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Abstract—We study controllability issues for the Navier-
Stokes Equation on a two dimensional rectangle with so-called
Lions boundary conditions. Rewriting the Equation using a
basis of harmonic functions we arrive to an infinite-dimensional
system of ODEs. Methods of Geometric/Lie Algebraic Control
Theory are used to prove controllability by means of low modes
forcing of finite-dimensional Galerkin approximations of that
system. Proving the continuity of the “control �→ solution” map
in the so-called relaxation metric we use it to prove both solid
controllability on observed component and L2-approximate
controllability of the Equation (full system) by low modes
forcing.

I. INTRODUCTION

Following part of the work iniciated by A. Agrachev

and A. Sarychev in [2], where controllability issues for

the Equation considered on the two-dimensional Torus are

studied, we can ask ourselves about what can be done in

a general two dimensional domain. We have decided to

start with a rectangle as the first step to see how boundary

conditions change the problem.

We study controllability, by means of low modes forcing,

of incompressible 2D Navier-Stokes Equations (NSE) on a

two dimensional rectangle with Lions Boudary Conditions.

We compare this study with that done in [2] and refer

what are the addictional dificulties carried by the boundary

conditions.

We deal with the following 2D NS system

ut + (u · ∇)u + ∇p = ν∆u + F (x1, x2) + v(t, x1, x2)
(1)

∇ · u = 0 in R (2)

u · n = 0 on ∂R; (3)

∇⊥ · u = 0 on ∂R (4)

Where R := {(x1, x2) ∈ R2 | a1 < x1 < a2; b1 <

x2 < b2} and ∇⊥ :=
(− ∂

∂x2
∂

∂x1

)
and n is the unit normal

to the boundary. Our control will be v we suppose to be a
degenerate forcing, i.e., v is a finite sum of the form:

v =
∑

k∈K1

vk(t)Wk,

where Wk are eigenfunctions of the Stokes operator. So the

components vk(t), k ∈ K1, t ∈ [0, T ] will be our controls
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we suppose to be measurable essentially bounded functions.

A natural way to study the NSE is to study its evolution

on subspaces of Sobolev spaces, such subspaces depend on

the boundary conditions.

We denote by L2(R) the space of Lebesgue measurable
square integrable real functions defined on R and by L2(R)
the product space L2(R)2. Similarly H1(R) := {f ∈
L2(R) | ∂f

∂xj
∈ L2(R), j = 1, 2} and, H1(R) := H1(R)2.

For the boundary conditions (3)-(4) the spaces

H := {u ∈ L2(R) | ∇ · u = 0 & u · n = 0 on ∂R};
V := closure of D1(R) on H1(R); (5)

D(A) := {u ∈ H2(R) | ∇ · u = 0 & (6)

(u · n = 0 ∧∇⊥ · u = 0) on ∂R};
where D1(R) := {u ∈ C∞(R) | ∇ · u = 0 & (u · n =
0 ∧ ∇⊥ · u = 0) onR}, are those where we shall consider
the evolution of the NSE on.

Mainly we prove that if we control the finite set of modes

{n ∈ N2
0 | 1 ≤ n1, n2 ≤ 3} \ {(3, 3)} then we obtain

1) Controllability of Galerkin approximations of the

infinite-dimensional system associated with (1)-(4)

and;

2) So-called Solid Controllability on Observed Compo-
nent and L2-Approximate Controllability for the (full)
Equation.

In the midlle some results on the dependence of the

solution on initial data are achieved.

We shall not present here some of the proofs because they

are long. The interested reader may find more details from

those proofs in the preprint [9].

II. CONTROLLABILITY OF FINITE-DIMENSIONAL

GALERKIN APPROXIMATIONS

Since the Equation is invariant under translations, from

now we consider the rectangle [0, a] × [0, b].

A. An Advantage of Lions Boundary Conditions
The eigenfunctions of the Stokes operator depend on the

boudary conditions and, it is not always possible to write

down those eigenfunctions explicitely as a combination of

well-known functions. It turns out that for Lions Boundary

Conditions the Stokes operator coincides with the symmetric

of the Laplacian and, for the Laplacian we find the basis of

eigenfunctions

W := {Wk | k ∈ N
2
0}
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where Wk :=
(−k2π

b sin
(

k1πx1
a

)
cos

(
k2πx2

b

)
k1π
a cos

(
k1πx1

a

)
sin

(
k2πx2

b

) )
, N denotes

the set of natural numbers and N0 := N \ {0}.
B. The Infinite System
Writing u in the basis of eigenfunctions W:

u =
∑
k∈N2

0

ukWk

and, projecting the Equation onto H:

P∇(ut + (u · ∇)u + ∇p) = P∇(ν∆u + F + v)

[ that, as usually is done, we may rewrite as

ut + Bu = −Au + F + v ]

we arrive to the infinite-dimensional system of ODEs

u̇k = νk̄uk + Fk + vk

+
∑

m,n∈N
2
0

m<n
(n(++)m)+=k

−C∧
m,n

k̄
(n̄ − m̄)

+
∑

m,n∈N
2
0

m<n
(n(−−)m)+=k

C∧
m,n

k̄
(n̄ − m̄)sign(n1−m1)sign(n2−m2)

+
∑

m,n∈N
2
0

m<n
(n(−+)m)+=k

−C∨
m,n

k̄
(n̄ − m̄)sign(n1 − m1)

+
∑

m,n∈N
2
0

m<n
(n(+−)m)+=k

C∨
m,n

k̄
(n̄ − m̄)sign(n2 − m2) (7)

where m ∨ n := m1n2 + n1m2 m ∧ n := m1n2 −
n1m2, C∨

m,n = umun
π2

4abm∨n and, C∧
m,n = umun

π2

4abm∧
n. Under the sum sign for σ, µ ∈ {+, −}, (n(σµ)m)+ :=
(|n1σm1|, |n2µm2|). In order to not repeat the long expres-
sions inside the sums, we rewrite the previous system as

u̇k =νk̄uk + Fk + vk

+
∑

m,n∈N
2
0

m<n
(n(++)m)+=k

C++
m,n +

∑
m,n∈N

2
0

m<n
(n(−−)m)+=k

C−−
m,n

+
∑

m,n∈N
2
0

m<n
(n(−+)m)+=k

C−+
m,n +

∑
m,n∈N

2
0

m<n
(n(+−)m)+=k

C+−
m,n.

C. Galerkin Approximations
Given a finite subset G ⊂ N2

0 of modes, a G-Galerkin
Approximation of system (7) is the same system with the

addictional condition m, n, k ∈ G.

In system (7) we can already see an addictional difficulty

carried by the boundary conditions: In the periodic case

treated in [2] the method used to prove controllability of

Galerkin approximations is an Induction procedure, i.e.,

starting from a system controlled in few modes, after a

REC procedure (Reduction+Extraction+Convexification) is

obtained the same system with a bigger set of controlled

modes with the same closure of attainable sets. In our case

such a procedure does not work so well because, contrary to

the periodic case where we can prove that controlling two

given modes we can control a third one without changing

closure of attainable set, in our case controlling two modes

we can only see that we can control a third direction (not

a direction of a mode) without changing the closure of

attainable set. That carries a dificulty: After a REC procedure

we do not arrive to a similar system. Hence the REC

procedure does not lead to a possible proof by Induction.

D. The FCE Procedure
Here we present the FCE (Factoriza-

tion+Convexification+Extraction) procedure that allows

us to prove the controllability of Galerkin approximaxions

by Induction.

First write a G-Galerkin approximation of system (7) in
the followin concise form

u̇ = f(u) + gv, u ∈ R
N , v ∈ R

r (8)

where K1 is the finite set of controlled modes, N :=
#G, r := #K1 and g is a matrix whose columns are vectors
spanning span(K1).
1) Factorization: It turns out that factorizing system (8)

as

u̇ = f(u) + g(v1 + v2), u ∈ R
N , v1, v2 ∈ R

r

the closure of the attainable set at time t of system (8)
contains the closure of attainable set at time t of the system

u̇ = f(u + gV 2) + gv1, u ∈ R
N , v1, V 2 ∈ R

r (9)

Hence we have

Proposition 2.1: System (8) is approximately controllable
at time t if so is system (9).
2) Convexification: It is known that a step of convexifica-
tion does not change closure of attainable set at time t (see
[7]), then

Corollary 2.2: System (8) is approximately controllable
at time t if so is system u̇ = f̃(u), where f̃(u) ∈ C̃ :=
Conv{f(u + gV 2) + gv1 | V 2, v1 ∈ Rr}.
3) Extraction: An obvious corollary of Corollary 2.2 is

that if we select a family FD := {f̃d(u) | d ∈ D} ⊆ C̃ we
have

Corollary 2.3: System (8) is approximately controllable at
time t if so is system u̇ = f̃(u), where f̃(u) ∈ FD.

Defining for each j ∈ N0 the finite set of modes

Kj := {n ∈ N
2
0 | 1 ≤ n1, n2 ≤ j + 2} \ {(j + 2, j + 2)}
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and, iterating the FCE procedures we can prove the following

theorem

Theorem 2.4: For each j ∈ N0 the Kj-Galerkin approxi-

mation

u̇ = f(u) + gv, u ∈ R
N , v ∈ R

r (10)

with K1 as set of controlled modes, N := #Kj , r := #K1

and g being a matrix whose columns are vectors spanning
span(K1), is approximately controllable at time t.

III. PROOF OF THEOREM 2.4 (SKETCH)

Applying the FCE procedure we arrive to Corollary 2.3.

Setting V 2 = 0 in (9) we obtain f(u) + gv1 ∈ C̃. We start
by selecting all the directions in {f(u) + gv1, v1 ∈ Rr}
from C̃.
For v1 = 0 and V 2 ∈ {vλ

n,m, wλ
m,n} ⊂ Rr where

(wλ
m,n)n = (vλ

m,n)n = λ;

−(wλ
m,n)m = (vλ

m,n)m = 1;

(wλ
m,n)k = (vλ

m,n)k = 0, k ∈ K1 \ {n, m};
we have that

fvλ
m,n

(u) + f−vλ
m,n

(u)

2
= f(u) + λδm,n

and,

fwλ
m,n

(u) + f−wλ
m,n

(u)

2
= f(u) − λδm,n,

where

δm,n = C−−
m,ne(n(−−)m)+ + C−+

m,ne(n(−+)m)+

+ C+−
m,ne(n(+−)m)+ + C++

m,ne(n(++)m)+ , (11)

belong to C̃ for every λ ∈ R. Now we select, from C̃ the
family {f(u) + λδm,n | λ ∈ R, (m, n) ∈ S1 ⊆ (K1)2},
where

S1 = {((1, 2), (2, 1)); ((1, 1), (2, 3)); ((1, 2), (2, 2));
((1, 1), (3, 2)); ((2, 1), (2, 2));

((1, 1), (1, 3)); ((1, 1), (3, 1))}. (12)
So, the union D := {f(u) + gv1, v1 ∈ Rr} ∪ {f(u) +
λδm,n | λ ∈ R, (m, n) ∈ S1} is a subset of C̃. Our final
extraction from C̃ is Conv(D).
It turns out that the family {ei, δm,n | i ∈ K1, λ ∈

R, (m, n) ∈ S1} is a family of linearly independent vectors1
spanning span(K2) and that Conv(D) = span(D). Hence
system (10) is approximately controllable at time t if so is
the system

u̇ = f(u) + g1v, u ∈ R
N , v ∈ R

r1 (13)

1If the rectangle is a square, this is not true (δ(1,2),(2,1) ∈ spanK1)
but, we can also arrive to a set of linearly independent vectors spanning
span(K2) iterating two steps of FCE procedure (see preprint [9] for details).

with K2 as set of controlled modes, N := #Kj , r1 := #K2

and g1 being a matrix whose columns are vectors spanning

span(K2).
Repeating this procedure, we can prove that starting with

system (10), but now with Kp (p < j) as set of controlled
modes, we can arrive by a FCE procedure to the same

system with Kp+1 as set of controlled modes. The proof

of this inductive step is a bit technical and envolves quite

complicated expressions (as we may guess from the form of

the coeficients of system (7)) that we do not present here.

Therefore, after j−1 steps of FCE procedure we can arrive
to the system

u̇ = f(u) + gj−1v, u ∈ R
N , v ∈ R

rj−1

with Kj as set of controlled modes, N := #Kj = rj−1 and

gj−1 being a matrix whose columns are vectors spanning

span(Kj). Such a system is approximately controllable at
time t then, so is system (10).
Controllability at time t. The exact controllability at time

t follows from approximate controllability at time t and some
results from Lie-Algebraic Control Theory we can find in [7].

IV. CONTINUITY OF THE NSE ON THE INITIAL DATA

Consider the data

(u0, F, v, ν) ∈ H×L2(0, T, V ′)×L∞(0, T, V ′)×]0, +∞[.

Following the proof of existence and uniqueness of a weak

solution for the NSE (with No-Slip Boundary Conditions)

presented in [11], we can prove similarly the existence and

uniqueness of a weak solution in L2(0, T, V )∩L∞(0, T, H)
for our problem. Asking some more regularity on the

initial data, namely (u0, F, v, ν) ∈ V × L2(0, T, H) ×
L∞(0, T, H)×]0, +∞[, we can prove the existence and
uniqueness of a strong solution in L2(0, T, D(A)) ∩
L∞(0, T, V ).
The continuous dependence of the weak and strong so-

lutions on the initial data follows by a standard procedure:

we consider two close (in the product topology) quadruples

of initial data and prove that the corresponding solutions

are close as well. For that we use (like in the proofs of

existence and uniqueness) mainly Young inequalities, Gron-

wall Lemma and some estimates for the bilinear term of the

Equation.

V. CONTINUITY ON RELAXATION METRIC

In the study of controllability issues for the full NSE we

shall need the continuous dependence of the Equation on the

so-called relaxation metric defined as follows:

Definition 5.1: The relaxation metric in L1([0, T ], Rd)
is defined by the norm

‖g‖rx := max
t1, t2∈[0, T ]

∥∥∥∥
∫ t2

t1

g(τ) dτ

∥∥∥∥
Rd

, (14)
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where, and if nothing in contrary is stated, we consider the

spaces Rd (d ∈ N0) endowed with l1-norm — ‖x‖Rd =
‖x‖l1 :=

∑d
i=1 |xi|.

Remark 5.1: It is easy to check that (14) is a semi-norm
and, since functions in L1([0, T ], Rd) coinciding on a set
of measure T are identified we can conclude that (14) is a
norm.

A. Change of variables
We make the change of variables

u = y + Iv

where I is the primitive operator [Iv](t) :=
∫ t

0
v(τ) dτ . From

u′ = −νAu − Bu + F + v

we arrive to the equation

y′ = −νA(y + Iv) − B(y + Iv) + F. (15)

Note that the function v appears only implicitly in the
last equation. Now we forget that Iv is a primitive of an
essentially bounded function and replace it by P in the

equation. Note that v being a low modes forcing and Iv
being a primitive we have Iv ∈ C([0, T ], D(A)). But we
take P in the larger space L4(0, T, D(A)).
Analogously as we prove existence, uniqueness and con-

tinuity on the initial data of a weak, or strong, solution

for the NSE we can prove the same for equation (15). In

particular, and since we are interested in the controllabil-

ity of strong solutions, we have that the solution Ys ∈
L∞(0, T, V ) ∩ L2(0, T, D(A)) of (15), with y(0) = y0 ∈
V, F ∈ L2(0, T, H), P ∈ L4(0, T, D(A)) and ν ∈]0, +∞[,
is continuous as a map from

V × L2(0, T, H) × L4(0, T, D(A))×]0, +∞[

to C([0, T ], V ).
Since our control takes values in a finite-dimensional

subspace of D(A), say a space F of dimension d, from this
continuity follows the continuity of the strong solution of

the NSE Equation when controls vary on relaxation metric,

i.e., the map Srx giving us the strong solution of the NSE is

continuous as a map from

V × L2(0, T, H) × L∞
rx(0, T, F)×]0, +∞[

to C([0, T ], V ), where L∞
rx(0, T, F)“=”L∞

rx(0, T, Rd) stays
for the space resulting from the set L∞(0, T, Rd) endowed
with relaxation metric.

VI. SOLID CONTROLLABILITY ON OBSERVED

COMPONENT

Definition 6.1: Let φ0 : M1 → M2 be a continuous map

between two finite dimensional C0-manifolds, Ω ⊂ M1 be

an open subset with compact closure and, S ⊆ M 2 be any

subset. We say that φ0(Ω) covers S solidly, if for some C0-

neighborhood N of φ0 |Ω there holds: S ⊆ φ(Ω).

Let O ⊂ N2
0 be the finite set of modes we want to observe

and, ΠO be the projection map from V onto span{Wk | k ∈
O}. Define, for each T > 0 and each finite subset F ⊂ N2

0,

the “end point” map

ET : V × L∞([0, T ], R
#F) → O

(u0, v) 
→ ΠO ◦ Ss(u0, F, v, ν)(T ).

Write system (7) (with K1 as set of controlled modes) in the

form{
u̇k = Bk(u) + νk̄uk + Fk + vk k ∈ K1

u̇k = Bk(u) + νk̄uk + Fk k /∈ K1
(16)

and, for any N ∈ N0 define, also, the system

N :

{
u̇k = Bk(u) + νk̄uk + Fk + vk; k ∈ KN

u̇k = Bk(u) + νk̄uk + Fk; k /∈ KN .
(17)

that is the same as system (16) with KN as the finite set of

controlled modes.

Definition 6.2: We shall say that system [(17).N ] is time-
T solidly controllable in observed component if for any
u0 ∈ V and R > 0 there exists a family

Vu0,R := {vb ∈ L∞([0, T ], RκN ) | b ∈ Bu0,R}
such that ET (u0, Bu0,R) := ET (u0,Vu0,R) covers OR(u#O

0 )
solidly. Where, by y#O we mean the projection of y onto
R#O = O, Bu0,R is an open relatively compact subset of a

C0-manifold and, OR(y) is the closed ball

{x ∈ O | ‖x − y‖l1 ≤ R} := {x ∈ R
#O | ‖x − y‖l1 ≤ R}.

We may also define open ball OR(y) by

{x ∈ O | ‖x − y‖l1 < R} := {x ∈ R
#O | ‖x − y‖l1 < R}.

Proposition 6.1: System [(17).1] is time-T solidly control-
lable on observed component.

Remark 6.1: Proposition 6.1 implies controllability on ob-
served component and, it follows from Proposition 6.2 (with

N = 1) below. Indeed given R > 0 and u0 ∈ V , if
T ≤ T 0 it is included in the statement of Proposition 6.2

(with N = 1), otherwise if T > T 0 we apply any control

v̄ ∈ L∞([0, T ], Rκ1) (for example v̄ = 0 — no control)
up to time T − T 0 arriving to some point y ∈ V . Put
R̄ := R+‖yκ1−uκ1

0 ‖. Then apply first part of Proposition 6.2
(with N = 1 and T = T 0) to the pair (y, R̄) ∈ V ×]0, +∞[.
The family “Vy,R̄ ◦ v̄” will do.
Proposition 6.2:

1) For some T 0 > 0, every 0 < T ≤ T 0 and every N ∈
N0 the system [(17).N ] is time-T solid controllable on
observed component;

2) For each pair (u0, R) ∈ V × [0, +∞[ the family

Vu0,R := {vb | b ∈ Bu0,R}
can be chosen satisfying:
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• The map b 
→ vb is (B, L2(0, T, RκN ))-
continuous and;

• The controls vb(t) are uniformly (w.r.t. b and t)
l1-bounded: ‖vb(t)‖l1 ≤ A = A(T,R, u0).

Fix M ∈ N0 such that O ⊆ KM . We prove Proposition 6.2

in two steps. Prove it in the case N ≥ M and prove the

“back-induction” step: “ it holds for N implies it holds for
N − 1” (N = 2, . . . , M). These steps are the following
subsections VI-A and VI-B.

A. First Step. Proposition 6.2: N Big
The proof that the statement of Proposition 6.2 holds for

N ≥ M is similar to the first step of the proof of Lemma

12.2 of [2] and is based in a rescaling of time and a Degree

Theory argument.

B. Second Step. Proposition 6.2: “Back-Induction”.
In this subsection we “imitate” a driving using controls on

RκN by a driving using controls on RκN−1 , N = 2, . . . , M ,
M is fixed and satisfies O ⊆ KM . Both drivings leading

to the same projection on RκN−1 at final time but, possibly

going by paths with projections “far from each other” in the

middle. The projection on V \ RκN−1 of the paths will be

H-close to each other so, at time T the two drivings lead
to points close in H-metric. Hence the end points of the
projection onto the finite dimensional observed space O are
close. Solid controllability will follow from this closeness

and (again) from a Degree Theory argument.

Such imitation is then the key for the prove that if the system

[(17).N] is solid controllable in observed component then so

is system [(17).N-1].

After we prove this “N → N − 1” step it will be clear,
from the fact that [(17).M] is solid controllable in observed

component (see subsection VI-A), that system (16) is solid

controllable in observed component, we just note that the

systems [(17).1] and (16) are the same system.

To prove the “back-induction” step “N → N − 1” we
shall need some lemmas:

1) Useful Lemmas:
Lemma 6.3: Given:

• A finite subset J ⊂ N2
0

• A function q ∈ W 1,∞([ti, tf ], RJ ), where J := #J,

such that q(ti) = qi

• An element Qi ∈ V \ RJ ; F ∈ L∞(ti, tf , H). 2

Then there exists a control vJ(q,Qi) ∈ L∞([ti, tf ], RJ )
depending on q and Qi such that the projection onto J of the

solution of the NSE

ut = −νAu − Bu + F + vJ(q, Qi), u(ti) = qi + Qi

2It is enough to have F ∈ L2(ti, tf , H) & P JF ∈
L∞(ti, tf , spanJ). This last extra condition on F is needed to guarantee
that the control vJ , obtained below, is essentially bounded.

equals q on [ti, tf ].
Moreover the map vJ : (q, Qi) 
→ vJ(q, Qi) is (W 1,2×V \
RJ , L2(ti, tf , RJ)-continuous.
Another Lemma we shall need is a corollary, not hard to

derive, from of the Approximation Lemma we can find in

[6]:

Corollary 6.4 (Approximation Corollary): Let A ⊆ Rd be

the convexification of a finite set of points:

A := Conv{p1, p2, . . . , pr}

and, V := {v(t, b) ∈ L∞([0, T ], A) | b ∈ B} be
a L1-continuous family of A-valued functions. Then for
each ε > 0 there is θε > 0 and a family Zε :=
{zε(t, b) ∈ L∞([0, T ], {p1, p2, . . . , pr}) | b ∈ B} of
{p1, p2, . . . , pr}-valued functions such that

• Zε is δ-continuous;
• Zε ε-approximates, uniformly w.r.t. b, the family V in
relaxation metric, i.e., ∀b ∈ B ‖zε(·, b)−v(·, b)‖rx <
ε;

• The elements of Zε are piecewise constant and the

number of intervals of constancy is the same for all

b ∈ B and,
• For all b ∈ B all the intervals of constancy of zε(·, b)
have a length not less than θε > 0.

The only difference from the Approximation Lemma is

addiction of the last item.

The last Lemma we want to refer is the following

Lemma 6.5: For w ∈ R, w ≥ 3 we can define in [0, T ]
a function φw(·, b) depending on the parameter b ∈ B, of
our family of controls, with the following properties

• φw(·, b) vanishes at the switching points of the control
v(·, b);

• φw(·, b) is (B, W 1,2(0, T, R)-continuous and;
• φw(t, b) coincides with sin(wt) in a set of measure not
less than T − 2T

w .

2) Imitation.: We “imitate” a control z(·, b) ∈ Z taking
values in {±Ξek, ±Ξδm,n | k ∈ KN−1, (m, n) ∈ SN−1}
by a control zw(·, b) taking values in RκN−1 .

Take the solution u∞(·, b) of the equation

u∞
t (·, b) = −νAu∞ − Bu∞ + F + z(·, b), u(0) = u0

and, consider its projection onto RκN−1 :

q∞(·, b) = P κN−1u∞(·, b).

Let {0 = α0 < α1 < · · · < αm = T} be the end-
points of the intervals of constancy of z(·, b). For w ≥ 3
define the control zw(·, b) by recursion in the following way:
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• In the first interval of constancy [α0, α1]:

zw(·, b) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z(·, b)
if z(·, b) ∈ {±Ξek | k ∈ KN−1};

vκN−1(q∞1 (·, b) +
√

2Ξφw(·, b)(em ± en), U0) 3

if z(·, b) ∈ {±Ξδm,n | (m, n) ∈ SN−1}.
where U0 is the projection of u0 onto V \RκN−1 and,

q∞1 (·, b) is the restriction of q∞(·, b) to [α0, α1];
• If the control zw(·, b) is already defined in the first p−1
intervals of constancy (up to αp−1), we define it in the

pth interval [αp−1, αp] by:

zw(·, b) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z(·, b)
if z(·, b) ∈ {±Ξek | k ∈ KN−1}

vκN−1(q∞p (·, b) +
√

2Ξφw(·, b)(em ± en), Uw
αp−1

)
if z(·, b) ∈ {±Ξδm,n | (m, n) ∈ SN−1}.

where Uw
αp−1

:= Uw(αp−1)) and Uw is the projection

onto V \ RκN−1 of the solution of the equation

uw
t (·, b) = −νAuw − P∇Buw + F + zw(·, b),

u(0) = u0, t ∈ [0, αp−1]

and, q∞p (·, b) is the restriction of q∞(·, b) to [αp−1, αp].
We shall prove that at time T , uw(T ) goes, uniformly w.r.t.
b, to u∞(T ) in L2-norm as w goes to ∞, i.e.,
Lemma 6.6: For any ε > 0 there exists wε ≥ 3 such that

∀b ∈ B∀w ≥ wε |uw(T, b) − u∞(T, b)| < ε.
The controllability on observed component will follows from

this Lemma and by a Degree Theory argument. The proof

of this lemma is quite long and techical and we shall do not

present it here. The proof is a variation of that of Proposition

12.4 presented in [2] for the case of periodic conditions.

VII. L2-APPROXIMATE CONTROLLABILITY

The following Proposition says that for any T > 0, system
(16) is time-T approximately controllable in L2-norm.

Proposition 7.1: For any u0 ∈ V and T > 0, the
attainable set at time T from u0 of system (16) is dense

in H .

3Here vκN−1 is the control given by Lemma 6.3, for J = KN−1.
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