π ∈ L(H, Z) and
Γ ∈ L(H, H) such that Π(D(S|H)) ⊂ D(A) and the
regulator equations (6) are satisfied. If the parameters F ,
G, and J of the controller (4) can be chosen such that

1) The operator A =
(

A BJ
GC F+GDJ

)
generates a strongly

stable C0−semigroup TA(t) on Z × X .
2) There exists Λ ∈ L(H, X) such that Λ(D(S|H)) ⊂

D(F ) and the following regulator equations for the
error feedback controller are satisfied:

FΛ = ΛS|H in D(S|H) (20a)

JΛ = Γ in H (20b)

Then with this triplet (F, G, J) the EFRP is solvable.
Proof: Let Θ(t) =

( z(t)
x(t)

)
∈ Z × X and define

A =

(
A BJ

GC F + GDJ

)
, B =

(
0
0

)
, (21)

P =

(
P

−GQ

)
, C =

(
C DJ

)
, D = 0 (22)

Then consider the following representation of the closed loop
system for t ≥ 0:

Θ̇(t) = AΘ(t) + Bu(t) + Pw(t), Θ(0) ∈ Z × X (23a)

y(t) = CΘ(t) + Du(t) (23b)

with ẇ(t) = S|Hw(t), w(0) ∈ H. Since the regulator
equations (6) and the regulator equations (20) for the error
feedback controller are satisfied, we have ΠS|H = AΠ +
BJΛ + P and ΛS|H = FΛ = GCΠ + (F + GDJ)Λ−GQ

in D(S|H). Hence(
Π
Λ

)
S|H =

(
A BJ

GC F + GDJ

) (
Π
Λ

)
+

(
P

−GQ

)
(24)

Q =
(
C DJ

) (
Π
Λ

)
(25)

where equation (24) is satisfied in D(S|H) and equation (25)
is satisfied in H. This shows that the regulator equations
(6) for the system (23) have a solution. Consequently, by
Theorem 3.1 and the strong stability assumption, for the
system (23) the FRP is solvable for the control law u(t) =
KΘ(t) + Lw(t) ≡ 0 (recall that B = 0 and D = 0).
This implies that in (5d) the tracking error e(t) = Cz(t) +
DJx(t) − Qw(t) = (C + DK)Θ(t) + (DL − Q)w(t) → 0
as t → ∞ regardless of the initial conditions z(0), x(0) and
w(0).

The following Corollary generalizes Theorem IV.2 in [3].
It presents one possible choice for the triplet (F, G, J) in
the solution of EFRP under two stability assumptions and
the assumption D = 0.

Corollary 4.2: Let X = Z ×H. Assume that D = 0 and
that the following conditions hold:

1) There exist Π ∈ L(H, Z) and Γ ∈ L(H, H) which
solve the regulator equations (6).

2) The pair (A, B) is exponentially stabilizable using
K ∈ L(Z, H).

3) There exist G1 ∈ L(H, Z) and G2 ∈ L(H,H) such
that the operator As =

( A−G1C P+G1Q

−G2C S|H+G2Q

)
generates

a strongly stable C0−semigroup TAs
(t) in X .

Let

F =

(
A + BK − G1C P + B(Γ − KΠ) + G1Q

−G2C S|H + G2Q

)
(26a)

J =
(
K Γ − KΠ

)
(26b)

G =

(
G1

G2

)
(26c)

Then with this choice of (F, G, J) the EFRP is solvable.
Proof: Let Λ =

(
Π
I

)
∈ L(H, Z × H). Then JΛ =

KΠ+Γ−KΠ = Γ and it is elementary to verify that ΛS|H =
FΛ in D(S|H). Hence Λ solves the regulator equations (20)
for the error feedback controller having parameters as in (26).

Consider the operator

A =

(
A BJ

GC F

)
= (27)⎛

⎝ A BK B(Γ − KΠ)
G1C A + BK − G1C P + B(Γ − KΠ) + G1Q

G2C −G2C S|H + G2Q

⎞
⎠

(28)

If we can establish that A generates a strongly stable
C0−semigroup TA(t), then the error feedback controller
having parameters as in (26) solves the EFRP by Theorem
4.1.

Applying a similarity transform U given as

U =

⎛
⎝I 0 0

I −I 0
0 0 −I

⎞
⎠ (29)
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on Z×Z×H to A we obtain the operator Ã = UAU having
the expression

Ã =

⎛
⎝A + BK −BK −B(Γ − KΠ)

0 A − G1C P + G1Q

0 −G2C S|H + G2Q

⎞
⎠ (30)

:=

(
A + BK ∆

0 As

)
(31)

By our assumption As generates a strongly stable
C0−semigroup in X and A + BK generates an exponen-
tially stable C0−semigroup in Z . Clearly the C0−semigroup
generated by Ã on Z × X is given by

T
Ã

(t) =

(
TA+BK(t)

∫ t

0
TA+BK(t − s)∆TAs

(s)ds

0 TAs
(t)

)
(32)

Consequently T
Ã

(t) is strongly stable if

lim
t→∞

∫ t

0

TA+BK(t − s)∆TAs
(s)xds = 0 ∀x ∈ X (33)

But (33) holds by Proposition 5.6.1 in [1]. This proves that
also TA(t) is strongly stable.

V. A DELAY-DIFFERENTIAL EQUATION EXAMPLE

Let a > 0, r �= 0, τ1 > τ2 > 0. Consider the
following scalar delay differential equation with control and
observation :

ẋ(t) = −ax(t) − b
[
x(t − τ1) + x(t − τ2)

]
+ u(t) (34a)

y(t) = rx(t), t ≥ 0 (34b)

Our goal is to build, using Corollary 4.2, a dynamic
controller (4) which solves the EFRP for this plant and
p−periodic reference signals in the standard Sobolev spaces
H = Hα

per(0, p) for α > 1
2 [15].

Taking initial conditions for x(·) into account, the pair (34)
can be formulated as a plant of the form (1) in which D = 0
and Udist = 0 [6]. Moreover, it can be shown (see e.g. [6]
Lemma 4.3.9) that the transfer function H(s) = CR(s, A)B
of this plant is given by

H(s) =
r

s + a + b(e−sτ1 + e−sτ2)
(35)

for those s ∈ C at which the denominator is not equal to
zero.

The semigroup generated by A is exponentially stable if
and only if s + a + b(e−sτ1 + e−sτ2) �= 0 for all s ∈ { z ∈
C | �(z) ≥ 0 } ([6] Theorem 5.1.7). Ruan and Wei [20] give
a complete characterization (in terms of a, b, τ1 and τ2) of
those instances in which all roots of equation s+a+b(e−sτ1+
e−sτ2) = 0 have negative real parts. In their characterization,
the parameter b lies on an interval (b−0 , b+

0 ). We assume that
the semigroup generated by A is exponentially stable. By the
above discussion, then iωn = i 2πn

p
∈ ρ(A) and H(iωn) �= 0

for every n ∈ Z.
It is evident that for every α > 3

2 ,∑
n = −∞∞|H(iωn)−1|2(1 + ω2

n)−α < ∞. Hence

for α > 3
2 we can solve the regulator equations (6) for

bounded operators Π and Γ as in [12], [14]. We obtain

Γy =
∑

yn

Qθn

H(iωn)
, ∀y ∈ H (36)

Πy =
∑

ynR(iωn, A)BΓθn, ∀y ∈ H (37)

where (θn)n∈Z is the natural orthonormal basis of (weighted)
exponentials for H and yn is the nth Fourier coefficient of
y with respect to this basis.

Now H is a Hilbert space [15] and the left shift in
H is p−periodic, i.e. TS(t)|H = TS(t + p)|H for every
t ∈ R. Furthermore, the adjoint operator S|∗H = −S|H
and S|H has compact resolvent [8]. By Corollary 1 in [2],
if the pair (S|H, Q∗) is approximately controllable, then
S|H −Q∗Q generates a strongly stable C0−semigroup. But
the pair (S|H, Q∗) is approximately controllable if and only
if the pair (−S|H, Q) is approximately observable [6]. If
y ∈ H is such that QTS(−t)|Hy = 0 for each t ≥ 0,
then y(−t) = 0 for each 0 ≤ t ≤ p. By periodicity, y(t)
must be identically zero, and hence the pair (−S|H, Q)
is approximately observable. In conclusion, S|H − Q∗Q

generates a strongly stable C0−semigroup.
Finally, we use Corollary 4.2 to deduce that an error

feedback controller (4) with

F =

(
A BΓ

Q∗C S|H − Q∗Q

)
(38a)

J =
(
0 Γ

)
(38b)

G =

(
0

−Q∗

)
(38c)

solves the EFRP.
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