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Abstract—We consider the problem of designing optimal
smoothing spline curves by employing an approach based on
linear control systems. First, the problem is formulated using
continuous-time, time-invariant systems with piecewise constant
inputs. Then by introducing discrete time-varying systems, the
solutions for optimal splines including periodic splines are
derived. The existence conditions for unique optimal solutions
are established, where the concepts of controllability and
observability play central roles. The computational procedures
for the optimal splines are straightforward. The design method
for periodic splines is applied to a shape synthesizing problem
using jellyfish as the example.

I. INTRODUCTION

Spline functions have been used in various fields including

computer graphics, numerical analysis, image processing,

trajectory planning of robot and aircraft, and data analysis

in general [1]. Recently, using B-splines [2], the authors

studied smoothing splines and applied to generating cursive

characters [3], [4] and modeling of Dow-Jones industrial data

[5].

The studies on splines have a long history, but there

have been relatively new developments , called dynamic

splines (e.g. [6], [7]). Namely, it has been shown that, by

considering linear continuous-time control systems, various

types of spline functions can be generated and that spline

interpolation and smoothing problems can be treated in a

unified framework [8], [9]. Also B-splines have been studied

from the viewpoints of optimal control theory [10]. More-

over, by introducing a class of discrete-time systems, the

problem of ’multilevel’ interpolation is considered in [11].

Namely, not only the function value but also its derivatives

are interpolated.

In this paper, we study the problems of smoothing splines

by considering a linear SISO continuous-time, time-invariant

system. We restrict the control inputs to be piecewise con-

stant and no other conditions are imposed. We design optimal

smoothing splines and periodic splines by formulating the

problems as optimal control problems. The continuous-time

system is sampled to yield a discrete-time system, which is

time-varying when the specified knot points are not equally

spaced. Necessary and sufficient conditions are established

for the existence of unique optimal solutions to the smooth-

ing and periodic smoothing spline problems. We see that
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the conditions are closely related to, and in fact in some

special cases are exactly, the controllability and observability

of the sampled system. The periodic splines can be used for

example to model contours or shapes [12] of various objects.

The smoothing splines and periodic splines have been

treated in various papers. In fact, the periodic splines are

treated in [13] by dynamic splines approach and in [14] by

using B-splines as the basis functions. The present approach

by means of discrete-time control systems provides a new

framework for studying spline interpolation and smoothing

problems. The analytical results on the existence of unique

optimal solutions are such examples, and moreover we can

easily compute the optimal splines by a combination of the

discrete- and continuous-time systems.

The rest of this paper is organized as follows. In Section II,

we formulate the smoothing and periodic smoothing spline

problems. In Section III, we establish necessary and suffi-

cient conditions for the existence of unique optimal solutions.

Some special cases including the case of the standard splines

are treated in Section IV. In Section V, we apply the results

on periodic splines to synthesizing the shape of jellyfish from

its image data. Concluding remarks are given in Section VI.

II. PROBLEM STATEMENT

Let y(t), t ∈ [0,T ], be a polynomial spline of degree n
with the knot points tk,

t0(= 0) < t1 < · · · < tk < tk+1 < · · · < tm(= T ). (1)

Since y(t) is a piecewise polynomial of degree n and is (n−
1)-times continuously differentiable, it can be written as

y(n+1)(t) = 0, t ∈ [tk, tk+1), k = 0,1, · · · ,m−1, (2)

with the continuity conditions

y(i)(tk−) = y(i)(tk+), i= 0,1, · · · ,n−1, (3)

for k = 1,2, · · · ,m−1. We rewrite (2) as
y(n)(t) = const. = uk, (4)

for t ∈ [tk, tk+1), k = 0,1, · · · ,m−1.
Then, letting x ∈ Rn be

x=
[
y y(1) · · · y(n−1)

]T
, (5)

y(t) is expressed as the output of the following continuous-
time linear system:

ẋ = Ax+bu, x(t0) = x0
y = cx. (6)
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Here u ∈U is a piecewise constant control input with
U = {u(t) : u(t) = uk, t ∈ [tk, tk+1),k= 0,1, · · · ,m−1}, (7)
and A ∈ Rn×n, b ∈ Rn, c ∈ R1×n are defined by

A =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1

0

⎤
⎥⎥⎥⎥⎦ , b=

⎡
⎢⎢⎢⎣
0
...

0

1

⎤
⎥⎥⎥⎦ ,

c =
[
1 0 · · · 0

]
. (8)

Thus the design of spline functions is regarded as that of the

control input u ∈ U and the initial state x0 ∈ Rn.
Now suppose that we are given a set of data

D = {(sk,αk) : sk ∈ [0,T ],αk ∈ R,k = 1,2, · · · ,N} (9)

where we assume si �= s j for i �= j. Then we consider the
following two problems.

Problem 1: (smoothing spline) Find an optimal control u�

and an optimal initial state x�0 such that

min
u∈U ,x0∈Rn

J(u,x0),

where

J(u,x0) = λ
∫ T
0
u2(t)dt+

N

∑
k=1
wk(y(sk)−αk)2, (10)

λ > 0, and wk > 0 ∀k with w1+w2+ · · ·+wN = 1.
Problem 2: (periodic smoothing spline) Find an optimal

control u� and an optimal initial state x�0 such that

min
u∈U ,x0∈Rn

J(u,x0),

subject to the constraints

y(i)(t0) = y(i)(tm), i= 0,1, · · · ,n−1, (11)

for J(u,x0) in (10).
Note that the constraint (11) together with (3) produces

(n−1)-times continuously differentiable periodic curve y(t)
in [0,+∞) with the period T (= tm).
In the next section, we derive the optimal solutions. Note

that we do not assume A,b,c of the forms in (8). Moreover,
in Section IV, the three cases where the knot points tk are
equally-spaced, the data points sk are equally-spaced, and
A,b,c are in the forms in (8) are treated as the special cases.
In order to solve these problems, it is convenient to

introduce a discrete-time system obtained by sampling (6)

at the knot points. Namely, with xk = x(tk), yk = y(tk) and
the sampling interval

hk = tk+1− tk, (12)

we consider the following system,

xk+1 = Φk+1,kxk+gkuk, k = 0,1, · · ·
yk = cxk, (13)

where

Φk+1,k = eAhk , (14)

gk =
∫ tk+1
tk
eA(tk+1−τ)bdτ =

∫ hk
0
eA(hk−τ)bdτ. (15)

Obviously Φk+1,k is nonsingular for all k. Once the state xk
and the input uk are determined for k = 0,1, · · · ,m− 1, the
spline is obtained in each interval [tk, tk+1) by

x(t) = eA(t−tk)xk+g(t− tk)uk,
y(t) = cx(t), (16)

where g(t) is defined by

g(t) =
∫ t
0
eA(t−τ)bdτ. (17)

III. OPTIMAL SOLUTIONS

We establish optimal solutions for Problems 1 and 2.

A. Smoothing Splines

First we solve Problem 1. In the cost function J(u,x0) in
(10), the integral term is expressed as

∫ T
0
u2(t)dt = ‖ū‖2H ,

where ū ∈ Rm and H ∈ Rm×m are defined by
ū =

[
u0 u1 · · · um−1

]T
, (18)

H = diag{h0, h1, · · · , hm−1}. (19)

The second term in (10) is written as

N

∑
k=1
wk(y(sk)−αk)2 = ‖ȳ−α‖2W ,

where

ȳ =
[
y(s1) y(s2) · · · y(sN)

]T
,

α =
[

α1 α2 · · · αN
]T

,

W = diag{w1, w2, · · · , wN}. (20)

Here y(sk) is obtained from (6) as

y(sk) = ceAskx0+
∫ sk
0
ceA(sk−τ)bu(τ)dτ.

By introducing ft(τ):

ft(τ) =
{
ceA(t−τ)b τ < t
0 τ ≥ t , (21)

y(sk) is expressed as

y(sk) = ceAskx0+
∫ T
0
fsk(τ)u(τ)dτ

= ceAskx0+dTk ū, (22)

where dk ∈ Rm is defined by
dk =

[ ∫ t1
t0 fsk(τ)dτ

∫ t2
t1 fsk(τ)dτ · · ·

· · · ∫ tm
tm−1 fsk(τ)dτ

]T
. (23)

Thus ȳ is obtained as

ȳ=Cx0+Dū, (24)
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where the matrices C ∈ RN×n and D ∈ RN×m are defined by

C =

⎡
⎢⎢⎢⎣
ceAs1

ceAs2
...

ceAsN

⎤
⎥⎥⎥⎦ , (25)

D=
[
d1 d2 · · · dN

]T
. (26)

Thus the cost function J(u,x0) is expressed in terms of ū and
x0 as

J(ū,x0) = λ‖ū‖2H +‖Cx0+Dū−α‖2W . (27)

Taking the derivatives with respect to ū and x0 and setting
zero yield the following set of algebraic equations.[

λH+DTWD DTWC
CTWD CTWC

][
ū
x0

]
=

[
DTWα
CTWα

]
. (28)

The optimal solution of Problem 1, if it exists, is obtained

as the solution of (28).

Theorem 1: Problem 1 has a unique optimal solution u�

and x�0 if and only if rank C = n.
(Proof) Denoting the coefficient matrix in (28) by A ∈

R(m+n)×(m+n), it may be expressed as

A =
[

λH 0

0 0

]
+

[
D C

]T
W

[
D C

]
, (29)

and hence A ≥ 0. Moreover, suppose that A a = 0 for a

vector a ∈ Rm+n, and let a=
[
a1
a2

]
with a1 ∈ Rm,a2 ∈ Rn.

Then we get

(λH+DTWD)a1+DTWCa2 = 0
CTWDa1+CTWCa2 = 0.

Manipulating these equations, we obtain

λ‖a1‖2H +‖Da1+Ca2‖2W = 0. (30)

Thus a1 = 0 since H > 0, and hence Ca2 = 0 since W > 0.
It is then obvious that rank C= n is necessary and sufficient
for a2 = 0 or regularity of A . In other words, J(ū,x0) is
strictly convex if and only if rank C = n holds. (QED)

Remark 1: For any matrices S = ST ≥ 0, U and vector v
of compatible dimensions, it holds that

rank(S+UTU, UT v) = rank(S+UTU).

Hence, in view of (28) and (29), we easily see that (28) is

always consistent. Thus if rank C = n does not hold, there
are infinitely many optimal solutions for Problem 1. Then

the minimum-norm solution of (28) may be employed.

B. Periodic Smoothing Splines

Next we consider Problem 2. The constraints in (11) are

nothing but

x0 = xm. (31)

From (13), xm is obtained as

xm = Φm,0x0+
m−1
∑
k=0

Φm,k+1gkuk

= Φm,0x0+Gū, (32)

where the matrix G ∈ Rn×m is given by
G=

[
Φm,1g0 Φm,2g1 · · · gm−1

]
. (33)

Now, using the cost function in (27), we form the following

Lagrangian

L(ū,x0,µ) = J(ū,x0)+ µT (x0− xm)
= λ‖ū‖2H +‖Cx0+Dū−α‖2W

+µT (x0−Φm,0x0−Gū), (34)

where µ ∈ Rn is the Lagrangian multiplier. Taking the
derivatives with respect to ū,x0 and µ yields⎡

⎣ λH+DTWD DTWC −GT
CTWD CTWC In−ΦTm,0
−G In−Φm,0 0

⎤
⎦

⎡
⎣ ū
x0
1
2µ

⎤
⎦

=

⎡
⎣ D

TWα
CTWα
0

⎤
⎦ . (35)

Thus the optimal solution is obtained as the solution of this

algebraic equation.

We now have the following theorem.

Theorem 2: Problem 2 has a unique optimal solution u�

and x�0 if and only if rank C = n and rank G= n.
(Proof) Denoting the coefficient matrix of (35) by ˆA , we

first examine its regularity. Letting

ˆA a= 0, a ∈ Rm+2n,

and partitioning a into three vectors a1 ∈ Rm, a2,a3 ∈ Rn
compatibly with ˆA yield

(λH+DTWD)a1+DTWCa2−GTa3 = 0 (36)

CTWDa1+CTWCa2+(In−ΦTm,0)a3 = 0 (37)

−Ga1+(In−Φm,0)a2 = 0. (38)

Premultiplying aT1 to (36), premultiplying a
T
2 to (37), and

using (38), we obtain

λ‖a1‖2H +‖Da1+Ca2‖2W = 0,

the same equation as (30). Thus we get a1 = 0, Ca2 = 0, and
further GTa3 = 0 by (36).
We then see that (35) has a unique solution, i.e. ˆA a =
0 implies a = 0, if and only if rank C = n and rank G =
n. Moreover, under these rank conditions, the cost function
J(ū,x0) in (34) is strictly convex in ū and x0 as shown in the
proof of Theorem 1. Thus the solution of (35) provides the

optimal solution to Problem 2. (QED)

Remark 2: The condition rank G= n is the controllability
condition

V (0,m) =
m−1
∑
i=0

Φm,i+1gig
T
i ΦTm,i+1 > 0. (39)

Finally, in this subsection, we examine in details the

structure of the matrix G in (33). Denoting its i-th column
by Gi, we obtain

Gi = Φm,igi−1 =
∫ ti
ti−1
eA(tm−τ)bdτ

=
(∫ tm
ti−1

−
∫ tm
ti

)
eA(tm−τ)bdτ. (40)
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Moreover, by changing the integration variable and using

(17), we get
∫ tm
ti
eA(tm−τ)bdτ =

∫ tm−ti
0

eA(tm−ti−τ)bdτ

= g(tm− ti).
Thus Gi is written as

Gi = g(δi−1)−g(δi), i= 1,2, · · · ,m, (41)

where δi is defined by

δi = tm− ti = T − ti, i= 0,1, · · · ,m. (42)

In particular, δm = 0 and hence Gm = g(δm−1).
Remark 3: For an optimal choice of the smoothing pa-
rameter λ , we may employ the so-called cross validation
method (e.g. [1]): Let Dl be the data set obtained from D
in (9) by deleting the l-th data, i.e.

Dl = D −{(sl ,αl)}, l = 1,2, · · · ,N, (43)

and let y�λ ,l(t) be the splines constituted from the above
optimal solutions for the data Dl . Then an optimal λ is
obtained by minimizing the cross validation function,

V (λ ) =
N

∑
l=1
wl(y�λ ,l(sl)−αl)2. (44)

IV. SOME SPECIAL CASES

The results established in the previous section are exam-

ined in details for the following three special cases.

A. The Case of Equally-Spaced Knot Points

We consider the case where the knot points tk are equally
spaced, namely

tk+1− tk = const. = h ∀k. (45)

Then, the sampled system in (13) is time-invariant, and is

given by

xk+1 = Φxk+guk, k = 0,1, · · ·
yk = cxk, (46)

where Φ and g are given from (14) and (15) as

Φ = Φk+1,k = eAh, g= gk =
∫ h
0
eA(h−τ)bdτ. (47)

In this case, the matrix G in (33) is written as

G=
[

Φm−1g Φm−2g · · · g
]
. (48)

Thus the condition rank G= n is the same as the controlla-
bility of the pair (Φ,g), and Theorem 2 can be restated as
follows.

Corollary 1: Assume that the knot points tk are equally
spaced. Then, Problem 2 has a unique optimal solution u�

and x�0 if and only if rank C = n and the pair (Φ,g) is
controllable.

Regarding the relation of controllability between a

continuous-time system and the sampled discrete-time sys-

tem, the following result holds (see e.g. [15], Theorem C-2),

where ℜ[·] and ℑ[·] respectively denotes real and imaginary
part of complex numbers.

Lemma 1: Assume that the pair (A,b) in (6) is control-
lable. Then the pair (Φ,g) in (46) is controllable if and only
if ℑ[λi(A)−λ j(A)] �= 2πk/h for k = ±1,±2, · · · , whenever
ℜ[λi(A)−λ j(A)] = 0.
Thus, unless the matrix A has complex conjugate eigen-

values γ ± jδ satisfying δ = πk/h for some k= ±1,±2, · · · ,
the controllability condition of (Φ,g) in Corollary 1 can be
replaced with the controllability of (A,b).

B. The Case of Equally-Spaced Data Points

Let us examine the case where the data points sk in (9)
are equally spaced as

sk+1− sk = const. = β ∀k. (49)

Then the matrix C in (25) is written as

C =C0,N−1eAs1 , (50)

where

C0,N−1 =

⎡
⎢⎢⎢⎣

c
cΨ
...

cΨN−1

⎤
⎥⎥⎥⎦ , (51)

and Ψ = eAβ . It is obvious that, when N ≥ n, rank C =
rank C0,N−1 = rank C0,n−1. Thus the condition rank C= n in
Theorems 1 and 2 is the observability of the pair (c,Ψ):
Corollary 2: Assume that the data points sk are equally
spaced. Then, Problem 1 has a unique optimal solution u�

and x�0 if and only if the pair (c,Ψ) is observable. Problem
2 has a unique optimal solution if and only if the pair (c,Ψ)
is observable and rank G= n.
Again, using Lemma 1 and the duality, the observability of

the pair (c,Ψ) is linked to that of (c,A) for continuous-time
system (6): The observability condition of the pair (c,Ψ) is
equivalent to that of (c,A) unless the matrix A has complex
conjugate eigenvalues γ ± jδ satisfying δ = πk/β for some
k = ±1,±2, · · · .
C. The Case of A,b,c given in (8)

We consider the case where A,b, and c in (6) are given
by (8). This case corresponds to the standard polynomial

splines.

It is then possible to examine in details the existence

conditions in Theorems 1 and 2, and moreover we can derive

more explicit expressions for the matrices and vectors arising

in the optimal solutions.

First of all, eAt becomes

eAt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2
2! · · · tn−1

(n−1)!
1 t · · · tn−2

(n−2)!
. . .

...

. . . t
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (52)
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and g(t) in (17) is computed as

g(t) =
[
tn
n!

tn−1
(n−1)! · · · t

]T
. (53)

We now show that the condition rank C= n always holds
when N ≥ n. In (25), we get

ceAsk =
[
1 sk

s2k
2! · · · sn−1k

(n−1)!
]
. (54)

Thus, denoting the matrix consisting of the first n rows of
matrix C by C̄, we see that

C̄ =

⎡
⎢⎢⎣
1 s1 s21 · · · sn−11
1 s2 s22 · · · sn−12

· · · · · ·
1 sn s2n · · · sn−1n

⎤
⎥⎥⎦S, (55)

where S= diag{1 11! 12! · · · 1
(n−1)!}. Noting si �= s j for i �= j,

the result on Vandermonde matrix shows that the matrix C̄
is nonsingular, and hence rank C = n always holds.
Next we consider the matrix G in (33). Since its i-th
column Gi is given by (41) with Gm = g(δm−1), it holds
that

rankG = rank
[
g(δ0)−g(δ1) g(δ1)−g(δ2)

· · · g(δm−2)−g(δm−1) g(δm−1)
]

= rank
[
g(δ0) g(δ1) · · · g(δm−1)

]
(56)

Now, assuming that m ≥ n, let us consider the square sub-
matrix Ḡ ∈ Rn×n defined as

Ḡ=
[
g(δ0) g(δ1) · · · g(δn−1)

]
. (57)

Then using the function g(t) in (53), Ḡ may be written as

Ḡ= Ŝ

⎡
⎢⎢⎣

δ n−10 δ n−11 · · · δ n−1n−1
· · · · · ·

δ0 δ1 · · · δn−1
1 1 · · · 1

⎤
⎥⎥⎦∆,

where Ŝ = diag{ 1n! 1
(n−1)! · · · 1

1!} and ∆ =
diag{δ0 δ1 · · · δn−1}. Since δi �= δ j for i �= j, we see
that the matrix Ḡ is nonsingular, and hence rank G = n
always holds.

Thus, Theorems 1 and 2 may be written as follows.

Corollary 3: Assume that A,b,c are given by (8). The
condition N ≥ n is necessary and sufficient for Problem 1 to
have a unique optimal solution u� and x�0. On the other hand,
the conditions N ≥ n and m≥ n are necessary and sufficient
for Problem 2 to possess a unique optimal solution.

Finally, in this subsection, we present the matrix D in (26)
in a more explicit form. Consider the vector dk in (23), and
let j (0≤ j < m) be such that t j < sk ≤ t j+1. Then dk is of
the following form

dk =
[
dk,1 · · · dk, j+1 0 · · · 0

]T
. (58)

Here, dk,i is computed as

dk,i =
∫ ti
ti−1
ceA(sk−τ)bdτ

=
1

n!
[(sk− ti−1)n− (sk− ti)n] (59)

for i= 1,2, · · · , j, and dk, j+1 is obtained by

dk, j+1 =
∫ sk
t j
ceA(sk−τ)bdτ =

1

n!
(sk− t j)n. (60)

V. EXPERIMENTAL RESULTS

We apply the above method for designing optimal peri-

odic smoothing splines to a contour synthesis problem. In

particular, we model the shape of a jellyfish from its image

data.

The data D in (9) is obtained as follows. First the

image data are digitized into two levels by using an image

processing technique and the gravity center is computed.

Fixing an O− pq plane with its origin O at the gravity center,
the distance α (in pixels) is computed from the origin to the
boundary pixel by increasing an angle s by δ s= 1 (degree).
In the following design example, we selected the data

consisting of 36 data points (i.e. N = 36) which correspond
to the measurement at every 10 degrees. Thus the data points

are equally spaced. The weights wk are set as wk = 1/N ∀k.
We used (A,b,c) of the form in (8) with n= 3 and equally
spaced knot points with tk+1− tk = h= 10. Thus Corollary 3
guarantees the existence of unique optimal periodic solution.

Figure 1 shows the results of designed optimal periodic

spline y(t) (blue line) together with the data points (’∗’
mark). Green and red lines show y(1)(t) and y(2)(t) re-
spectively. In Figure 2, the value of the cross validation

function V (λ ) in (44) is plotted in the interval [10−0.5,103.5].
We confirmed that, outside of this interval, V (λ ) increases
further, and very fast beyond 103.5 in particular. The optimal

value of the smoothing parameter was found to be λ � =
251.1886. Figure 3 shows the reconstructed contour in the
O− pq plane, and the optimal control input u�(t) is plotted in
Figure 4. The original image is overlaid with the constructed

contour in Figure 5. From these figures, we may observe that

we have recovered fairly good contour by the present model.
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Fig. 1. Optimal periodic spline y(t) and its derivatives.

VI. CONCLUDING REMARKS

We considered the problem of designing optimal smooth-

ing spline curves by employing an approach based on

linear control systems. The problem is formulated using
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continuous-time, time-invariant systems with piecewise con-

stant inputs and the sampled discrete (in general, time-

varying) systems. We established necessary and sufficient

conditions for the existence of unique optimal smoothing

and periodic smoothing splines. These conditions are closely

related to the controllability and observability. We believe

that this approach by means of continuous- and discrete-

Fig. 5. Original image and the constructed contour.

time control systems will allows us to see a various kind of

spline problems more in details in a more systematic fashion.

As the results, the computational procedures for the optimal

splines are straightforward. The design method for periodic

splines is applied successfully to synthesizing the shape of

jellyfish from its image data.
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