
A Locally Weighted Learning Method
for Online Approximation Based Control

Y. Zhao and J. A. Farrell
Department of Electrical Engineering

University of California, Riverside

Abstract— This article is concerned with tracking control
problems for nonlinear systems that are not affine in the control
signal and that contain unknown nonlinearities in the system
dynamic equations. This paper develops a piecewise linear
approximation to the unknown functions during the system
operation. New control and parameter adaptation algorithms
are designed and analyzed using Lyapunov-like methods. The
objectives are to achieve global stability of the state, accurate
tracking of bounded reference signals contained within a
known domain D, and at least boundedness of the function
approximation parameter estimates.
Keywords: Adaptive approximation based control, receptive
field weighted regression, adaptive nonlinear control, locally
weighted learning.

I. INTRODUCTION

Several adaptive on-line approximation based controllers
have been proposed that use cooperative learning methods
to approximate unknown nonlinearities sufficiently well to
achieve a specified level of command tracking, e.g. [2], [8],
[9], [10], [11]. Cooperative learning adjusts the parameters of
the linear combination so that the weighted linear combina-
tion of the basis elements jointly achieves the approximation
accuracy sufficient to achieve the tracking objective. The
total number of basis functions (and definition of each)
directly affects the complexity of the functions that can be
approximated over a compact set D that defines the region
of operation of the system. Since the parameters of the
approximator are jointly adjusted to achieve the tracking
objective, increasing the number of basis elements may
cause the learning approach to locally over-parameterize the
approximation and fit noise in the data.

The idea of locally weighted regression (LWR) is dis-
cussed in [1]. Locally weighted regression uses approxima-
tors composed of local models each of which is adjusted in-
dependently to achieve local approximation accuracy over a
small subregion Sk of the domain D such that D ⊂ ⋃N

k=1 Sk.
Locally weighted regression decreases the effects of over-
fitting the data and facilitates the definition and adjustment
of the approximator structure. The original LWR results did
not include closed loop stability analysis. Stability analysis,
of LWR based tracking control methods, is contained in [6],
[7]. These initial LWR stability results contained two major
limitations. First, the analysis considered systems of the form
ẋ = f(x) + g(x)u where g(x) = 1 and x ∈ �. Second, the
approach assumed that both x and ẋ were measured and
available for use in the adaptive control law. The use of
the state derivative in the implementation is undesirable and

removal of this assumption is one of the issues addressed
herein. In addition, we will develop an approach applicable to
affine systems of the form ẋ = f(x)+g(x)u where g(x) �= 1
or (controllable) non-affine systems of the form ẋ = f(x, u).
Due to space limitations, we will still limit our analysis to
scalar systems x ∈ �. Additional contributions relative to
the existing literature include: addressing initial conditions
which are outside of the compact set D, analysis of existence
and stability of solutions that result from the (switching)
LWR controller, and addressing non-affine systems.

The problem statement and LWR approximator are for-
mulated in Section II. The control law addressing initial
conditions both within and outside of D is defined and
analyzed in Section III. The resulting controller involves
switching which can be analyzed in the sense of Filippov.
The approximator parameter adaptation is defined in Section
IV. Overall stability analysis is concluded in Section V. The
extension to nonaffine systems is discussed in Section VI.

II. SYSTEM FORMULATION

Sections II–V of this paper consider the scalar affine
system

ẋ = f(x) + g(x)u (1)

where x ∈ �, f(x) and g(x) are unknown continuous
nonlinear functions and u is a control input. We are interested
in tracking problems, where the desired output xd(t) and its
time derivative ẋd(t) are available at any t ≥ 0. We assume
that xd(t) ∈ D for all t ≥ 0 where the compact region D
is known and contains the origin x = 0. Finally, we assume
existence of a constant γ > 0 such that

γ ≤ min
x∈{�−D}

(‖xd(t) − x‖), (2)

for any t ≥ 0. This condition states that the desired trajectory
is at least a distance γ from the boundary of D. The region
D also defines the largest region over which the functions f
and g will be approximated. We assume that f(x) and g(x)
are smooth on D and that for x ∈ �, g(x) is nonzero and of
known sign. Therefore, without loss of generality, we will
invoke the following assumption.

Assumption 2.1: It is assumed that g(x) has lower bound
gl such that g(x) > gl > 0, ∀x ∈ �, where gl is a known
constant.
In Section VI, we extend the approach to (controllable)
nonaffine systems of the form

ẋ = f(x, u). (3)
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A. Local Model Decomposition

Our goal for this study is to design a stabilizing tracking
controller for a dynamic system containing unknown nonlin-
ear functions. The controller will include adaptive approx-
imations of the unknown nonlinear functions. The adaptive
approximation will use the locally weighted learning (LWL)
framework [1], [6]. Therefore, we first review the difference
between cooperative learning and locally weighted learning.

The objective for a standard cooperative learning system
is to minimize the least square criterion:

J(θ) =
m∑

i=1

(f(xi) − f̂(xi, θ))2 (4)

over all m training data points {xi, f(xi)} where θ =
[θ1, . . . , θN ]. In eqn. (4), f̂(x, θ) is the approximator for
function f(x), which is usually linear in the approximator
parameter vector θ. In approximating every f(xi), cooper-
ation is caused by this form of cost function because all
θk are jointly optimized to minimize each f(xi) − f̂(xi).
Adding one new training point xm+1 could affect all the
approximator parameters.

In contrast to such cooperative strategies, LWL optimizes
each local approximator independently to minimize the lo-
cally weighted error criterion:

Jk(θk) =
m∑

i=1

ωk(xi)
(
f(xi) − f̂k(xi, θk))

)2

, (5)

where f̂k(xi, θk) = φT
k (xi)θk and ωk(xi) is a localized

kernel function that is discussed in Section II-A.1, and f̂k(x)
is an approximator of function f(x) on the k-th local region
(where ωk is not zero). Using this cost function, it can be
shown that θk adapts only when ωk(xi) is not zero, and that
the adjustment of θk is independent of θj for j �= k.

In LWL, the approximation of f(x) for a point xi is
formed from the normalized weighted average of all local
approximators f̂k(xi) such that1

f̂(xi) =
∑N

k=1 ωk(xi)f̂k(xi, θk)∑N
k=1 ωk(xi)

. (6)

Next, we will focus on a specific form of LWL algorithm and
give all definitions required for the discussions that follow.

1) Weighting Functions: Denote the support of ωk(x) by
Sk = {x ∈ D |ωk(x) �= 0}. Define a set of continuous,
positive, locally supported2 functions ωk(x) for k = 1 . . . , N
such that each set Sk is convex and connected with D =⋃N

k=1 Sk where N is a finite integer. Let S̄k denote the
closure of Sk. Note that S̄k is a compact set. This definition
of ωk(x) ensures that for any x ∈ D, there exists at least
one k such that ωk(x) �= 0. The family of sets {Sk}N

k=1

forms a finite cover of D. An example of a weighting

1Note that the form of eqn. (6) is similar to the definition of a Takagi-
Sugeno (TS) fuzzy model [14]; however, the control law, parameter adap-
tation, LWR method, and stability analysis are all distinct from those used
in TS fuzzy systems.

2If we define the size of a set S by ρ(S) = maxx,y∈S (‖x − y‖), then
‘locally supported’ means that ρ(Sk) is small relative to ρ(D).

function satisfying the above conditions is the biquadratic
kernel defined as

ωk(x) =

⎧⎨
⎩

(
1 −

(
||x−ck||

µk

)2
)2

, if ||x − ck|| < µk

0, otherwise.
(7)

where ck is the center location of the k-th weighting function
and µk is a constant which represents the radius of the region
of support.

To simplify expressions such as eqn. (6), define

ω̄k(x) =
ωk(x)∑
k ωk(x)

.

The set of non-negative functions {ω̄k(x)}N
k=1 forms a

partition of unity on D:
∑N

k=1 ω̄k(x) = 1, for all x ∈ D.
Note that the support of ωk(x) is exactly the same as the
support of ω̄k(x).

For use later in the definition of the control law, we
decompose the operation region D into N subregions Gk.
First, at any x ∈ D, let

I(x) =
{

i

∣∣∣∣ω̄i(x) = max
1≤j≤N

(ω̄j(x))
}

. (8)

When x /∈ D, I(x) = ∅. Since {Sk}N
k=1 form a finite cover

for D, the set I(x) is finite and not empty for any x ∈ D.
Next, define

Gk = {x ∈ D | ω̄k(x) = max
i

(ω̄i(x))} (9)

for k = 1, · · · , N . Gk is defined as the set of x ∈ D such
that k ∈ I(x). Let ∂Gk and Ḡk denote the boundary and the
closure of Gk. Note that Gk ⊂ Sk and D =

⋃N
k=1 Gk.

2) Approximator: Let fk and gk be some continuous
functions such that

f(x) − fk(x) = εfk
(x) (10)

g(x) − gk(x) = εgk
(x) (11)

where |εfk
(x)| ≤ ε̄f and |εgk

(x)| ≤ ε̄g for x ∈
S̄k. Note that the boundedness of maxx∈S̄k

(|εfk
(x)|) and

maxx∈S̄k
(|εgk

(x)|) comes from the fact that |εfk
| and |εgk

|
are continuous on compact S̄k. Therefore, fk and gk will be
referred to as local approximators on S̄k. In order for εfk

and εgk
to be defined everywhere, let

εfk
(x) =

{
f(x) − fk(x), on S̄k,

0, otherwise.

εgk
(x) =

{
g(x) − gk(x), on S̄k,

0, otherwise.

For x ∈ D, f(x) and g(x) can be represented as the
weighted sum of the local approximators:

f(x) =
∑

k

ω̄k(x)fk(x) + δf (x) (12)

g(x) =
∑

k

ω̄k(x)gk(x) + δg(x) (13)
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where |δf (x)| ≤ ε̄f and |δg(x)| ≤ ε̄g , since

|δf | =

∣∣∣∣∣f(x) −
∑

k

ω̄k(x)fk(x)

∣∣∣∣∣
=

∣∣∣∣∣
∑

k

ω̄k(x)(f(x) − fk(x))

∣∣∣∣∣
≤

∑
k

ω̄k(x)|εfk
(x)| (14)

|δf | ≤ max
k

(|εfk
|)
∑

k

ω̄k(x) = ε̄f . (15)

Therefore, if each local model fk(x) has accuracy ε̄f on
S̄k, then the global accuracy of

∑
k ω̄k(x)fk(x) on D also

achieves at least accuracy ε̄f . A similar property also applies
to g(x) with a corresponding definition for ε̄g . The terms
δf and δg in (12)-(13) will be referred to as the residual
approximation errors for f(x) and g(x), respectively. Note
that with the previous definitions, f(x) + g(x)u can be
rewritten as

f(x) + g(x)u =
∑

k

ω̄k(fk + gku) + ∆ (16)

where ∆ = δf + δgu.
3) Linear Parametrization: In the remainder of this paper

we will assume fk and gk linearly parameterized. By this we
mean that they are defined as:

fk(x) = x̄T
k θ∗fk

, gk(x) = x̄T
k θ∗gk

(17)

where x̄k is a prespecified vector of basis functions. We
let θ∗fk

and θ∗gk
denote the (unknown) optimal parameter

estimates for x ∈ S̄k such that

θ∗fk
= arg min

θfk

(∫
D

ωk(x)
∣∣∣f(x) − f̂k(x)

∣∣∣2 dx

)
(18)

θ∗gk
= arg min

θgk

(∫
D

ωk(x) |g(x) − ĝk(x)|2 dx

)
(19)

where

f̂k(x) = x̄�
k θfk

, ĝk(x) = x̄�
k θgk

. (20)

For x ∈ S̄k, using equations (10) and (11), we can rewrite
f(x) and g(x) only in term of their local approximators on
S̄k. Then, the system dynamics (1) can be represented locally
on S̄k as

ẋ = fk(x) + gk(x)u + εk(x, u) (21)

= Φ�
k Θ∗

k + εk(x, u) (22)

where Φk =
[

x̄k

x̄ku

]
, Θ∗

k =
[

θ∗fk

θ∗gk

]
; εk(x, u) = εfk

(x) +

εgk
(x)u. Note that Θ∗

k is well defined for each k because S̄k

is compact and functions f and g are smooth on S̄k.
The notation of this paper will continue to use the gen-

eral linear in the approximator notation of eqn. (17). For
examples, as done by the authors of [1], [6], we will select

x̄k =
[

x − ck

1

]
with ck being the center of the S̄k.

Therefore, fk and gk are optimal local affine approximations
to f and g on S̄k.

4) Function Approximators: Since we have assumed that
f and g are unknown, the parameters vector Θ∗

k is unknown
for each k. The control law will therefore be written using
approximated functions defined locally by (20) on S̄k and
globally on D as

f̂(x) =
∑

k

ω̄k(x)f̂k(x) (23)

ĝ(x) =
∑

k

ω̄k(x)ĝk(x). (24)

The controller will be adaptive in the sense that the local

parameter vectors Θk =
[
θ�fk

, θ�gk

]�
will be adjusted to

improve the function approximation accuracy while the con-
troller is in operation. For analysis of the convergence of
the parameter estimates, we define for j = 1, . . . , N the
parameter error vectors as θ̃fj

= θfj
− θ∗fj

, θ̃gj
= θgj

− θ∗gj
,

and Θ̃j =
[

θ̃fj

θ̃gj

]
.

III. CONTROL DESIGN

In this paper, we propose a switching control design uti-
lizing local affine approximators. The locally affine models
will facilitate the extension to non-affine systems in Section
VI.

Define local control laws for k = 1, · · · , N according to

uk =
1
ĝk

(
−f̂k + ẋd − Lx̃

)
, for x ∈ S̄k (25)

where x̃ = x − xd is the tracking error and L > 0 is a
control gain. For x, xd ∈ D, each uk is bounded by bu, i.e.,
|uk| ≤ bu, where

bu =
1
gl

(
|ẋd| + 2ρ(D)L +

(
1 + ρ(D)2

)
max

k
(‖θ∗fk

‖)
)

.

where ρ(D) = maxx1,x2∈D ‖x1 − x2‖ is the diameter of set
D.

The control signal u is defined as a convex linear com-
bination of the uk plus a term νD designed to force initial
conditions outside of D to enter D in finite time and to not
allow the state to leave D once the state is in D:

u =
N∑

k=1

αkuk + νD. (26)

where the coefficients of the convex combination will change
as a function of x and xd, but will always satisfy

N∑
k=1

αk = 1 and αk =
{ ≥ 0 if k ∈ I(x),

0 otherwise.
(27)

Many alternative definitions of the αk are possible, as long
as the constraints of eqn. (27) is satisfied. Letting m denote
the number of elements in I(x), an example definition is

αk =
{

1/m if k ∈ I(x),
0 otherwise.

Note that with the definition of the control signal as eqn.
(26), for x, xd ∈ D, u is also bounded such that |u| ≤ bu.
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We must now consider two situations: initial conditions
in D and initial conditions in � − D. Subsection III-A will
design the sliding mode term νD and present analysis to
show that initial conditions outside of D will return to D in
finite time. In addition, it will show that initial conditions
within D cannot leave D. Subsection III-B will derive the
tracking error dynamic equations that are applicable within
D.

A. Sliding Mode Outside D
The νD term in (26) denotes a sliding mode control signal

with time varying gain

νD =
{

0, for x(t) ∈ D
1
gl

(ẋd − r(t)sign(x̃)) , for x(t) /∈ D.
(28)

To define the time-varying gain, r(t), we need the following
assumption.

Assumption 3.1: Assume that we know the upper bounds
on functions |f(x)| and g(x) such that

|f(x)| < (1 + |x|)f̄ , gl < g(x) < (1 + |x|)ḡ
where f̄ and ḡ are known constants.
Note that if constants f̄ and ḡ satisfying this assumption are
not known, then they could be estimated using the methods
suggested in [5], [8]. We do not present such an adaptive
bounding approach herein as it would distract from the main
topic of the paper.

When x is outside the region D, the previously defined
locally linear approximator in (24) will yield ĝ = 0. Using
Assumption 3.1 it can be shown that

gl

ḡ(1 + |x|) <
gl

g(x)
< 1.

The sliding gain r(t) is selected as

r(t) = f̄(1 + |x|) +
(

(1 + |x|)ḡ
gl

− 1
)
|ẋd| + η,

for some η > 0. When x /∈ D, all ωk are zero; therefore,
I(x) is an empty set and all αk are zero. The closed loop
system dynamics outside D are

˙̃x = f(x) + g(x)u − ẋd

≤ |f(x)| − ẋd +
g(x)
gl

(ẋd − r(t)sign(x̃))

<

(
(1 + |x|)f̄ +

(
(1 + |x|)ḡ

gl
− 1

)
|ẋd|

)

−g(x)
gl

r(t)sign(x̃). (29)

Consider the Lyapunov function as V(t) = 1
2 x̃2, the

derivative of V(t) can be simplified as

d

dt
V = x̃ ˙̃x < −g(x)

gl
r(t)|x̃|

+|x̃|
(

(1 + |x|)f̄ +
(

(1 + |x|)ḡ
gl

− 1
)
|ẋd|

)

Since

r(t) >
gl

g(x)

(
(1 + |x|)f̄ +

(
(1 + |x|)ḡ

gl
− 1

)
|ẋd| + η

)
,

then
d

dt
V < −η|x̃| < −ηγ (30)

by eqn. (2) for x ∈ �−D. Therefore, when x(t1) is outside
the region D, the sliding control will ensure that x returns to
within D in finite time. To see why this must be, for purposes
of contradiction, assume that x(t) /∈ D for all t ≥ t1 > 0.
Let t2 > t1. Under the assumption that x does not return to
D in finite time the variable t2 can be infinitely large. Also,
for all t2 > t1, by the definition of γ in eqn. (2), we have
that V(t2) ≥ γ2

2 ; however, integration of eqn. (30) yields

V(t2) − V(t1) ≤ −ηγ(t2 − t1)
V(t2) ≤ V(t1) − ηγ(t2 − t1).

This yields a contradiction for

t2 ≥ t1 +
V(t1) − γ2

2

ηγ
. (31)

Once x ∈ D, the sliding mode term will not allow x to leave
D.

Note that eqn. (28) is continuous on �−D, but discontin-
uous at the boundary of D. The discontinuity at the boundary
of D could be smoothed, within the γ region of the boundary
defined in eqn. (2), to result in a continuous sliding mode
term. We do not pursue this herein. The reader interested in
this approach should see [11]. The remainder of this article
will only be concerned with x ∈ D.

B. Tracking Error within D
For x ∈ D, νD = 0 in the control law of eqn. (26). The

resulting closed-loop tracking error dynamics satisfy

˙̃x = −Lx̃ −
N∑

k=1

αk

(
Φ�

k Θ̃k − εk

)
. (32)

This is shown in the following by considering the two
possible cases.

1) When I(x) contains a single integer j, then αj = 1
and αk = 0 for k �= j. In this case, ω̄j(x) is the only
normalized weighting function attaining the maximum
value and x is on the interior of Gj (i.e., x ∈ Gj −
∂Gj ⊂ S̄j). Applying u of (25) and (26) to the system
dynamics on S̄j as defined by eqn. (21), the tracking
error dynamics are

˙̃x = −Lx̃ + (fj − f̂j) + (gj − ĝj)u + εj

= −Lx̃ − x̄�
j θ̃fj

− x̄�
j θ̃gj

u + εj

= −Lx̃ − Φ�
j Θ̃j + εj

= −Lx̃ −
N∑

k=1

αk

(
Φ�

k Θ̃k − εk

)
.
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2) When I(x) contains a set of integers, with the choice
of u in (25) and (26), the closed loop system dynamics
are

ẋ = f + g

N∑
k=1

αkuk

=
N∑

k=1

αk (f + guk)

=
∑

k∈I(x)

αk (f + guk) .

For each k ∈ I(x), x ∈ S̄k. Therefore, eqn. (21) is
applicable, which allows

ẋ =
∑

k∈I(x)

αk

(
f̂k + ĝkuk

+(fk − f̂k) + (gk − ĝk)uk + εk

)
ẋ =

∑
k∈I(x)

αk

(
ẋd − Lx̃ − Φ�

k Θ̃k + εk

)

˙̃x = −Lx̃ −
∑

k∈I(x)

αk

(
Φ�

k Θ̃k − εk

)

˙̃x = −Lx̃ −
N∑

k=1

αk

(
Φ�

k Θ̃k − εk

)
.

Note that each controller of (25) is continuous, but the
switching controller of (26) is discontinuous. Thus, we
have designed a switching controller that yields a set of
closed loop differential equations with right hand side that
is discontinuous on the set M =

⋃N
k=1 ∂Gk, which has zero

measure.
For a general system ẋ = g(t, x) where g(t, x) = gk(t, x)

for x ∈ Ḡk, k = 1, · · · , N , existence of solutions in the
sense of Filippov [3] can be shown such that the solution
x(t) satisfies the differential inclusion

ẋ ∈ P (x, t), where (33)

P (x) =

{
v(x, t)|v =

N∑
k=1

βkgk

}
. (34)

for some β1, · · · , βN satisfying

N∑
k=1

βk = 1 and βk =
{ ≥ 0 if x ∈ Ḡk,

0 otherwise.
(35)

When the control signal is selected as proposed in eqn.
(26), the right-hand side of the system dynamic equation
and u(x, t) are continuous on the interior of Gk, but the
control signal is discontinuous on the switching boundary
M . Therefore, a set K[u] can be constructed as

K[u] =
{ {uk}, if I(x) = {k}

{u|u =
∑

k∈I(x) βkuk}, if N (I(x)) > 1 (36)

where N (I(x)) is the number of elements in set I(x). With
β defined as above. Note that the control signal of eqn. (26)

is in K[u]. Therefore,

ẋ ∈ P (x), where (37)

P (x) = f(x) + g(x)K[u] (38)

With P (x) defined in (38), the set-valued map x → P (x)
is nonempty, compact and convex ∀x ∈ D. Since P (x) is
constructed as the set of all possible convex linear combi-
nations of uk, by applying Lemma 3 (p. 67) of [3], P (x)
is upper semi-continuous on D. Therefore, we have proved
the existence of the Filippov solution to (1). Stability of the
Filippov solution will be considered in Section V, after the
parameter adaptation laws are defined in Section IV.

Eqn. (36) states that: for x ∈ D − M , set K[u] contains
a single point uk(x, t); for x ∈ M , K[u] contains the linear
convex combinations of all limit values uk(x, t), k ∈ I(x).
Note that eqns. (26–27) and (36) are not the same. For
implementation purposes, eqns. (26–27) define a particular
convex combination of the local controllers. For analysis
purposes, eqn. (36) defines the set of all possible convex
combinations of the local controllers.

IV. PARAMETER ADAPTATION

The approximator parameters Θk will be adapted in a
composite fashion [13] using prediction error methods on
S̄k and tracking error on Ḡk. As the state moves through
D, prediction error based adaptation on S̄k − Ḡk allows
the approximator to be tuned prior to the k − th controller
being used on Ḡk. For x ∈ Ḡk, composite adaptation uses
both tracking and prediction error to enhance the rate of
convergence.

A. Prediction Error

Assume that the state x(t) (but not the state derivative) is
measured and available for use in the control and adaptation
laws. This extends the approaches presented in [6], [7] which
utilized the state derivative in the implementation of the
parameter adaptation laws. To derive the prediction error
based adaptation law, we manipulate the model in eqn. (22)
as follows [4]:

ẋ = Φ�
k Θ∗

k + afx − afx + εk

ẋ + afx = afx + Φ�
k Θ∗

k + εk

x = xf + Φ�
fk

Θ∗
k + ε′k (39)

where xf (t) = af

s+af
[x(t)], Φfk

is the filtered regressor de-
fined as Φfk

(t) = 1
s+af

[Φk(x(t))], ε′k(t) = 1
s+af

[εk(x(t))].
The notation yf (t) = H(s)[y(t)] means that yf is the signal
at the output of the filter with transfer function H(s) with
the signal y(t) as the filter input. The model representation
of eqn. (39) is convenient for parameter estimation.

Let y(t) = x(t) − xf (t) = Φ�
fk

Θ∗
k + ε′k. Since the model

parameters Θ∗
k are not known, we define a local estimate ŷk

as

ŷk = Φ�
fk

Θk
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where Θk = [θ�fk
, θ�gk

]�. Next, we define the prediction error
of the k-th local model as

epk(t) =
{

ŷk − y(t) for x ∈ S̄k

0 x ∈ D − S̄k.

For analysis purposes we will use the representation

epk(t) = Φ�
fk

Θ̃k − ε′k, for x ∈ S̄k

with Θ̃k = Θk − Θ∗
k.

To derive the LWL parameter adaptation laws based on
the prediction errors, we minimize the individual weighted
squared prediction error criterion for each local model,

Jk(Θk) =
∫ t

0

ωk(x(τ))
[
y − ŷk(Θk,Φfk

)
]2

exp
(∫ t

τ
λωk(x(r))dr

) dτ (40)

where we eliminate the explicit τ dependence of variables to
make the equation fit on the line. Setting the gradient equal
to zero and solving for Θ̇k yields

Θ̇k = −Pkωk(x(t))epkΦfk
. (41)

with Pk computed as the solution of

Ṗk = ωk(x(t))(λPk − PkΦfk
Φ�

fk
Pk) (42)

where λ > 0 is the forgetting factor. Note that both
adaptation and forgetting of Θk are localized to x(t) ∈ S̄k.
The derivation is not included herein due to space limitations.
The derivation of a similar adaptation law is included in [7].

B. Composite Adaptation Law

For any x(t) ∈ D, the composite adaptation law to include
both tracking and prediction error is

Θ̇k(t) = Pk(αkx̃Φk − ωkepkΦfk
) (43)

with k = 1, · · · , N . To ensure controllability of the estimated
model in accordance with Assumption 2.1, the update law for
θgk

in eqn. (43) needs to be modified using, for example, a
projection modification [4] to ensure that ĝk is bounded away
from zero.

For x ∈ Ḡk, then k ∈ I(x) and αk(t) ≥ 0. Therefore,
the parameter update for Θk is computed using prediction
error and a fraction of the tracking error equal to αk(t).
For x ∈ S̄k − Ḡk, then k /∈ I(x) and αk = 0. Therefore,
the parameter update simplifies to the prediction error form
Θ̇k(t) = −PkωkepkΦfk

. For x ∈ D − S̄k (and for x /∈ D),
the parameter update for Θk is zero. For x /∈ D all parameter
adaptation is turned off.

V. STABILITY ANALYSIS

In this section, we present the stability analysis for the
closed loop control system of eqns. (25–26) and (42–43),
which does have a discontinuous control signal. First, a
smooth Lyapunov function is defined, then the chain rule
and stability theorem for such systems (e.g., Theorem 2.2
Theorem 3.1 in [12]) are employed to complete the analysis.

Theorem 5.1: The system described by eqn. (1) with
control law given by eqns. (25–26) and parameter adaptation

laws given by eqns. (42–43) have the following properties.
When ε̄f = 0 and ε̄g = 0:

1) x̃, Θ̃k, Θk, epk ∈ L∞;
2) x̃ → 0 as t → ∞;
3) x̃ ∈ L2;

In the following, we prove the above theorem. We recognize
that ε̄f = 0 and ε̄g = 0 is an ideal situation that typically
does not hold in practice. In the normal case where these
approximation errors are nonzero, but bounded on D con-
vergence to zero is replaced by convergence in the mean
squared sense. We do not include that proof herein, due
to page length constraints. In addition, the following proof
is only concerned with x ∈ D. The case of x /∈ D was
discussed in Section III-A.

Proof: Define the Lyapunov function

V(x̃, Θ̃1, · · · , Θ̃N ) =
1
2
x̃2 +

1
2

N∑
k=1

Θ̃�
k P−1

k Θ̃k. (44)

For notational brevity, we define χ = [x̃, Θ̃�
1 , · · · , Θ̃�

N ]�.
Note that the matrices P−1

k (t) are each time dependent. It
can be shown that P−1

k (t) is (at least) positive semidefinite
and bounded for all t ≥ 0 by directly solving for P−1

k (t)
from eqn. (42) (see page 374 in [13]).

First, we consider the solution to χ̇ = Λ(χ, t), where

Λ(χ, t) = Λk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Lx̃ − Φ�
k Θ̃k + εk

P1(−ω1ep1Φf1)
...

Pk(x̃Φk − ωkepkΦfk
)

...
PN (−ωNepNΦfN

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

for x ∈ Gk − ∂Gk. The function Λ(χ, t) is continuous on
the interior of each Gk, but discontinuous on the switching
boundary M . For x ∈ M , by application of eqn. (36)

K[Λ](χ, t) = {Λ(χ, t)|Λ =
∑

k∈I(x)

βkΛk} (46)

with β1, · · · , βN satisfying condition (35). By inspection of
eqns. (32) and (43), we see the differential inclusion χ̇ ∈
K[Λ](χ, t) is satisfied; therefore, χ(t) is a Filippov solution
to χ̇ = Λ(χ, t). This shows existence of at least one solution.
The following text will show that any Filippov solution to
this system with β1, · · · , βN satisfying condition (35) has
certain stability properties.

According to the chain rule defined in [12], d
dtV can be

expressed in terms of Clarke’s generalized gradient ∂V(χ, t)
and the convex closure K[Λ](χ, t). Then, almost everywhere

d

dt
V ∈ ˙̃V =

⋂
ξ∈∂V(χ,t)

ξ�
[

K[Λ](χ, t)
1

]
. (47)
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Since V is smooth in x̃, Θ̃1, · · · , Θ̃N , the set ∂V(χ, t)
contains only one element ∇V defined as

∇V =

⎡
⎢⎢⎢⎢⎢⎣

x̃

P−1
1 Θ̃1

...
P−1

N Θ̃N
1
2

∑N
k=1 Θ̃�

k Ṗ−1
k Θ̃k

⎤
⎥⎥⎥⎥⎥⎦ , (48)

which is the gradient of V in the normal sense at (χ, t).
Therefore, the set ˙̃V can be expressed as

˙̃V = ∇V�

⎡
⎢⎢⎢⎢⎢⎢⎣

−Lx̃ −∑N
k=1 βk

(
Φ�

k Θ̃k − εk

)
P1(β1x̃Φ1 − ω1ep1Φf1)

...
PN (βN x̃ΦN − ωkepNΦfN

)
1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (49)

After algebraic manipulations, eqn. (49) becomes

˙̃V = x̃

[
−Lx̃ −

N∑
k=1

βk

(
Φ�

k Θ̃k − εk

)]

+
N∑

k=1

Θ̃�
k P−1

k Pk(βkx̃Φk − ωkepkΦfk
)

+
1
2

N∑
k=1

ωkΘ̃�
k

(−λP−1
k + Φfk

Φ�
fk

)
Θ̃k

= −Lx̃2 + x̃

N∑
k=1

βkεk −
N∑

k=1

Θ̃�
k ωkepkΦfk

−λ

2

N∑
k=1

ωkΘ̃�
k P−1

k Θ̃k +
1
2

N∑
k=1

ωk

(
Φ�

fk
Θ̃k

)2

Note that Φ�
fk

Θ̃k = epk + ε′k,

˙̃V = −Lx̃2 + x̃

N∑
k=1

βkεk − λ

2

N∑
k=1

ωkΘ̃�
k P−1

k Θ̃k

+
N∑

k=1

ωk

(
−epk(epk + ε′k) +

1
2
(epk + ε′k)2

)

≤ −Lx̃2 + x̃

N∑
k=1

βkεk − λ

2

N∑
k=1

ωkΘ̃�
k P−1

k Θ̃k

−1
2

N∑
k=1

ωke2
pk +

1
2

N∑
k=1

ωkε′k
2
.

If we use the identity (which is true for any κ �= 0)

x̃εk = −
(

κ

2
x̃ − 1

κ
εk

)2

+
κ2

4
x̃2 +

(
1
κ

)2

ε2k

with κ2

4 = L
2 , then set ˙̃V becomes

˙̃V ≤ −Lx̃2 +
N∑

k=1

βk

(
L

2
x̃2 +

1
2L

ε2k

)
+

1
2

N∑
k=1

ωkε′k
2

−λ

2

N∑
k=1

ωkΘ̃�
k P−1

k Θ̃k − 1
2

N∑
k=1

ωke2
pk.

If we let ε̄ = ε̄f + ε̄gbu, then for any k, ε2k ≤ ε̄2 and thus

˙̃V ≤ −L

2
x̃2 − λ

2

N∑
k=1

ωkΘ̃�
k P−1

k Θ̃k − 1
2

N∑
k=1

ωke2
pk

+

(
1

2L
ε̄2 +

1
2

N∑
k=1

ε′k
2

)
. (50)

This shows that for any element d
dtV of the set ˙̃V , we

have d
dtV ≤ 0 almost everywhere whenever Lx̃2 > 1

L ε̄2 +∑N
k=1 ε′k

2. Therefore, we obtain the stability results using
the Lyapunov theorems for set valued maps (see [12]). The
stability results are concluded as follows:

If we assume perfect approximation within each local
region (i.e., εfk

= εgk
= 0, ε̄f = ε̄g = 0), then eqn. (50)

simplifies to

˙̃V(χ, t) ≤ −L

2
x̃2 − λ

2

N∑
k=1

ωkΘ̃�
k P−1

k Θ̃k − 1
2

N∑
k=1

ωke2
pk.

Therefore, the set ˙̃V(χ, t) ≤ 0. A minor extension to Theo-
rem 3.1 in [12] implies that the solution χ = 0 is stable. This
directly yields x̃, Θ̃k ∈ L∞ and then Θk, epk ∈ L∞. Since
˙̃x is bounded, Barbalat’s lemma implies that x̃ converges
to zero as t → ∞. Finally, the above analysis implies that
x̃ ∈ L2, since after integration, we obtain

Ṽ(0) ≥
∫ ∞

0

L

2
x̃2(τ) dτ.

Note that Ṽ(0) is a set of finite, non-negative elements.
For any element V(0) ∈ Ṽ(0), we have that V(0) ≥
L
2

∫∞
0

x̃2(τ) dτ which implies the L2 property of x̃. �
In most applications, perfect approximation is not pos-

sible; therefore, when approximation errors exist, we are
interested in deriving bounds on x̃ and developing methods
to reduce these bounds. Usually, high gain control is not
desirable because it will increase the bandwidth of the control
system and possibly excite unmodeled dynamics. Starting
from (50), in the presence of approximation error, it can be
shown that x̃ is on the order of ε̄2 +

∑N
k=1 ε′k

2 in mean
squared sense (m.s.s.), the m.s.s bound on x̃ can be reduced
by decreasing ε̄f and ε̄g (i.e., by enhancing the structure of
the approximator).

VI. EXTENSION TO NON-AFFINE SYSTEM

In practice, many nonlinear systems may not be repre-
sentable in affine form. Motivated by such applications, we
will next consider the extension of the approach of this article
to a class of non-affine nonlinear systems.

Consider a system of the form

ẋ = h(x, u) (51)

where h(x, u) is a non-affine unknown function of the control
signal u(t). Similar to Assumption 2.1, the following as-
sumption is required to avoid singularity during the controller
operation.
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Assumption 6.1: There exists positive constant hl, such
that hu = ∂

∂uh(x, u) > hl for all (x, u) ∈ D.
For the non-affine case, the domain of operation D and the

local regions of support Sk and Gk become 2-dimensional
sets. Therefore, for (x, u) ∈ S̄k, we define local function
approximator as hk(x, u) = Φ�

k (x, u)Θ∗
k where Φk = [1 x−

ck,1 u−ck,2]� and Θ∗
k denote the optimal parameter estimate

for (x, u) ∈ S̄k in the sense that

Θ∗
k = arg min

Θk

(∫
D

ωk(x, u)|h(x, u) − ĥk(x, u)|2dxdu

)

with ĥk(x, u) being the estimate of hk(x, u) defined as
ĥk(x, u) = Φ�

k Θk. where Θk will be adjusted on-line to
improve function approximation accuracy.

The system dynamic eqn. (51) can be represented locally
on S̄k as

ẋ = Θ∗
k,1 + Θ∗

k,2(x − ck,1) + Θ∗
k,3(u − ck,2) + εk(x, u)

where εk(x, u) is the local approximation error on S̄k.
Therefore, even though the actual dynamics of eqn. (51) are
not affine in the control signal on D, each local model is
affine in the control on S̄k. The local control law is defined
using the estimate of Θ∗

k as

uk =
(−Θk,1 − Θk,2(x − ck,1) + ẋd − Lx̃)

Θk,3
+ ck,2 (52)

where the projection modification is used to maintain Θk,3 >
gl. If we choose the definition of the αk as

1) When I(x) contains a single integer j, then αj = 1
and αk = 0 for k �= j.

2) When I(x) contains a set of integers,

αk =
{

1 if k ∈ I(x) and αk(x(t−)) = 1,
0 otherwise.

where x(t−) is the state at the time instant right before t. The
αk is defined such that at any time only one local control
law is included in the control signal definition. Then, with the
control law given by eqns. (52) and (26), we can obtain the
similar closed-loop tracking error dynamics as (32). Together
with the parameter adaptation defined by equation (43),
we can show the boundedness of x, u, and all parameter
estimates Θk for the non-affine nonlinear system (51). The
proof is similar to the proof of Theorem 5.1 and is not given
herein.

VII. CONCLUSIONS

This article has considered the design and analysis of a
stable locally weighted learning (LWL) framework applica-
ble to systems with unknown nonlinear dynamics where
the control signal does not need to appear in an affine
fashion. The system does still need to satisfy a controllability
condition locally over a compact operating region D. The
presented approach can use tracking error, prediction error,
or a composite of these errors for parameter adaptation.
The control system utilizes a switching approach between
locally defined controllers as a function of the state (and

control). Lyapunov stability analysis is provided to guarantee
the stability and performance.

In our further work, an illustrative example of the pro-
posed method will be given. The extension to a class
of higher-order Single-Input-Single-output (SISO) systems
and Multiple-Input-Multiple-Output (MIMO) systems is now
under study.
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