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Abstract—In this note we consider the open-loop Nash
linear quadratic differential game with an infinite planning
horizon. The performance function is assumed to be indefinite
and the underlying system affine. We derive both necessary
and sufficient conditions under which this game has a unique
Nash equilibrium.
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I. Introduction

In the last decades, there is an increased interest in
studying diverse problems in economics and optimal control
theory using dynamic games. In particular in environmental
economics and macroeconomic policy coordination, dynamic
games are a natural framework to model policy coordination
problems (see e.g. the books and references in Dockner et
al. [4] and Engwerda [10]). In these problems, the open-
loop Nash strategy is often used as one of the benchmarks
to evaluate outcomes of the game. In optimal control theory
it is well-known that, e.g., the issue to obtain robust control
strategies can be approached as a dynamic game problem
(see e.g. [2]).

In this note we consider the open-loop linear quadratic
differential game. This problem has been considered by many
authors and dates back to the seminal work of Starr and Ho
in [17] (see, e.g., [15], [16], [5], [12], [11], [1], [18], [6],
[71, [3] and [13]). More specifically, we study in this paper
the (regular indefinite) infinite-planning horizon case. The
corresponding regular definite (that is the case that the state
weighting matrices (); (see below) are semi-positive definite)
problem has been studied, e.g., extensively in [6] and [7].
[13] (see also [14]) studied the regular indefinite case using
a functional analysis approach, under the assumption that
the uncontrolled system is stable. In particular, these papers
show that, in general, the infinite-planning horizon problem
does not have a unique equilibrium. Moreover [13] shows
that whenever the game has more than one equilibrium, there
will exist an infinite number of equilibria. Furthermore the
existence of a unique solution is related to the existence of
a so-called strongly stabilizing solution of the set of coupled
algebraic Riccati equations, see (4) below.

In [9] these results were generalized for stabilizable
systems using a state-space approach, for a performance
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criterion that is a pure quadratic form of the state and
control variables. In this note we generalize this result for
performance criteria that also include “cross-terms”, i.e.
products of the state and control variables. Performance
criteria of this type often naturally appear in economic policy
making and have been studied, e.g., in [8] and [13]. In this
paper we, moreover, assume that the linear system describing
the dynamics is affected by a deterministic variable. For a
finite-planning horizon the corresponding open-loop linear
quadratic game has been studied in [3].

The outline of this note is as follows. Section two intro-
duces the problem and contains some preliminary results.
The main results of this paper are stated in Section three,
whereas Section four contains some concluding remarks. The
proofs of the main theorems are included in the Appendix.

II. PRELIMINARIES

In this paper we assume that the performance criterion
player ¢ = 1, 2 likes to minimize is:

Ji(ug,ug) = /Ooo[:cT(t), uF'(t), ul () M; | u

1(t) | dt,
ua(t)
(1
Qi Vi W,
where M; = V;T Ry, N; and R;; >0, i =1,2,
W NT Ry

and x(t) is the solution from the linear differential equation
&(t) = Ax(t) + Biui(t) + Baua(t) + c(t), (0) = zo. (2)

The variable ¢(.) € Lo here is some given vector. Notice that
we make no definiteness assumptions w.r.t. matrix Q;.

We assume that the matrix pairs (A,B;), i = 1,2,
are stabilizable. So, in principle, each player is capable to
stabilize the system on his own.

The open-loop information structure of the game means
that we assume that both players only know the initial state of
the system and that the set of admissible control actions are
functions of time, where time runs from zero to infinity. We
assume that the players choose control functions belonging
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to the set
Us = {u € Lo | Ji(l‘o,u)
exists in IR U {—00, o0}, tlim x(t) = O}.

Notice that the assumption that the players use simultane-
ously stabilizing controls introduces the cooperative meta-
objective of both players to stabilize the system (see e.g.
[10] for a discussion). The next shorthand notation will be
used.

S; := B;R;;' B];

o3

where we assume throughout that this matrix G is invertible,

Ay = diag{A, A}; B:=[By, B,]; BT = diag{BT, BT}

Ry
Ny

~ O

[0 I 0] M; ]

(00 1] M, s ]5

Ry

~ BT ~ 0 Q
T ._ 1 . T . __ . N 1 .
Bl_|:0:|7B2_|:Bg“:|aQ—|:Q2:|7
I
S [oropan [ 2] v
oo || wi |
0 0
Zio=[I00M; | T 0| =[Vi, W], i=1,2;
0 7
A= A-BG'z; AT .= AT - { 2 ]GlBT,
2
Q= Qi-2:G7'2: Q= | & ]; S; == BG™'Bf;
Q2
L i g
S = [Sl, 52]7 and M = _@ _A/g
A 0 0 —-B
Notice that M = | —Q; —AT 0 +| Z
Qs 0 AT Zy

G1 [ z, BY, BT ] .
In the rest of the paper the algebraic Riccati equations

ATK; + K;A— (K;B; + Vi)R;"(B/ K; + Vi") (3
+Qi=0,i=1,2
and the set of (coupled) algebraic Riccati equations
0=AYP+PA—PBG'BTP+Q (4)

or, equivalently,

A

0=AIP+PA—(PB+ [ >
2

] )G HBTP+2)+Q
play a crucial role.

Definition 2.1: A solution PT =: (PI', PT), with P, €
IR™, of the set of algebraic Riccati equations (4) is called
a. stabilizing, if 0(A— BG™'BTP)c @~

Yo (H) denotes the spectrum of matrix H; @'~ = {\ € € | Re()\) <
0}; @F ={\ € @ | Re()\) > 0}.

b. strongly stabilizing if

1. it 1is a stabilizing sol~uti0n, and
ii. o(~AT +PBG~'BT)C @; O

The next relationship between certain invariant subspaces of
matrix M and solutions of the Riccati equation (4) is well-
known (see e.g. Engwerda et al. [8]). This property can also
be used to calculate the (strongly) stabilizing solutions of (4).

Lemma 2.2: Let V C IR®" be an n-dimensional invariant
subspace of M, and let X; € IR"*"™, i = 0,1, 2, be three
real matrices such that

v =nm[x7, x7, xI".

If Xo is invertible, then P; := XiXO_l7 1 =1,2, solves (4)
and o(A — BG™Y(Z + BTP)) = o(M]|y). Furthermore,
(P1, Py) is independent of the specific choice of basis of
V. O

Lemma 2.3:

1. The set of algebraic Riccati equations (4) has a strongly
stabilizing solution (Py, P) if and only if matrix M has
an n-dimensional stable graph subspace and M has 2n
eigenvalues (counting algebraic multiplicities) in (Ua' .

2. If the set of algebraic Riccati equations (4) has a
strongly stabilizing solution, then it is unique.

Proof.
1. Assume that (4) has a strongly stabilizing solution P.

. I
Then with T := [ _p Il
A-SP -8

TMT ! = N ~ .
{ 0 —AT +PS

Since P is a strongly stabilizing solution, by Definition 2.1,
matrix M has exact n stable eigenvalues and 2n eigenvalues
(counted with algebraic multiplicities) in €. Furthermore,
obviously, the stable subspace is a graph subspace.

The converse statement is obtained similarly using the
result of Lemma 2.2.
2. See, e.g., Kremer [13, Section 3.2]. O

III. Main results

Using the previous results, in the Appendix the following
theorem is proved.

Theorem 3.1: If the differential game (1,2) has an open-
loop Nash equilibrium for every initial state, then

1. M has at least n stable eigenvalues (counted with
algebraic multiplicities). More in particular, there exists
a p-dimensional stable M-invariant subspace .S, with
p > n, such that

Im| V; | CS,
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for some V; € IR™*",
2. the two algebraic Riccati equations (3) have a stabilizing
solution.

Conversely, if the two algebraic Riccati equations (3) have
a stabilizing solution and v7 (t) =: [2T (t),yT (t),vd (t)] is
an asymptotically stable solution of

c(t)

oty =Mo@)+ | 0 |, 2(0) =,
0
then,
us (t) Bia(t) + Wia(t) |
provides an open-loop Nash equilibrium for the linear
quadratic differential game (1,2). |

Remark 3.2: Similar conclusions as in [9] can be drawn
now. A general conclusion is that the number of equilibria
depends critically on the eigenstructure of matrix M. With
s denoting the number (counting algebraic multiplicities) of
stable eigenvalues of M we have.

1. If s < n, still for some initial state there may exist an
open-loop Nash equilibrium.

2. In case s > 2, the situation might arise that for some
initial states there exists an infinite number of equilibria.

3. If M has a stable graph subspace, .5, of dimension s > n,
for every initial state x( there exists, generically, an infinite
number of open-loop Nash equilibria. ]

The next theorem shows that in case the set of coupled
algebraic Riccati equations (4) have a stabilizing solution,
the game always has at least one equilibrium.

Theorem 3.3: Assume that

1. the set of coupled algebraic Riccati equations (4) has a
set of stabilizing solutions P;, ¢ = 1,2; and
2. the two algebraic Riccati equations (3) have a stabilizing
solution K;(.), i =1,2.
Then the linear quadratic differential game (1,2) has an open-
loop Nash equilibrium for every initial state.
Moreover, one set of equilibrium actions is given by:

{ ut ] = —G7Y(Z+BTP)®(t,0)z0 — G BTm(t),
u3(t)

B (6)
where ®(¢,0) is the solution of the transition equation
®(t,0) = (A — BG~Y(Z + BTP))d(t,0); ®(0,0) = I
and m(t) = [ e(—A2+PBGT'BY)(t=9) Pe(s)ds. O

Corollary 3.4: An immediate consequence of Lemma
2.2 and Theorem 3.3 is that if M has a stable invariant
graph subspace and the two algebraic Riccati equations (3)
have a stabilizing solution, the game will have at least one

open-loop Nash equilibrium. ]

Remark 3.5: In case ¢(.) = 0 it can be shown, similar to
[6], that the costs by using the actions (6) for the players are

xOTMixO, 1= 1,2,

where, with A, := AfBGfl(ZJrBTP), M, is the unique
solution of the Lyapunov equation

I, ~G~YZ+ BTP)|M;I, -G~Y(Z+ BTP)" (7)
+ AL M; + M; Ay = 0. 0

Notice that in case the set of algebraic Riccati equations (4)
has more than one set of stabilizing solutions, there exists
more than one open-loop Nash equilibrium. Matrix M has
then a stable subspace which dimension is larger than n.
Consequently (see Remark 3.2, item 3) for every initial state
there will exist, generically, an infinite number of open-loop
Nash equilibria. This point was first noted by Kremer in [13]
in case matrix A is stable.

The above reflections raise the question whether it is
possible to find conditions under which the game has a
unique equilibrium for every initial state. The next Theorem
3.6 gives such conditions. Moreover, it shows that in case
there is a unique equilibrium the corresponding actions are
obtained by those described in Theorem 3.3. The proof of
this theorem is provided in the Appendix.

Theorem 3.6: Consider the differential game (1,2) with
c(.)=0.
This game has a unique open-loop Nash equilibrium for
every initial state if and only if
1. The set of coupled algebraic Riccati equations (4) has
a strongly stabilizing solution, and
2. the two algebraic Riccati equations (3) have a stabilizing
solution.
Moreover, in case this game has a unique equilibrium, also
the corresponding affine linear quadratic differential game,
where ¢(.) € Lo, has a unique equilibrium and the unique
equilibrium actions are given by (6). (|

IV. CONCLUDING REMARKS

In this note we considered the affine regular indefinite
infinite-planning horizon linear-quadratic differential game.
Both necessary conditions and sufficient conditions were
derived for the existence of an open-loop Nash equilibrium.
Moreover, conditions were presented that are both necessary
and sufficient for the existence of a unique equilibrium.

The prove our results we basically proceeded along the
lines of the proofs of the paper [9]. By adapting those proofs
(in a not always trivial way) we showed that the results
obtained in that paper carry over to this extended model.

The above results can be generalized straightforwardly
to the N-player case. Furthermore, since (); are assumed
to be indefinite, the obtained results can be directly
used to (re)derive properties for the zero-sum game. If
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players discount their future loss, similar to [6], it follows
from Theorem 3.6 that if the discount factor § is “large
enough” the game has generically a unique open-loop Nash
equilibrium (all that changes is that matrix A has to be
replaced by A — %I everywhere). Finally we conclude from
(5) that the conclusion in [13], that if the game has an
open-loop Nash equilibrium for every initial state either
there is a unique equilibrium or an infinite number of
equilibria, applies in general.

APPENDIX

Theorem 4.1: Let S := BR™'BT. Consider the mini-
mization of the linear quadratic cost function

/ T AT 00w(t) + 2T (Ma(t) + uT (ORudt (©)
0
subject to the state dynamics

z(t) = Ax(t) + Bu(t) + c(t, zg), ©(0) =9, (9)

and u € Us(xo). Then,
1. with ¢(.) = p(.) = 0, (8,9) has a solution for all o € IR™

if and only if the algebraic Riccati equation
ATK+ KA-KSK+Q =0 (10)

has a symmetric stabilizing solution K(.) (ie. A — SK is a
stable matrix).

2. for every o, (8,9) with ¢(., o), p(.) € Lo, has a solution
iff. item 1 has a solution. Moreover if this problem has a
solution then the problem has the unique solution

u*(t) = —R7'BT(Kz*(t) + m(t)).

Here m(t) is given by
mit) = [ e ST Ke(s) 4 ple))ds, (1D
t

and z*(t) satisfies

z*(t) = (A= SK)x*(t) — Sm(t) + ¢(t), 2*(0) = xo.
Proof. Similar to the proof of [10, Theorem 5.16]. O

Proof of Theorem 3.1.
7= part” Suppose that u],u5 are a Nash solution. That is,

J1(ur,usy) > Ji(ul,usy) and Jo(ul,uz) > Jo(ul,us).

From the first inequality we see that for every zo € IR"
the (nonhomogeneous) linear quadratic control problem to
minimize J; =

| T O + 20l VT at0) + 2057 W alo)+
0

ul (8 Ruyun () + uT () Nvuy(t) + b (8)Rovus(8)}dt,
(12)

subject to the (nonhomogeneous) state equation

z(t) = Az(t) + Brug (t) + Baus(t) + c(t), z(0) = o, (13)

has a solution. Or, equivalently, with

v(t) ==y (t) + Ri7 Vil a1 (t) + Ry N (14)

the minimization of J; =
oo
| 0@ = RV a0+ of O Run () (5)
0

+2u5 (O =3 (ONT Ry VD (1) +
T
us ()(Ra1 — NI Ryy Ni)us(t)}dt,
subject to the (nonhomogeneous) state equation
@1(t) = (A — BiR7' V)z1(t) + Biva (8)+ (16)
(B2 — BiRy;' N1)u3(t) + ¢(t), x(0) = xo,
has a solution. This implies, see Theorem 4.1, that the
algebraic Riccati equation
KiSiK; + Qi = ViR;'V =0
has a stabilizing solution. It is easily verified that this
equation can be rewritten as (3), with ¢ = 1. Similarly we
get that also the second algebraic Riccati equation must have
a stabilizing solution. Which completes the proof of point 2.
To prove point 1 we consider Theorem 4.1 in some more

detail. According Theorem 4.1 the minimization problem
(15,16) has a unique solution. Its solution is

91 (t) = =Ry BT (Kyx1(t) +mq(t))with my(t) = (17)

/ e~ (A=BIREVE =S T (=) (K (5) + py (s)) ds,
t

where pf (s) = u3” (s) (W] = NI R VIT), ma(s) = (Bs -
B1Ry'N1)ui(s) + c(s) and K the stabilizing solution of
the algebraic Riccati equation (3), with ¢ = 1. Consequently,
see (14),

a1 (t) = 01(t) — (R}V 21 (1) + Ry ENyulb) (18)

solves the original optimization problem. Notice that, since
the optimal control for this problem is uniquely determined,
and by definition the equilibrium control u] solves the
optimization problem, u7(¢) = @;(t). Consequently,

W = Ax(t) + Biui(t) + Baus(t)—

(A—BiR} VI — S1K1)xy(t) 4+ Symy (t)—
(By — B1 Ry Ni)uj(t)
= Ax(t) — S1(K1z1(t) + mi(t)) — (BT R Vi () +
BiRy{' Niuy) — Awy(t) + S1(Kyay () + ma(t)+
BiR'Vi 21 (t) + BiRyy Nyus(t)
= A(z(t) — z1(2)).
Since z(0) — x1(0) = 0 it follows that x1(t) = x(t).

Analogously we obtain from the minimization of Jy, with
u] now entering into the system as an external signal, that

u3(t) == —Ryy By (Kax(t) + ma(t))— (19)
(R521W2Tx(t) + R521N2T“T)
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with mo(t) = [° e (A= B2 Ry Vi =52 K2)T (1=9) (K 00 (5) +
T —

pa(s))ds, p3(s) = ui (s)(W3 — N Ry Vi), ma(s) =

(B1—B3yR55 No)ult(s)+c(s) and Ko the stabilizing solution

of the algebraic Riccati equation (3), with 7 = 2.

Differentiation of m1(t) in (17) gives

my(t) = —(A — BiR}'VT — 81K ) 'my (t)— (20)

(KlBQ — KlBlRlillNl + W1 — VlRfllNl)US(t) — ch(s).

Next, introduce v (t) := Kyx(t)+mq(t). Using (16,17) and

(20) we get

U1 (t) = Ky&(t) + 1y (1)
= K1(A - BiR}'VT — 81Ky )x(t) — K1S1ma (t)+
K1(By — By R Ny )ub (t) + Kic(s)—
(A— BRI — S1K1)Tmy(t) — (K1 By—

K1B1R}'! N1 + Wi — ViR Ny )u(t) — Kic(s)

= —Quz(t) — AT(Kyz(t) + mqy(t)+
(ViRyy BT Kq + ViRV )a(t)+
ViR Bfmy(t) + ViR Nyuj(t) — Wiub(t)

= —Quz(t) — AT (t) — Viui(t) — Wiub(t). (22)

2L

Similarly it follows that U5 (t) = —Qaz(t) — AT4py(t) —
Voui(t) — Wauj(t).
From (17,19) it follows that (u},u}) satisfy

Ruui + Nyuj(t) = —Bf ¢ (t) — Vi a(t)
N3 u} + Rogui(t) = =B ¢a(t) — W3 a(t),

respectively. Due to our invertibility assumption on matrix
G we can rewrite this as (5). Consequently,

vI(t) = [ (1), v3 (1), vg (B)] == [T (1), o1 (1), ¥3 (1)),

e(t)
satisfies v(t) = Mwv(t) + 0
0
Since by assumption, for arbitrary x, v1(t) converges to zero
it is clear from [10, Lemma 7.36] by choosing consecutively
r9 = €, © = 1,---,n, that matrix M must have at
least n stable eigenvalues (counting algebraic multiplicities).
Moreover, the other statement follows from the second part
of this lemma. Which completes this part of the proof.
”< part” Let uj be as defined in (5) where x(¢) satisfies

5 with V1 (0) = Xy.

i(t) = (A — BG~'2)x(t) — BG™'BT ¢, (t)—
BG_IBglﬂg(ﬂ, 37(0) = Z0-

We next show that then necessarily u] solves the minimiza-
tion problem (12,13). Since, by assumption, the algebraic
Riccati equation (3) has a stabilizing solution, according The-
orem 4.1, the minimization problem (12,13) has a solution.
Following the notation of the "= part of the proof this
solution is given by (see (18,17))

iy (t) = —Ryy B (Kywy(t) + ma(t))
- (Rfll‘/iTxl(t) + RfllNIUE)

Next, introduce ¢y (t) := K121 (t) +m1(t). Then, similar to
(22) we obtain

?Zl(t) = —Qz1(t) — AT () — Vit (t) — Whuj(t).

Consequently, with z4(t) := x(t) — z1(t), Ya(t) := Y1 (t) —
¥1(t) and T = [T 1] we have:
Bq(t) = 2(t) — 1(t)
= (A— BG™'Z)x(t) — BG BTy, (t)—
BG™'BY a(t) — (A = BiR' VI a1 (1) + Sidhn (1)
— (Ba — B1 Ry Ny)uj(t)
= (A= BG™'2)z(t) — BG B y(t)—
(A= BRIV ) (1) + S1dhi (1)+
(B2 — BiR' N[0 1)G™H(BT(t) + Za(t))
— (A= [B, 0]G™' Z)a(t) — [B, ]G~ B (1)
— (A= By R}V (t) + Sy () —
[0 Bi Ry N1 |G (BT (1) + Za(t))
= Az(t) — BiR [Ri1 NG~ H(BTy(t)+
Za(t)) — (A= By RV )y () + Sy (£)
= (A= BiR ' VN )za(t) = S1da(t).

Furthermore, using (21),

Da(t) = U1 (t) —
= —Qua(t) — (AT = ViR ' B )¢ (t) + ViR Vi a(t)
+ ViR Nyus () — Waub(t) + Qua (£)+
ATy + Vi () + Wiub(t)
= —Qua(t) — (AT = ViR B )i () + ViRy, Vi a(t)
+ VAR Nius (t) + Quaa (t) + AT —
ViR Bl ¢y — ViR'Vi s (t) — VARy, Nyuj(t)
= (—=Q1 + ViRV )ma(t) — (A = BL Ry Vi) al(t).
A~ B RV —S1

—Qi+ ViRV — (A= BiR, )T
and €T := [T, ¢T]. Then for some p € IR",

Now, let H :=

é(t) = He(t), with e7(0) = [0, pl.

Notice that matrix H is the Hamiltonian matrix associated
with the algebraic Riccati equation (3). The rest of the proof
follows now along the lines of the corresponding part of the
proof of [10, Theorem 7.11]. .

Proof of Theorem 3.3.
Since (4) has a stabilizing solution, we can factorize M as
in the proof of Lemma 2.3. That is, M =

[ A-BGY(Z+ B"P) ~-BG~'BT

T 0 —~ AT + PBG'B”

T.

3511



Next consider
¥(t) := Px(t) + m(t) with
m(t) = /DO e(_A2T+PBG71'§T)(t_S)Pc(s)ds,
t

and z(.) the solution of the differential equation
i(t) = (A — BG™Y(Z + BT P))x(t)—-
BG'BTm(t) + ¢(t), 2(0) = x.

Notice that both z(t) and v (t) converges to zero if t — co.
By direct substitution of this x(¢) and 1 (¢) into

e(t)
0
0

it is straightforwardly verified (using the above decomposi-
tion of M) that v(t) := [zT(t) 7T (¢)] is an asymptotically
solution of this differential equation. So, by Theorem 3.1

[ Zigg } -t { By (t) + ViFx(t)

B (t) + Wi a(t)
= G Y(Z+ BTP)x(t) + BTm(t)),

provides an open-loop Nash equilibrium for the linear

quadratic differential game (1,2). (]

o(t) = Mo(t) + , 2(0) = xo,

Proof of Theorem 3.6.

7= part” With some small straightforward modifications
this part of the proof can be copied from the corresponding
part of the proof of [10, Theorem 7.16].

7« part” Since by assumption the stable subspace, E?,
is a graph subspace we know that every initial state, z,
can be written uniquely as a combination of the first n
entries of the basisvectors in E°. Consequently, with every
x( there corresponds a unique @, and v for which the
solution of the differential equation 2(t) = Mz(t), with
2 = [2f, ¢T, wl], converges to zero. So, by Theorem
3.1, for every zy there is a Nash equilibrium. On the
other hand the proof of Theorem 3.1 shows that all Nash
equilibrium actions (u}, u}) satisfy (5), where ;(¢) solves

a(t) a(t)

Ui(t) ¥1(t)

Pa(2) Va(t)
Now, with 27 := [ ¢T ¢T] and y7 = [27 u?" u}
consider the system

2(t) = Mz(t); y(t) = Cz(t), where

=M , with 2(0) = 0.

I 0 0
C:=| —-[I0G'Z —[I0G'Bf —[I0G'BY
—-[onGe-'z —ona-*BfY -0 I1G*BY
M — I
Then, rank { C ] =
A=\ 0 0
—Q1 AT I 0
rank ) 0 —AT — I
I 0 0
Z BT BT

Since (A4, B;), i = 1,2, is stabilizable, it is easily verified
from the above expression that the pair (C, M) is detectable.
Consequently, due to our assumption that x(t) and u} (¢), i =
1,2, converge to zero, we have from [19, Lemma 14.1]
that [z7(t), T (t), ¥I(t)] converges to zero. Therefore,
[zT(0), ¥T(0), ¥T(0)] has to belong to the stable subspace
of M. However, as we argued above, for every z( there
is exactly one vector 7(0) and vector 15(0) such that
[7(0), 9T (0), ¥(0)] € E*. So we conclude that for every
x( there exists exactly one Nash equilibrium.

Notice that in case the conditions 1. and 2. of this theorem
are satisfied, Theorem 3.3 implies that the unique equilibrium
actions are given by (6).

Finally, it will be clear that with ¢(.) # 0 one can pursue
the same analysis as above. Since this analysis brings on only
some additional technicalities and distracts the attention from
the basic reasoning we skipped that analysis here. ]
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