
A Provably Convergent Algorithm for Transition-Time Optimization in
Switched Systems

Henrik Axelsson, Yorai Wardi, Magnus Egerstedt, and Erik Verriest

Abstract— This paper concerns a mode-sequencing and
switching-time optimization problem defined on autonomous
switched-mode hybrid dynamical systems. The design param-
eter consists of two elements: (i) the sequence of dynamic-
response functions associated with the modes, and (ii) the
duration of each mode. The sequencing element is a discrete
parameter which may render the problem of computing the
optimal schedule exponentially complex. Therefore we are not
seeking a global minimum, but rather a local solution in a
suitable sense. To this end we endow the parameter space with
a local continuous structure which allows us to apply gradient-
descent techniques. With this structure, the problem is cast
in the form of a nonlinear-programming problem defined on a
sequence of nested Euclidean spaces with increasing dimensions.
We characterize suboptimality in an appropriate sense, define
a corresponding convergence criterion, and devise a provably-
convergent optimization algorithm.

Keywords. Hybrid Systems, Switching Modes, Optimal
Control, Gradient Descent, Numerical Algorithms

I. INTRODUCTION

Consider the dynamical system defined by the following
equation,

ẋ ∈ { fα(x)}α∈A (1)

where x∈R
n, A is a finite set, and for every α ∈ A fα : R

n →
R

n is a continuously differentiable function. Let x0 := x(0)
be the initial condition, and suppose that the system evolves
over a given time-horizon [0,T] for a fixed final time T . The
functions fα represent different modes of the system and
hence are called modal functions, and the system is labelled
a switched-mode system. Furthermore, assume that there is a
finite number of switchings between the modes in [0,T].

Let L : R
n → R be a cost function defined on the state of

the system, x(t), and let J be the aggregate cost functional,
defined by

J =
∫ T

0 L(x)dt. (2)

Let us view the scheduling of the modal functions in the
Right-Hand Side (RHS) of (1) as a control variable. A
particular schedule has two elements: the sequencing of the
modal functions, and the switching times between successive
modes. Suppose there are N switching times, denoted by τi,
i = 1, . . . ,N, in an increasing order. We extend the notation to
define τ0 := 0 and τN+1 := T . For all i = 1, . . . ,N +1, let us
denote the modal function in the interval [τi−1,τi) by fα(i)
for some α(i) ∈ A. Then the sequence of modal functions
is { fα(i)}N+1

i=1 , and we will refer to it by the corresponding

The authors are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 U.S.A.,
{henrik,ywardi,magnus,verriest}@ece.gatech.edu

index-sequence σ , defined by σ := {α(i)}N+1
i=1 , henceforth

labelled the modal sequence. The switching-times vector is
(τ1, . . . ,τN)T ∈ R

N , and it will be denoted by τ̄ . The control
parameter is (σ , τ̄). Note that N, the length of the modal
sequence, is not fixed, but rather it is defined by σ .

Consider the problem of minimizing the functional J as a
function of the control parameter (σ , τ̄). Of the two variables
σ and τ̄ , the former is more problematic, since it is an integer
variable that gives the problem an exponential complexity.
On the other hand, for a fixed σ , optimizing J with respect
to τ̄ is a continuous-parameter problem that can be solved
by nonlinear-programming techniques.

More broadly, optimal control for switched-mode hybrid
systems has been investigated in the past few years in the
more general setting, where the state equation has an external
control input, u. Ref. [1] defined a general framework for
optimal control, and [2], [3] developed variants of the maxi-
mum principle. Refs. [4], [5], [6], [7] considered the special
case of piecewise-linear or affine systems, and [7], [2], [8],
[9], [10] addressed the general case of nonlinear systems.
In particular, Refs. [8], [9], [10] focused on autonomous
nonlinear systems, where the input u(t) is absent. Likewise,
this paper concerns only autonomous systems whose state
equation is (1).

Ref. [10] derived a costate-based formula for the gradient
∇J(τ̄), and extended it to obtain sensitivity (derivative) infor-
mation about inserting new modes to a given schedule. This
suggests a natural way to deploy gradient-descent algorithms
to problems where σ is part of the variable parameter. That
observation constitutes the starting point of the present paper,
which aims at analyzing convergence of a suitable algorithm.

The algorithm that we later analyze is basically a
nonlinear-programming algorithm that modifies the sequenc-
ing parameter by adding new modes to it at each iteration.
Therefore, it is not defined over a single parameter space,
but rather over a nested sequence of Euclidean spaces with
increasing dimensions. The standard theory of nonlinear
programming is not quite suitable to handle such problems,
and therefore we first have to define a notion of local
optimality and a suitable concept of convergence, and only
then are we in a position to analyze convergence properties
of our algorithm.1

The rest of the paper is organized as follows. Section II
recalls prior results and sets the stage for the analysis that
follows. Section III describes the algorithm, and Section IV
analyzes its convergence. Finally, Section V concludes the

1The algorithm has been presented in [11] without proofs.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoC01.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 1397

paper.

II. BACKGROUND

Let us fix a modal sequence σ having N +1 modal func-
tions and let τ̄ := (τ1, . . . ,τN)T ∈ R

N denote the switching-
time vector. Consider the problem of minimizing J as a
function of τ̄ , henceforth denoted by Pσ . To simplify the
notation we will use the term fi for fα(i), so that the state
equation becomes

ẋ = fi(x), t ∈ [τi−1,τi) i = 1, . . . ,N +1. (3)

We make the following assumption regarding the modal
functions.

Assumption 2.1. (i). The functions fα , α ∈ A, and L, are
twice continuously differentiable on R

n. (ii). There exists a
constant K > 0 such that, for every x ∈ R

n, and for every
α ∈ A, || fα(x)|| ≤ K(||x||+1). (4)

This assumption guarantees that, with the given initial con-
dition x0, the differential equation (3) has a unique solution
x(t) on the interval [0,T], which is confined to a bounded set
in R

n that does not depend on the values of the switching
times (τi), their number (N), or the order of the switching
functions (fi(x)). Moreover, that assumption guarantees that
J is continuously differentiable in the switching times. Let
us define the function f (x, t) by the right-hand side of (3),
namely,

f (x, t) = fi(x), t ∈ [τi−1,τi) i = 1, . . . ,N +1. (5)

Then the state trajectory x(t) is continuous in t and we define
the notation xi := x(τi). Next, we define the costate p(t)∈R

n

by the following differential equation,
ṗ(t) = −(∂ f

∂x (x, t)
)T

p(t) − (∂L
∂x (x)

)T
, (6)

with the boundary condition p(T) = 0. Then the costate
trajectory p(t) is continuous in t, and we define the notation
pi := p(τi). The partial derivative ∂J/∂τi is continuous in τ̄
(since σ is fixed) and is expressed by (see [10]):

∂J
∂τi

= pT
i

(
fi(xi)− fi+1(xi)

)
. (7)

Consider now the problem Pσ . By definition, it involves
constrains related to the particular sequence σ , and these
constraints can be expressed by the following inequalities,
0 = τ0 ≤ τ1 . . . ≤ τN ≤ τN+1 = T. It is natural to solve
Pσ by a constrained gradient-descent algorithm. For instance,
[11] used a gradient-projection algorithm that reduces the
value of J at each iteration while maintaining feasibility.
By “solving the problem Pσ ” we mean computing a point
satisfying the Kuhn-Tucker first-order optimality condition.

Now suppose that the problem Pσ has been solved to
the extent of computing a Kuhn-Tucker point τ̄ . It may
be possible, of course, to further reduce the value of J by
altering the sequence σ . An incremental approach, proposed
in [10], is based on the following result. Let g be a modal
function, namely g = fα for some α ∈ A, and fix τ ∈ [0,T].
Consider inserting the function g at the time τ for the
duration of λ seconds, where λ > 0. By this insertion we are
introducing two new switching points, one at τ−λ/2 and the

other at τ +λ/2, and the modal function g between them.2

Let us denote by Jg,τ(λ) the effect of λ on the cost functional
J, where we note the dependence on the modal function g
and the insertion time τ . Assume that τ ∈ (τi,τi+1) for some
i = 1, . . . ,N. Then the following formula characterizes the
one sided derivative of J at λ = 0:

dJg,τ (0)
dλ+ = p(τ)T

(
g(x(τ))− fi+1(x(τ))

)
. (8)

Moreover, dJg,τ (0)
dλ+ is continuous in τ throughout the interval

(0,T) at the Kuhn-Tucker points τ̄ for Pσ (see [10]). Eq. (8)
suggests the following algorithm for minimizing J.

Algorithm 2.1.
Given: A modal sequence σ having N switching points.
Step 1. Use a feasible gradient-descent algorithm to compute
a Kuhn-Tucker point τ̄N for Pσ .
Step 2. Compute the number ΘN defined by

ΘN := min
{

dJg,τ (0)
dλ+ |g = fα ,α ∈ A;τ ∈ [0,T]

}
. (9)

Step 3. If ΘN = 0 then stop and exit. If ΘN < 0 then, with
the pair (g,τ) comprising the argmin in (9), append to σ
two switching points at the time τ with the modal function
g between them, and goto Step 1.

Note that the condition ΘN = 0 defines a stopping rule
in Step 3. This motivates us to define a parameter (σ , τ̄)
as a local minimum of J if τ̄ is a Kuhn-Tucker point for
Pσ and ΘN = 0. If the algorithm stops after a finite number
of iterations then it has computed such a local minimum.
Otherwise, it computes an infinite sequence of iteration
points in Step 1. Let us denote by τ̄N(m) the value of τ̄
computed at the mth iteration of Step 1 where N(m) denotes
the dimension of the vector τ̄N(m). Suppose that the algorithm
does not stop after a finite number of iterations, so that it
computes a sequence {τ̄N(m)}∞

m=1. In the theory of nonlinear
programming, an algorithm often is said to be convergent if
every accumulation point of a sequence it computes satisfies
an appropriate optimality condition (see [12]). In our case,
the concept of convergent algorithm has to be different, since
the sequence {τ̄N(m)}∞

m=1 cannot converge or diverge: its
elements have different dimensions and hence are in different
spaces. However, and following the notion of convergent
algorithms proposed in [13], we say that the algorithm is
convergent if every sequence {τ̄N(m)}∞

m=1 it computes has the
property that limm→∞ ΘN(m) = 0. Whether Algorithm 2.1 is
convergent in this sense or not depends on the specific details
of the algorithm used in Step 1. In particular, we next will
show that the following property guarantees convergence.

Definition 2.1: Algorithm 2.1 has sufficient descent if for
every ε > 0 there exists η > 0 such that, for every m =
1,2, . . ., if |ΘN(m)| > ε then

J(τ̄N(m+1))− J(τ̄N(m)) ≤ −η . (10)

Proposition 2.1: If Algorithm 2.1 has sufficient descent then
it is convergent.

Proof: By Assumption 2.1 the state trajectory x(t), t ∈
[0,T], is confined to a compact set in R

n. Consequently, and

2If τ ∈ {0,T} then the insertion is made in the intervals [0,λ] and [T −
λ ,T], respectively.

1398

by the assumption that A is finite, (2), and the fact that L is
continuously differentiable, |J(τ̄N(m))| is bounded from above
by a constant that is independent of m. If the algorithm has
sufficient descent and it computes an infinite sequence of
iteration points, then (10) immediately follows by the fact
that Step 1 deploys a gradient-descent technique.

The next section describes an algorithm for Step 1 of Al-
gorithm 2.1 which guarantees the sufficient descent property.

III. ALGORITHM WITH SUFFICIENT DESCENT

Recall that the algorithm computes a vector τ̄N(m) ∈R
N(m)

at its mth iteration in Step 1. This computation is done
by a feasible gradient-descent algorithm (henceforth labelled
the inner algorithm), and therefore the sequence {J(τ̄N(m)}
is monotone non-increasing. To guarantee the property of
sufficient descent, we specify the first step of the inner
algorithm, while subsequent steps need not be specified as
long as they give a descent in J. The first step of the
inner algorithm uses the Armijo step-size (described below)
along a descent curve. The Armijo step-size is typically
deployed in a descent direction (see [14], [12]), but we
were unable to find such a direction guaranteeing sufficient
descent. Therefore, we have adopted a piecewise-linear curve
which will endow the algorithm with the sufficient descent
property. This curve, and the first step of the inner algorithm,
will next be described.

Consider the m + 1 iteration of Algorithm 2.1, and let
us denote by t̄(0) := (t1(0), . . . , tN(m+1)(0))T the point with
which the algorithm enters Step 1 from Step 3 of its mth
iteration. In that iteration, the algorithm inserted a modal
function g between two identical switching times. Thus, the
point t̄(0) = (t1(0), t2(0), . . . , tN(m+1)(0))T has the following
features:

1) There exists i ∈ {1, . . . ,N(m + 1)} such that the last
insertion times at Step 3 were ti−1(0) = ti(0), and the
function inserted between them was g = fi.

2) If ti−2(0) < ti−1(0) and ti(0) < ti+1(0) then the modal
function fi−1 and fi+1 are identical, namely fi−1 =
fi+1, since the function fi was inserted during the
course of the mode defined by that function.

Suppose for a moment that the inserted switching points
ti−1(0) = ti(0) were not equal to any one of the existing
switching times of the previous iteration. Then, by (7), (8),
and (9), and by the fact that fi−1 = fi+1, it follows that

∂J
∂τi

(t̄(0)) = − ∂J
∂τi−1

(t̄(0)) = ΘN(m), (11)

whereby the term “∂J/∂τi” we mean the partial derivative
with respect to the ith variable, i.e., ti(0) in our case. On
the other hand, if that new insertion time ti(0) is identical
to a group of one or more of the “old” insertion times, then
we have that ti−1(0) = ti−2(0) or ti(0) = ti+1(0). In this case,
define the integers ki−1(0) and ni(0) as follows, ki−1(0) :=
min{ j ≤ i − 1 : t j(0) = ti−1(0)}, and ni(0) := max{ j ≥ i :
t j(0) = ti(0)}. Then we have the following extension of (11)
(see [10] for a proof):

∑ni(0)
j=i

∂J
∂τ j

(t̄(0)) = −∑i−1
j=ki−1(0)

∂J
∂τ j

(t̄(0)) = ΘN(m). (12)

We next define the curve along which the inner algorithm
applies the Armijo stepsize, and denote it by {t̄(λ)}λ≥0. It
is defined by reducing ti−1(0) to 0 and increasing ti(0) to
T at the rate of -ΘN . If ti−1(0) (ti(0), resp.) “bumps” into
other switching times on the way, then it “drags” them along
with it so that the order of the modal sequence is maintained.
Such a “bump” causes a change in the direction of t̄(λ), and
hence this curve consists of successive linear segments.

To formalize matters, we denote the break points of the
curve {t̄(λ)}λ≥0, namely the points at which the curve
changes directions, by λν , ν = 1,2, . . ., and we define, as
a matter of convention, λ0 = 0, while recalling that t̄(0) is
the starting point of the curve. We next define the curve in a
recursive manner on the segments [λν ,λν+1]. Recall that the
starting point is t̄(0) = t̄(λ0). Given ν ∈ {0,1, . . .}, suppose
that t̄(λ) has been defined for all λ ∈ [0,λν]; we now define
the next segment of the curve, namely the end-point λν+1

and the curve t̄(λ) for all λ ∈ [λν ,λν+1]. First, define the
integers ki−1(λν) and ni(λν) by

ki−1(λν) := min{ j ≤ i−1 : t j(λν) = ti−1(λν)}, (13)

ni(λν) := max{ j ≥ i : t j(λν) = ti(λν)}, (14)

furthermore, for the sake of notation, define t−1(λν) := −∞
and tN(m+1)+2(λν) := ∞. Next, define the direction h̄(λν) :=
(h1(λν), . . . ,hN(m+1)(λν))T by

h j(λν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΘN(m), ∀ j ∈ {ki−1(λν), . . . , i−1},
if ti−1(λν) > 0

0, ∀ j ∈ {ki−1(λν), . . . , i−1},
if ti−1(λν) = 0

−ΘN(m), for all j ∈ {i, . . . ,ni(λν)},
if ti(λν) < T

0, ∀ j ∈ {i, . . . ,ni(λν)},
if ti(λν) = T

0, ∀ other j ∈ {1, . . . ,N(m+1)}.
(15)

Finally, define λν+1 as follows for the case where ti−1(λν) >
0 or tN(m+1)(λν) < T :

λν+1 = min
{

λ > λν : either tki−1(λν)(λν)+
(λ −λν)hki−1(λν)(λν) = tki−1(λν)−1(λν), or

tni(λν)(λν)+(λ −λν)hni(λν)(λν) = tni(λν)+1(λν)
}

(16)

(for the case where ti−1(λν) = 0 and ti(λν) = T , there is
no need to define λν+1). At last, we define t̄(λ) for λ ∈
[λν ,λν+1] by

t̄(λ) = t̄(λν)+(λ −λν)h̄(λν). (17)

Recall that the above curve is used to compute the first
iteration of the inner algorithm, whose starting point is t̄(0).
Let us denote the resulting computed vector by t̄next . Now
this point, t̄next , lies on the curve, namely t̄next = t̄(λ) for
some λ > 0, and we denote that value of λ by λnext , so that
t̄next = t̄(λnext). The point λnext is computed by the Armijo
stepsize rule along the curve {t̄(λ)}. That is (see [12]), given
α ∈ (0,1) and given a monotone-decreasing sequence λ (�)
such that λ (�) → 0 as � → ∞, λnext is defined

λnext := max
{

λ (�) : � = 0,1, . . . , such that

J(t̄(λ (�)))− J(t̄(0)) ≤−αλ (�)Θ2
N(m)

}
. (18)

1399

It follows that the inner algorithm has the following form.
Algorithm 3.1:

Algorithm 2.1 enters Step 1, from Step 3 of its previous
iteration, with a point t̄(0).
Step 1. Compute λnext according to (18), and set

t̄next := t̄(λnext). (19)

Step 2. Stating at t̄next , use any feasible gradient descent
algorithm to compute τ̄N(m+1).

The next section carries out and analysis of Algorithm 3.1.

IV. CONVERGENCE ANALYSIS

Gradient-descent algorithms with Armijo stepsizes gener-
ally have a sufficient-descent property as long as the function
they attempt to minimize is continuously differentiable. How-
ever, in the setting of our problem and Algorithm 3.1, there
is no continuity of the gradient. As a matter of fact, each
time the curve {t̄(λ)}λ≥0 has a break point λν , the gradient
of J is discontinuous. Another problem is that Algorithm 3.1
acts on spaces of increasing dimensions each time it enters
Step 1 of Algorithm 2.1, which makes it harder to guarantee
that an inequality like the one in Eq. (10) is satisfied. For
these reasons the convergence analysis, whose centerpiece is
a proof of sufficient descent, is quite complicated. That proof
is based on the fact that the starting point of Algorithm 3.1 is
a Kuhn-Tucker point for Pσ . Applied to any other point the
algorithm will not guarantee sufficient descent, and this is the
reason for the specification in Step 1 of the algorithm, made
only at its starting point, while requiring only a gradient
descent in the later iterations.

The rest of this section carries out the convergence anal-
ysis. First, a number of preliminary results are presented
without proofs.

Lemma 4.1. There exists a constant K1 > 0 such that, for
every modal sequence σ having any number of switching
times N, and for every t ∈ [0,T], ||x(t)|| ≤ K1 and ||p(t)|| ≤
K1.

Lemma 4.2. There exists a constant K2 > 0 such that,
for every N, |ΘN | ≤ K2, where ΘN is defined in Step 2 of
Algorithm 2.1.

Lemma 4.3. There exists a constant K3 > 0 such that, for
every modal sequence σ having any number of switching
times N, and for every t1 ∈ [0,T] and t2 ∈ [t1,T], ||x(t2)−
x(t1)|| ≤ K3(t2 − t1) and ||p(t2)− p(t1)|| ≤ K3(t2 − t1).

Next, consider two modal sequences σ̄ and σ̃ having
possibly different numbers of switching times, N̄ and Ñ, and
let f̄ (x, t) and f̃ (x, t) be the associated dynamic response
functions as defined by (5). For all t ∈ [0,T], define ᾱ(t) :=
{α ∈ A : f̄ (x, t) = fα(x)}, and similarly define α̃(t) := {α ∈
A : f̃ (x, t) = fα(x)}. Denote by x̄(t) and p̄(t) (x̃(t) and p̃(t),
resp.) the state trajectory and costate trajectory associated
with σ̄ (σ̃ , resp.) via (3), (5) and (6). Let I ⊂ [0,T] be
defined by I = {t ∈ [0,T] : ᾱ(t) �= α̃(t)}, and denote by |I|
the Lebesgue measure of I.

Lemma 4.4: There exists a constant K4 > 0 such that, for
every pair of modal sequences σ̄ and σ̃ ; for every t ∈ [0,T],
||x̄(t)− x̃(t)|| < K4|I| and ||p̄(t)− p̃(t)|| < K4|I|.

The next lemma concerns variational bounds on the gra-
dient of J along the curve {t̄(λ)}. First, we establish some
notation. For every λ ≥ 0, we define ki−1(λ) and ni(λ) by

ki−1(λ) := min{ j ≤ i−1 : t j(λ) = ti−1(λ)}, (20)

ni(λ) := max{ j ≥ i : t j(λ) = ti(λ)}. (21)

Lemma 4.5: There exists a constant K > 0 such that, for every
point t̄(0) with which Algorithm 2.1 enters Step 1 from Step
3 of its previous iteration; for every ν = 0,1,2, . . .; and for
every λ ∈ [λν ,λν+1],

| < ∇J(t̄(λ))−∇J(t̄(0)) , h̄(λν) > | ≤ Kλ . (22)

Moreover, the constant K is independent of N(m).
Proof. Consider a point t̄(0) as in the statement of the

lemma. Fix ν ≥ 0, and fix λ ∈ [λν ,λν+1). Assume, without
loss of generality, that ti−1(λν+1) > 0 and ti(λν+1) < T .
Consider first the term < ∇J(t̄(λ)), h̄(λν) >. For ease of
notation, we define Θ̃ = ΘN(m). By (15),

< ∇J(t̄(λ)), h̄(λν) >= Θ̃∑i−1
j=ki−1(λν)

dJ
dτ j

(t̄(λ))

− Θ̃∑ni(λν)
j=i

dJ
dτ j

(t̄(λ)). (23)

Let us denote by {xλ (t)} and {pλ (t)} the state trajectory
and costate trajectory associated with the point t̄(λ) via (3)
and (6), respectively. Then, by (7) and (23),

< ∇J(t̄(λ)), h̄(λν) >= Θ̃∑i−1
j=ki−1(λν) pλ (t j(λ))T ×

{ f j(xλ (t j(λ)))− f j+1(xλ (t j(λ)))}− Θ̃
ni(λν)

∑
j=i

pλ (t j(λ))T

×{ f j(xλ (t j(λ)))− f j+1(xλ (t j(λ)))}. (24)

By the definition of ki−1(λ) (20), we have that t j(λ) =
ti−1(λ) for all j ∈ {ki−1(λ), . . . , i − 1}, and moreover, by
(16), ki−1(λ) = ki−1(λν); hence, t j(λ) = ti−1(λ) for all j ∈
{ki−1(λν), . . . , i− 1}. In a similar way (by (21) and (16)),
t j(λ) = ti(λ) for all j ∈ {i, . . . ,ni(λν)}. Consequently, (24)
implies that,

< ∇J(t̄(λ)), h̄(λν) >= Θ̃pλ (ti−1(λ))T

×
(

fki−1(λν)
(
xλ (ti−1(λ))

)− fi
(
xλ (ti−1(λ))

))

−Θ̃pλ (ti(λ))T
(

fi
(
xλ (ti(λ))

)− fni(λν)+1
(
xλ (ti(λ))

))
. (25)

Next, consider the second term in the left-hand side of (22),
namely, < ∇J(t̄(0)), h̄(λν) >. By (15), we obtain, that

< ∇J(t̄(0)), h̄(λν) >

= Θ̃
i−1

∑
j=ki−1(λν)

dJ
dτ j

(t̄(0))− Θ̃
ni(λν)

∑
j=i

dJ
dτ j

(t̄(0)). (26)

If we denote by {x0(t)} and {p0(t)} the state- and costate-
trajectories associated with the point t̄(0) via (3) and (6),
respectively. Then, with some algebra, and (26), we get that

< ∇J(t̄(0)), h̄(λν) >=

Θ̃{p0(tki−1(λν)(0))T fki−1(λν)(x0(tki−1(λν)(0))
)

−p0(ti(0))T fi
(
x0(ti(0))

)}+ Θ̃
i−1

∑
j=ki−1(λν)

f j+1
(
x0(t j+1(0))

)×

1400

{p0(t j+1(0))T − p0(t j(0))T}+ Θ̃
i−1

∑
j=ki−1(λν)

p0(t j(0))T×
{ f j+1(x0(t j+1(0)))− f j+1

(
x0(t j(0))

)}− Θ̃
(

p0(ti−1(0))T×
fi(x0(ti−1(0))

)− p0(tni(λν)(0))T fni(λν)+1
(
x0(tni(λν)(0))

))

−Θ̃
ni(λν)

∑
j=i

{p0(t j(0))T − p0(t j−1(0))T} f j
(
x0(t j−1(0))

)

−Θ̃
ni(λν)

∑
j=i

p0(t j(0))T{ f j
(
x0(t j(0))

)− f j
(
x0(t j−1(0))

)}. (27)

We next derive upper bounds on the various sum terms in
the right-hand side of (27). Consider the first sum term. By
Lemma 4.1, Assumption 2.1, and the fact that the modal
set A is finite, there exists a constant K5 > 0 such that,
for all j ∈ {0, . . . ,N(m+1)}, || f j+1

(
x0(t j+1(0))

)|| ≤ K5. By
Lemma 4.3, for all j ∈ {0, . . . ,N(m + 1)}, ||p0(t j+1(0))−
p0(t j(0))|| ≤ K4(t j+1(0)− t j(0)). By Lemma 4.2, |Θ̃|| ≤ K2.
Consequently, we have that

||Θ̃∑i−1
j=ki−1(λν) f j+1

(
x0(t j+1(0))

){p0(t j+1(0))T

−p0(t j(0))T}|| ≤ K2K4K5(ti(0)− tki−1(λν)(0)). (28)

By definition ti(0) = ti−1(0) since this is the double switch-
ing times appended at Step 3 of the previous iteration of
Algorithm 2.1. We have seen (by (16)) that tki−1(λν)(0) ≥
tki−1(λν)(λν), and by (20), tki−1(λν)(λν) = ti−1(λν). Certainly
ti−1(0) ≥ tki−1(λν)(0) since i− 1 ≥ ki−1(λν). Therefore, we
have that

0 ≤ ti(0)− tki−1(λν)(0) ≤ ti−1(0)− tki−1(λν)(λν)
= ti−1(0)− ti−1(λν). (29)

By (15)-(17), ti−1(0) − ti−1(λν) ≤ λν |Θ̃|, and
by Lemma 4.2 and the fact that λν ≤ λ (by
assumption), we have that ti−1(0) − ti−1(λν) ≤ λK2.
Combining this inequality with (28) and (29) we
obtain,||Θ̃∑i−1

j=ki−1(λν) f j+1
(
x0(t j+1(0))

){p0(t j+1(0))T −
p0(t j(0))T}|| ≤ K2

2 K4K5λ . This inequality provides an
upper bound on the first sum term in the right-hand
side of (27). In the same way, similar inequalities can
be derived for the other three sum terms in the right-
hand side of (27). Thus, there exists a constant K6 ≥ 0
such that, ||Θ̃∑i−1

j=ki−1(λν) f j+1
(
x0(t j+1(0))

){p0(t j+1(0))T −
p0(t j(0))T}||+||Θ̃∑i−1

j=ki−1(λν) p0(t j(0))T{ f j+1
(
x0(t j+1(0))

)−
f j+1

(
x0(t j(0))

)}||+ ||Θ̃∑ni(λν)
j=i f j

(
x0(t j−1(0))

){p0(t j(0))T −
p0(t j−1(0))T}|| + ||Θ̃∑ni(λν)

j=i p0(t j(0))T × { f j
(
x0(t j(0))

) −
f j

(
x0(t j−1(0))

)} ≤ λK6. We next derive an upper bound on
the term |< ∇J(t̄(λ))−∇J(t̄(0)), h̄(λν) > | in the Left-Hand
Side (LHS) of (22) by considering the differences between
the analogous terms in the RHS of (25) and (27), and using
the above derived inequality for the remaining terms of
(27). This yields the following inequality,

| < ∇J(t̄(λ))−∇J(t̄(0)), h̄(λν) > |

≤ |Θ̃
(

pλ (ti−1(λ))T fki−1(λν)
(
xλ (ti−1(λ))

)
−p0(tki−1(λν)(0))T fki−1(λν)

(
x0(tki−1(λν)(0))

))|+

|Θ̃{pλ (ti−1(λ))T (fi
(
xλ (ti−1(λ))

)− p0(ti(0))T fi
(
x0(ti(0))

)}|
+|Θ̃{pλ (ti(λ))T fi

(
xλ (ti(λ))

)

−p0(ti−1(0))T fi(x0(ti−1(0))
)}|

+|Θ̃
(

pλ (ti(λ))T f
ni

(
λν)+1

(
xλ (ti(λ))

)

−p0(tni(λν)(0))T fni(λν)+1
(
x0(tni(λν)(0))

))|+λK6. (30)

Now consider the various terms in the RHS of (30). Re-
garding the first term, we make the following observa-
tions. By (20) and the fact that ki−1(λ) = ki−1(λν), we
obtain that ti−1(λ) = tki−1(λν)(λ), and hence, pλ (ti−1(λ)) =
pλ (tki−1(λν)(λ). Consequently, and by subtracting and adding
pλ (tki−1(λν)(0)), we obtain,

pλ (ti−1(λ))− p0(tki−1(λν)(0)) = pλ (tki−1(λν)(λ)
−pλ (tki−1(λν)(0))+ pλ (tki−1(λν)(0))− p0(tki−1(λν)(0)). (31)

By (15)-(17), 0 ≤ t j(0)− t j(λ) ≤ λ |Θ̃| for all j ∈ {0, . . . , i−
1}. Apply this with j = ki−1(λν), and use Lemma 4.3 and
Lemma 4.2 to obtain,

||pλ (tki−1(λν)(λ))− pλ (tki−1(λν)(0))|| ≤ K3K2λ . (32)

Next, denote by fλ (x, t) the dynamic response function
defined by (5) with the switching times given by t̄(λ), and
denote by f0(x, t) the dynamic response function defined by
(5) with the switching times given by t̄(0). Furthermore,
define αλ (t) := {α ∈ A : fλ (x, t) = fi(x)}, define α0(t) :=
{α ∈ A : f0(x, t) = fi(x)}, and define I := {t ∈ [0,T] : αλ (t) �=
α0(t)}. Let |I| denote the Lebesgue measure of I. Then,
by (15)-(17) and Lemma 4.2, we have that |I| ≤ λK2.
Consequently, and by Lemma 4.4,

||pλ (tki−1(λν)(0))− p0(tki−1(λν)(0))|| ≤ K4K2λ . (33)

It now follows from (31)-(33) that ||pλ (ti−1(λ)) −
p0(tki−1(λν)(0)|| ≤ (K3 + K4)K2λ . Defining K7 := (K3 +
K2)K4, we obtain that

||pλ (ti−1(λ))− p0(tki−1(λν)(0)|| ≤ K7λ . (34)

By Lemma 4.1, Assumption 2.1, and the fact that A is a finite
set, there exists a common Lipschitz constant K

′
for all the

functions fα , α ∈ A, in a given compact set Γ containing the
state trajectories {xλ} for all λ > 0. Then, similarly to (34),
there exists a constant K8 > 0 such that,
|| fki−1(λν)

(
xλ (ti−1(λ))

)− fki−1(λν)
(
x0(tki−1(λν)(0))

)||
≤ K8λ . (35)

By the boundedness of every term in the RHS of (30), and
by (34) and (35), there exists a constant K9 > 0 such that,

|Θ̃
(

pλ (ti−1(λ))T fki−1(λν)
(
xλ (ti−1(λ))

)
−p0(tki−1(λν)(0))T fki−1(λν)

(
x0(tki−1(λν)(0))

))| ≤ K9λ . (36)

This establishes an upper bound on the first term in the right-
hand side of (30). Using similar arguments, it is apparent
that the next three terms in the right-hand side of (30) have

1401

similar upper bounds, that is, there are positive constants K10,
K11, and K12 such that,

|Θ̃{pλ (ti−1(λ))T [fi(xλ (ti−1(λ)))
−p0(ti(0))T fi(x0(ti(0)))]}| ≤ K10λ , (37)

|Θ̃{pλ (ti(λ))T fi(xλ (ti(λ)))
−p0(ti−1(0))T fi(x0(ti−1(0))

)}| ≤ K11λ , (38)

|Θ̃{pλ (ti(λ))T f
ni

(
λν)+1

(xλ (ti(λ)))−
p0(tni(λν)(0))T fni(λν)+1

(
x0(tni(λν)(0))

)}| ≤ K12λ . (39)

Finally, defining K := K6 + K9 + K10 + K11 + K12, Eq. (22)
follows from (30) and (36)-(39). This completes the proof.

We can now establish the property of sufficient descent.
Proposition 4.1. For every ε > 0 there exists η > 0 such

that, if |ΘN(m)| ≥ ε then
J(t̄next)− J(t̄(0)) ≤ −η . (40)

Proof. Consider a point t̄(0) with which Algorithm 2.1 enters
Step 1. According to (9), unless ΘN(m) = 0, the curve {t̄(λ)}
separates the points ti−1(0) and ti+1(0) by reducing the
former point and increasing the latter one. By (16), the lower
branch of the curve stalls whenever ti−1(λ) = 0 for some
λ ≥ 0, and the upper branch stalls whenever ti(λ) = T for
some λ ≥ 0. Since this proposition concerns a local result,
we can assume, without loss of generality, that neither branch
of the curve stalls.

Fix ν = 0,1,2, . . ., and consider λ ∈ [λν ,λν+1]. By the
mean value theorem and (17) there exists λ̃ ∈ [λν ,λ] such
that, J(t̄(λ))−J(t̄(λν)) = (λ −λν) < ∇J(t̄(λ̃)), h̄(λν) >. By
Lemma 4.5 and the fact that λ̃ −λν ≤ λ −λν , we obtain that
J(t̄(λ))− J(t̄(λν)) ≤ (λ −λν)(λK+ < ∇J(t̄(0)), h̄(λν) >).

(41)
By (8)-(9) and the definition of t̄(0) (see Algorithm 2.1),
dJ(t̄(0))/dτ j = −ΘN(m) for all j ∈ {ki−1(0), . . . , i− 1} and
dJ(t̄(0))/dτ j = ΘN(m) for all j ∈ {i, . . . ,ni(0)}, and hence,
and by (15), < ∇J(t̄(0)), h̄(λν) >= −(

ni(0) − ki−1(0) +
1
)
(ΘN(m))2. Since ni(0)− ki−1(0)+1 ≥ 1, we obtain that

< ∇J(t̄(0)), h̄(λν) > ≤ −Θ2
N(m). (42)

Thus, by (41) and (42), we have that
J(t̄(λ))− J(t̄(λν)) ≤ (λ −λν)(λK −Θ2

N(m)). (43)

Let us apply (43) to λ j and λ j+1 in lieu of λν and λ ,
respectively, to obtain,

J(t̄(λ j+1))− J(t̄(λ j)) ≤ (λ j+1 −λ j)(λ j+1K −Θ2
N(m)). (44)

Summing up (44) for j = 0, . . . ,ν − 1, adding (43), noting
that λ j+1 ≤ λν ≤ λ , and recalling that λ0 = 0, we obtain,

J(t̄(λ))− J(t̄(0) ≤ −λ
(
(ΘN(m))2 −λK

)
. (45)

Fix ε > 0 and suppose that |ΘN(m)| > ε . Define λ̄ := (1−
α)ε2/K. Then, for all λ ∈ [0, λ̄], Θ2

N(m) − λK ≥ Θ2
N(m) −

λ̄K = Θ2
N(m)−(1−α)ε2 ≥ Θ2

N(m)−(1−α)Θ2
N(m) = αΘ2

N(m).

Therefore, and by (45), J(t̄(λ))− J(t̄(0)) ≤ −λα(ΘN(m))2.

By (18), we conclude that λnext ≥ λ̄ , and hence, J(t̄next)−

J(t̄(0)) ≤ −λ̄α(ΘN(m))2. By the definition of λ̄ and the
assumption that |ΘN(m)| > ε , we have that

J(t̄next)− J(t̄(0)) ≤ − (1−α)αε4

K . (46)

Defining η to be the right-hand side of (46), (40) follows.

This leads us to the main result of the paper.
Theorem 4.1: If Algorithm 2.1 computes a sequence of

iteration points {τ̄N(m)}∞
m=1, then

limm→∞ ΘN(m) = 0. (47)

Proof: Follows immediately from Proposition 4.1 and Propo-
sition 2.1.

We point out that numerical results with the algorithm
have been reported on in [11].

V. CONCLUSIONS

An algorithm for transition-mode optimization in au-
tonomous hybrid dynamical systems was analyzed. The
algorithm considered inserting new modes into the current
modal structure by utilizing a variational formula. Based on
the derivation of a gradient descent curve, proofs of sufficient
descent and convergence of the algorithm were proved.

REFERENCES

[1] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A Unified Framework
for Hybrid Control: Model and Optimal Control Theory. IEEE Trans-
actions on Automatic Control, Vol. 43, pp. 31-45, 1998.

[2] M.S. Shaikh and P. Caines. On Trajectory Optimization for Hybrid
Systems: Theory and Algorithms for Fixed Schedules. IEEE Confer-
ence on Decision and Control, Las Vegas, NV, Dec. 2002.

[3] H.J. Sussmann. A Maximum Principle for Hybrid Optimal Control
Problems. Proceedings of the 38th IEEE Conference on Decision and
Control, pp. 425-430, Phoenix, AZ, Dec. 1999.

[4] A. Bemporad, A. Giua, and C. Seatzu. A Master-Slave Algorithm for
the Optimal Control of Continuous-Time Switched Affine Systems.
Proceedings of the 41st IEEE Conference on Decision and Control,
pp. 1976-1981, Las Vegas, Nevada, December 2002.

[5] A. Giua, C. Seatzu, and C. Van der Mee. Optimal Control of Switched
Autonomous Linear Systems. In Proceedings of the 40th Conference
on Decision and Control, pp. 1816-1821, Phoenix, Arizona, December
1999.

[6] A. Rantzer and M. Johansson. Piecewise Linear Quadratic Optimal
Control. IEEE Transactions on Automatic Control, Vol. 54, pp. 629-
637, 2000.

[7] P. Riedinger, F. Kratz, C. Iung, and C. Zanne. Linear Quadratic
Optimization for Hybrid Systems. Proceedings of the 38th IEEE Con-
ference on Decision and Control, pp. 3059-3064, Phoenix, Arizona,
pp. 3059-3064, December 1999.

[8] X. Xu and P. Antsaklis. Optimal Control of Switched Autonomous
Systems. IEEE Conference on Decision and Control, Las Vegas, NV,
Dec. 2002.

[9] X. Xu and P.J. Antsaklis. Optimal Control of Switched Systems via
Nonlinear Optimization Based on Direct Differentiations of Value
Functions. International Journal of Control, Vol. 75, pp. 1406-1426,
2002.

[10] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-Time Opti-
mization for Switched Systems. To appear in IEEE Transactions on
Automatic Control, 2005.

[11] H. Axelsson, Y. Wardi, and M. Egerstedt, Transition-Time Optimiza-
tion for Switched Systems. Proc. IFAC World Congress, Prague, The
Czech Republic, July 2005.

[12] E. Polak. Optimization Algorithms and Consistent Approximations.
Springer-Verlag, New York, New York, 1997.

[13] E. Polak and Y. Wardi. A Study of Minimizing Sequences. SIAM
Journal on Control and Optimization, Vol. 22, No. 4, pp. 599-609,
1984.

[14] L. Armijo. Minimization of Functions Having Lipschitz Continuous
First-Partial Derivatives. Pacific Journal of Mathematics, Vol. 16, pp.
1-3, 1966.

1402

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

