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Abstract— In this paper, we define linear dependency and inde-
pendency of the interval vectors and present an effective method for
checking the linear independency of interval vectors. As a possible
application of the interval vectors to the robust control problem,
the robust controllability and un-controllability problems of uncertain
interval system are solved. Through the numerical examples and by
comparing with the existing results, the superiority of our new robust
controllability test method is presented.

Index Terms— Linear independency, Interval vectors, Robust con-
trollability, Un-controllability, Uncertain systems.

I. INTRODUCTION

In robust control, the model uncertainty problem has been
effectively and popularly handled by “interval” concept. Great
amount of literatures is available under the name of “interval”
for example, interval algebra [1], [2], interval polynomial [3], [4],
Schur stability of interval matrices [5], [6], Hurwitz stability of
interval matrices [7], [8], eigenvalues of interval matrices [9],
[10], and robust control with parameter uncertainty [11], [12].
However, the linear (in)-dependency problem of interval vectors
has not been attacked in robust control area. Even though the
basic concepts of interval vectors were defined in [1], [2], and as
a specified example of the quasivector spaces, the interval vectors
have been defined in [13], its algebraic properties have not been
fully understood. In fact, some basic algebraic properties of the
interval vectors, for example linear (in)-dependency property by
combination, were studied in [14], but the linear dependency and
independency condition, on its own, was not directly investigated.

In this paper, our main interest is to check the linear (in)-
dependency of interval vectors for the robust control applications.
After suggesting an effective sufficient conditions of the linear (in)-
dependency of interval vectors, we will show that sufficient linear
(in)-dependency condition of interval vectors can be effectively
used in checking the robust (un)-controllability of the uncertain
linear time invariant (LTI) system. Thus, the main novelty of this
paper is to investigate the linear (in)-dependency of interval vec-
tors, and then is to check the (un)-controllability of the uncertain
system with much less conservatism compared with the existing
results.
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Engineering, 4160 Old Main Hill, Utah State University, Logan, UT 84322-
4160. T: (435)7970148, F: (435)7973054, W: www.csois.usu.edu

The paper consists of as follows: In Section II, we provide suf-
ficient linear dependency and independency conditions of the in-
terval vectors. In Section III, the developed linear (in)-dependency
condition of interval vectors is used to check the sufficient (un)-
controllability condition of the uncertain LTI system. Conclusions
are given in Section IV.

II. LINEAR (IN)-DEPENDENCY OF INTERVAL VECTORS

Throughout the paper, we need the following basic definitions.
Our discussions are limited to the real system.

Definition 2.1: A parameter is called interval if it lies between
two closed extreme upper and under boundary values. So, a real
interval scalar xI can be defined as: xI := [x, x], where x and x
are extreme under and upper values in R.The n-dimensional real
column interval vector xI is defined as: xI := (xI

1, . . . , x
I
n)T and

the n × m dimensional real interval matrix is defined from the
interval vectors as: XI :=

(
xI
1, xI

2, . . . , xI
m

)
. The interval vector

and interval matrix can be written as: xI = [x, x] and XI =[
X, X

]
where x = (x1, . . . , xn)T , x = (x1, . . . , xn)T , X =(

x1, . . . , xm

)
, and X = (x1, . . . , xm). Or, they can be written as:

xI = [x0 − ∆x, x0 + ∆x] and XI = [X0 − ∆X, X0 + ∆X] ,

where x0 =
x+x

2
, X0 =

X+X

2
, ∆x =

x−x
2

, and ∆X =
X−X

2
.

Based on [1], [2], the following interval arithmetics are used in
this paper.

Definition 2.2: The intersection of two real interval scalars xI

and yI is defined as: xI ∩ yI :=
{
z | z ∈ xI and z ∈ yI

}
. The

union of two real interval scalars xI and yI is defined as: xI ∪
yI :=

{
z | z ∈ xI or z ∈ yI

}
.

Definition 2.3: For nonempty closed intervals, the addition of
two real interval scalars xI and yI is defined and calculated
as: xI ⊕ yI =

[
x + y, x + y

]
, the substraction is xI � yI =[

x − y, x − y
]
, and the multiplication is

xI ⊗ yI =
[
min

{
xy, xy, xy, xy

}
, max

{
xy, xy, xy, xy

}]
The division should be carefully defined, based on [2], as:

1

xI
= ∅ iff xI = [0, 0]

=

[
1

x
,
1

x

]
iff 0 /∈ xI

=
[

1

x
,∞

)
iff x = 0 and x > 0
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=
(
−∞,

1

x

]
iff x < 0 and x = 0

= (−∞,∞) iff x < 0 and x > 0 (1)

Then, the division of two interval scalars is simply defined and
calculated as: xI 	 yI = xI ⊗ 1

yI .
Definition 2.4: The ratio rxy between two interval vectors is

defined and calculated as:

rxy := xI \ yI =
(
xI

1 	 yI
1 , . . . , xI

n 	 yI
n

)
The addition, substraction, dot-product, and cross-product of two
interval vectors and interval matrices can be defined based on
above scalar arithmetics.

Remark 2.1: The interval arithmetics defined above can be
defined in the set concepts. For example, the summation of two
interval scalars xI and yI can be defined as:

zI = {z | z = x + y, ∀x ∈ xI , ∀y ∈ yI}
However, in this paper, we use, simply, the interval arithmetic such
as: zI = xI ⊕ yI . This is clear without notational confusion and
effective to represent our idea. Note xI ⊕ yI = {x + y, ∀x ∈
xI , ∀y ∈ yI}.

The interval arithmetics of a real interval scalar by itself should
be differentiated from the arithmetics of two different scalar
intervals. For the LTI system 1, we use the following definitions:

Definition 2.5: If xI is not time dependent (i.e., time invariant),
the addition of a real interval scalar xI by itself is defined and
calculated as: xI ⊕ xI = [x + x, x + x] , the substraction is xI �
xI = [0, 0], and the multiplication is xI ⊗ xI =

[
α2, β2

]
, where

α = min{|x|, |x|}; β = max{|x|, |x|}. The division is defined
as: xI 	 xI = [1, 1] if xI �= [0, 0].

Now, with the basic definitions given above, we define the linear
(in)-dependency of interval vectors.

Definition 2.6: Let us suppose we have n different interval
column vectors given as: xI

1, . . . , xI
n. They are called linearly

independent iff there exist only a trivial solution (a1 = a2 =
· · · = an = 0) such that a1x1 + a2x2 + · · · + anxn = 0m for all
xi ∈ xI

i . Otherwise, we say that the interval vectors are linearly
dependent.

Remark 2.2: In Definition 2.6, the linear independency of in-
terval vectors was defined using the following notation: a1x1 +
a2x2 + · · · + anxn = 0m, for all xi ∈ xI

i . However, in this
paper, since we use interval arithmetic, using notation a1xI

1 ⊕
a2xI

2 ⊕ · · · ⊕ anxI
n = oI makes us deliver our ideas more easily.

In other words, when we say there exist only a trivial solution for
a1xI

1 ⊕ a2xI
2 ⊕ · · · ⊕ anxI

n = oI , this is equivalent to the linear
independency condition of Definition 2.6.

Before considering the general case, let us first consider the
linear (in)-dependency of two interval vectors. Supposing that
two interval vectors are given as: xI

1 and xI
2, and based on

Definition 2.6, two interval vectors are linearly independent iff
there exist only trivial solutions a1 = a2 = 0 such that

a1xI
1 ⊕ a2xI

2 = oI . (2)

Here, notice that it is not easy to get solutions for (2) directly.
However, if we use “ratio” concept, we can check the linear (in)-
dependency property easily, which is expressed in the following
theorem:

1For linear time varying case, we have to use Definition 2.3.

Theorem 2.1: Two n dimensional LTI interval vectors xI , yI

with 0 /∈ xI
1 ∩xI

2 ∩ . . .∩xI
n, 0 /∈ yI

1 ∩yI
2 ∩ . . .∩yI

n, are linearly
independent iff, from the ratio rxy of xI , yI , the following equality
holds:

(rxy)1 ∩ (rxy)2 ∩ · · · ∩ (rxy)n = ∅, (3)

where (rxy)i can be defined as xI
i 	 yI

i .
Proof: Sufficiency: From a1xI

1 ⊕ a2xI
2 = oI , we have

a1

[
xI

1, x
I
2, . . . , x

I
n

]T
= �a2

[
yI
1 , yI

2 , . . . , yI
n

]T
(4)

From Definition 2.4 and Definition 2.5, and using the commutative
and associative property of interval scalars, the ratio of each
elements are

xI
i 	 yI

i = (rxy)i

⇔ xI
i ⊗ 1

yI
i

= (rxy)i

⇔ xI
i ⊗ 1

yI
i

⊗ yI
i = (rxy)i ⊗ yI

i

⇔ xI
i = (rxy)i ⊗ yI

i (5)

By inserting (5) to the left-hand side of (4), the followings are
true:

a1

[
(rxy)1 ⊗ yI

1 , (rxy)2 ⊗ yI
2 , . . . , (rxy)n ⊗ yI

n

]T

= �a2

[
yI
1 , yI

2 , . . . , yI
n

]T

⇔ a1 [(rxy)1, (rxy)2, . . . , (rxy)n]T = �a2 iI

⇔ [(rxy)1, (rxy)2, . . . , (rxy)n]T = �a2

a1
iI (6)

Here, from (6), we have

(rxy)1 ∩ (rxy)2 ∩ · · · ∩ (rxy)n = �a2

a1
, (7)

so, since (rxy)1 ∩ (rxy)2 ∩ · · · ∩ (rxy)n = ∅, we have a2
a1

= ∅.
Thus, by Definition 2.3, only a1 = 0 is the solution, henceforth,
since 0 /∈ yI

1 ∩ yI
2 ∩ . . . ∩ yI

n, from (4), we have a2 = 0.
Necessity: Let us suppose that

(rxy)1 ∩ (rxy)2 ∩ · · · ∩ (rxy)n �= ∅,
then we can have a2 = 0 and a1 �= 0, or a2 �= 0 and a1 �= 0.
Thus, by definition, this is not linearly independent.

Let us further think the case 0 ∈ xI
1 ∩ xI

2 ∩ . . . ∩ xI
n or 0 ∈

yI
1 ∩ yI

2 ∩ . . . ∩ yI
n.

Theorem 2.2: If 0 ∈ xI
1∩xI

2∩. . .∩xI
n or 0 ∈ yI

1∩yI
2∩. . .∩yI

n,
two interval vectors are then linearly dependent.

Proof: With any a1 and a2 = 0, or with a1 = 0 and any
a2, the following equality can be true:

a1xI
1 ⊕ a2xI

2 = oI .

So, By Definition 2.6, the proof is completed.
Although above theorems are effective for checking the linear

(in)-dependency of two interval vectors, it is difficult to extend
above theorems to more than 3 interval vectors. Let us suppose
that we have three different interval vectors, which are given as:
xI , yI , zI and we want to check the linear (in)-dependency of
them. The first task is to check the linear dependency between
two interval vectors. This task can be performed from preceding
results, but we also have to check the linear combination case.
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That is, we have to check if there exist trivial solutions a1 =
a2 = a3 = 0 such that

a1xI ⊕ a2yI ⊕ a3zI = oI .

However, it looks quite tough to solve this simple equation,
furthermore our ultimate goal is to find the general case such as:

a1xI
1 ⊕ a2xI

2 ⊕ · · · ⊕ anxI
n = oI .

So, apparently, it is almost impossible to check the linear (in)-
dependency of the interval vectors 2. In the sequel, we suggest
one simple but very effective sufficient condition for checking the
linear (in)-dependency of interval vectors xI

1, xI
2, · · · , xI

n where an
xI

i is an interval vector in Rm. For the accurate description of our
idea, we separately consider three different cases.

Case − 1 : m > n. Case − 2 : m = n. Case − 3 : m < n

We only investigate Case-1. In fact, Case-2 and Case-3 can be
investigated using the analysis method of Case-1. For convenience,
the following concepts are necessary. In the m× n matrix (M =
[mij ], i = 1, · · · , m and j = 1, · · · , n with m > n), let us
select whole possible n × n sub-matrices. It is easy to notice
that the total number of possible sub-matrices Si is calculated

by: k =

(
m
n

)
= m(m−1)(m−2)···(m−n+1)

n!
. Sub-matrices Si

are composed of n different row vectors of M . The index of
n different row vectors of Si is represented by a set such as:
si = {index of row vectors of M for Si}, i = 1, . . . , k. For the
accurate translation of our idea, we make a definition as follows:

Definition 2.7: In this paper, we call sub-matrices SM ={
Si, i = 1, . . . , k

}
as square set and Si as sub-square matrices,

and sM = {si, i = 1, . . . , k} is called index set and si is called
index.

Then, further definition can be made without proof for the linear
(in)-dependency test of the interval vectors as follows:

Definition 2.8: The rank of M is maximum rank of Si, that is,
rank(M) = max{rank(Si), i = 1, . . . , k}.

Now, we are ready to present our main result. Considering the
interval vectors xI

1, xI
2, · · · , xI

n, let us write these interval vectors
in an interval matrix form such as:

XI :=
(

xI
1, xI

2, · · · , xI
n

)
(8)

Then, XI is an m×n interval matrix, so based on Definition 2.7,
the corresponding square set of XI can be found as: SX ={
Si, i = 1, . . . , k

}
where k =

(
m
n

)
, and the corresponding

index set of XI can be found as sX = {si, i = 1, . . . , k}. Here,
we introduce the center square matrices SXc such as:

SXc :=

{
Si

0 =
Si + Si

2
, i = 1, . . . , k

}
,

and introduce the radius square matrices ∆SX such as:

∆SX :=

{
∆Si =

Si − Si

2
, i = 1, . . . , k

}
2As far as authors are concerned, nobody has suggested this kind of

questions and there is no existing solution.

For our main result, notating the element-wise absolute value of
a matrix A by |A| = (|aij |), the following lemma can be adopted
from [15].

Lemma 2.1: For interval square matrix XI , let its center matrix
X0 be nonsingular 3 and the spectral radius ρ

(∣∣(X0)
−1

∣∣∆X
)

<

1, then XI is nonsingular 4.
Now, for the linear independency test of the interval vector set,

we suggest the following theorem:
Theorem 2.3: For SI ∈ SX , if there exists at least one corre-

sponding S0 ∈ SXc and ∆S ∈ ∆SX such that S0 is nonsingular
and ρ

(∣∣(S0)
−1

∣∣∆S
)

< 1, then the interval vectors xI
1, xI

2, · · · , xI
n

are linearly independent.
Proof: Let us consider XI =

(
xI
1, xI

2, · · · , xI
n

)
, which is an

m×n, m > n, interval matrix composed of the interval vectors.
It is a fact that the column vectors are linearly independent if (and
only if in the point of “rank”) the rank of XI is n. Also from the
fact that the row rank is equal to the column rank, so if SI has
rank n, then the column rank of XI is also n. Therefore, if any
one of SI ∈ SX has row rank n, then XI has n column rank by
Definition 2.8. So, by Lemma 2.1, for S0 and ∆S corresponding
to SI , if S0 is nonsingular and ρ

(∣∣(S0)
−1

∣∣∆S
)

< 1, then
XI has full column rank, because the nonsingular condition is
equivalent to the full rank condition. Thus, since the full column
rank indicates the linear independency, the proof is completed.

Remark 2.3: Theorem 2.3 checks the linear independency of
the interval vector set using finite interval matrix set. The key idea
of Theorem 2.3 is to investigate the linear independency of the
interval vectors on the form of interval matrix. Using the fact that
the row rank is equal to column rank and the full rank condition
is equivalent to the linear independency condition, Theorem 2.3
easily checks the linear independency of the interval vectors.

However, although Theorem 2.3 is represented in a simple
form, the result could be conservative in checking the condition
ρ
(∣∣(S0)

−1
∣∣∆S

)
< 1, because

∣∣(S0)
−1

∣∣ is used. To reduce
the conservatism, the following result can be obtained based on
Theorem 2.3.

Corollary 2.1: For at least one SI ∈ SX and for its correspond-
ing S0 ∈ SXc and ∆S ∈ ∆SX , if there exists a matrix R such
that

ρ (|I − RS0| + |R|∆S) < 1,

then the interval vectors xI
1, xI

2, · · · , xI
n are linearly independent.

Proof: The proof can be completed by the proof of Theo-
rem 2.3 and theorem 3.1 of [15].

Using the proof of Theorem 2.3 and using the results of [15],
we also can find the sufficient condition for linear dependency of
the interval vectors xI

1, xI
2, · · · , xI

n. Let us use the following lemma
for this purpose.

Lemma 2.2: For interval matrix XI , there exist a matrix R and
a natural number p such that, element-wisely,

(I + |I − X0R|)p ≤ (∆X |R|)p

where p ∈ {1, . . . , n} and (·)p represents pth column, then
interval matrix XI is singular 5.

Proof: See theorem 3.3 of [15].

3Nonsingular means that it is invertible.
4“Nonsingular” is equivalent to “full rank”.
5Singular means it is not full rank.
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Theorem 2.4: For all SI ∈ SX and for all its corresponding
S0 ∈ SXc and ∆S ∈ ∆SX , if there exist a matrix R and a
natural number p such that, element-wisely,

(I + |I − S0R|)p ≤ (∆S |R|)p ,

then the interval vectors xI
1, xI

2, · · · , xI
n are linearly dependent.

Proof: Theorem 2.3 shows that the interval vectors are
linearly independent if there exists at least one SI such that the
conditions of Theorem 2.3 hold. So, to eliminate the case of Theo-
rem 2.3, we have to check all SI ∈ SX for the linearly dependent
test. That is, if all Si are singular, then max(rank(Si)) < n, so
from Definition 2.8, since rank(M) = max(rank(Si)), we have
rank(M) < n. Thus, if (I + |I − S0R|)p ≤ (∆S |R|)p , then
by Lemma 2.2 and by Definition 2.6, interval vectors are linearly
dependent.

Above results use the inverse of S0, but, as commented in
[15], this approach may be ineffective in the calculation of S−1

0 .
Without using the inverse, we can derive the sufficient conditions
for checking the linear dependency or independency. Based on
theorem 4.1 of [15], the following result can be derived.

Corollary 2.2: For any SI ∈ SX , if there exist at least one
corresponding S0 ∈ SXc and ∆S ∈ ∆SX such that

λmax

(
∆ST ∆S

)
< λmin

(
ST

0 S0

)
,

then the interval vectors xI
1, xI

2, · · · , xI
n are linearly independent.

Proof: By theorem 3.3 of [15] and due to the same reason
as Theorem 2.3, the proof is straightforward.

The sufficient condition for the linear dependency can also be
obtained using eigenvalues as:

Corollary 2.3: For all SI ∈ SX , if there exist corresponding
S0 ∈ SXc and ∆S ∈ ∆SX such that

λmax

(
ST

0 S0

)
≤ λmin

(
∆ST ∆S

)
,

then the interval vectors xI
1, xI

2, · · · , xI
n are linearly dependent.

Proof: By theorem 3.3 of [15] and due to the same reasons
as Theorem 2.3 and Theorem 2.4, the proof is straightforward.

In this section, we defined “linear dependency” and ”linear inde-
pendency” of “interval vectors” and suggested sufficient checking
methods. Even though checking linear (in)-dependency of interval
vectors looks NP hard problem, we solved these problems by
forming interval matrices from interval vectors. Our key idea
is straightforward, hence the suggested sufficient conditions are
very simple. Notice that in interval vector, in addition to the
linear dependency and independency problems discussed in this
paper, there exist many interesting issues such as “interval vector
norm”, “null space of interval matrices”, “interval multi-input
control problem”, and etc. Authors observe that the linear (in)-
dependency problem of interval vectors can be attacked in other
mathematical frameworks. These works will be further studied in
our future efforts. In next section, we will show that the linear (in)-
dependency property of interval vectors can be effectively used in
checking the robust controllability and un-controllability of the
uncertain interval LTI system.

III. ROBUST CONTROLLABILITY TEST OF INTERVAL SYSTEM

The robust controllability problem of uncertain linear system
has been steadily studied in [16], [17], [18], [19] and therein
references. Most notably, the methods suggested in [17], [19]
provide algebraically elegant derivations. However, unfortunately,

their methods, in instinct, cannot avoid the conservatism; hence
regardless the algebraic simplification, their contribution may
be limited. In this section, we provide an alternative method
developed based on interval vectors, which is very simple but
much less conservative. The following LTI uncertain system is
considered:

ẋ = Ax + Bu (9)

where x ∈ Rn, u ∈ Rr , A ∈ Rn×n, B ∈ Rn×r , rank(B) = r,
and A ∈ AI = [A, A] and B ∈ BI = [B, B]. We call the interval
uncertain system (9) is controllable if rank(C) = n for all C ∈ CI

CI = [BI , AI ⊗ BI , AI ⊗ AI ⊗ BI , . . . , AI ⊗ · · · ⊗ AI︸ ︷︷ ︸
n−r

⊗BI ],

which is n × (n − r + 1) · r interval matrix. For convenience,
m ≡ (n − r + 1) · r. In fact, the main source of conservatism
of [17], [19] is due to the fact that they used CI without any
modification for the controllability test. We explain this in more
detail in the sequel.

First let us consider the case without interval such as:

ẋ = A0x + B0u (10)

and corresponding controllability matrix like

C0 = [B0, A0B0, (A0)
2B0, . . . , (A0)

n−rB0].

If the system is controllable, then always rank(C0) = n. To
distinguish the interval case from the without interval case, let
us suppose that the rank of following sub-matrix of C0

C′
0 = [B0, A0B0, (A0)

2B0, . . . , (A0)
n−r−qB0]

where q ≥ 1, is n (i.e., rank(C′
0) = n). Then, without interval, it

is always true that rank(C′
0) = rank(C0) = n. Now, let us include

interval. In this case, we have to check the rank of CI , but since
CI is n×m interval matrices, it is not easy to find the rank of CI .
Thus, in [17], [19], inevitably, they tried to find some inequality
conditions in matrix norm to guarantee the sufficient conditions
of LTI interval system (see Eq. (3.9) in [19] and Eq. (10) in
[17]). Using these inequalities, they found the upper boundaries
for sufficient condition, but in this upper boundary calculation,
the formula is so conservative (see the derivation of Theorem 1
of [19] and Eq. (3.6) of [17]). So, even there is ignorable interval
uncertainty in (CI)′, which is defined as:

(CI)′ = [BI , AI ⊗ BI , . . . , AI ⊗ · · · ⊗ AI︸ ︷︷ ︸
n−r−q

⊗BI ]

the overall upper bounds are calculated based on the maximum in-
terval uncertainty of CI . So, the controllability checking methods
of [17], [19] instinctively are very conservative. However, if we
can check the rank of CI using its sub-matrices (CI)′, the result
could be much less conservative. In fact, this can be done by
checking the linear independency property of the interval vectors
based on the results of Section II. For this, we make a formula as
follows:

Corollary 3.1: If the controllability matrix CI satisfies the
linear independency conditions of Theorem 2.3, then the uncertain
interval system is controllable.

Proof: From the fact that the interval system is controllable
if its controllability matrix has rank n and the full rank condition
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is equivalent to the linear independency condition, the proof is
immediate.

Corollary 3.2: If the controllability matrix CI satisfies the
linear independency conditions of Corollary 2.1, then the uncertain
interval system is controllable.

Next, let us check the superiority of the suggested method. For
the comparison with the existing results, the three examples given
in [19] are used. Note, in the following examples, a± δa denotes
that a is an interval such as a ∈ [a − δa, a + δa].

Example 1:

A ∈ AI =

(
1 ± 0.05 0 0

0 1 ± 0.04 1 ± 0.03
0 −2 ± 0.08 4 ± 0.4

)
; B =

(
1 0
0 0
0 1

)

The controllability matrix C is calculated from the interval arith-
metics as:

C ∈ CI =

(
1 0 1 ± 0.05 0
0 0 0 1 ± 0.03
0 1 0 4 ± 0.4

)

So, we have four sub-square matrices:

S1 ∈
(

1 0 1 ± 0.05
0 0 0
0 1 0

)
; S2 ∈

(
1 0 0
0 0 1 ± 0.03
0 1 4 ± 0.4

)
;

S3 ∈
(

1 1 ± 0.05 0
0 0 1 ± 0.03
0 0 4 ± 0.4

)
; S4 ∈

(
0 1 ± 0.05 0
0 0 1 ± 0.03
1 0 4 ± 0.4

)

Then, from S2, we have

S2
0 =

(
1 0 0
0 0 1
0 1 4

)
; ∆S2 =

(
0 0 0
0 0 0.03
0 0 0.4

)

Therefore, since S2
0 is nonsingular and ρ

(∣∣(S2
0)−1

∣∣∆S2
)

=
0.03 < 1, easily we confirm that the interval system is control-
lable. However, in [19], they conclude that their method cannot
check the controllability directly, which is due to the conservatism
of their method as already explained. Clearly, our method is much
less conservative. In [19], the following sign variant problem was
also given:

Example 2:

A ∈ AI =

(
0 ± 0.05 0 0

0 1 ± 0.04 1 ± 0.03
0 0 ± 0.08 0 ± 0.4

)
; B =

(
1 0
0 0
0 1

)

Using the same method as Example 1, we found that from S2, S2
0

is nonsingular and ρ
(∣∣(S2

0)−1
∣∣∆S2

)
= 0.03 < 1. So, regardless

the sign variation, easily we find that the interval system is
controllable. However, in [19], they used controller K to guarantee
the controllability, but as resulted from our method, the system is
already controllable. So, their approach requires the extra work,
which is not necessary in our method. The following example
includes the interval in B:

Example 3:

A ∈ AI =

(
1 ± 0.02 0 0

0 1 ± 0.02 1 ± 0.02
0 −2 ± 0.05 4 ± 0.09

)

B ∈ BI =

(
1 ± 0.025 0

0 0
0 1 ± 0.02

)

Using the same method, we found that from S2, S2
0 is nonsingular

and ρ
(∣∣(S2

0)−1
∣∣∆S2

)
= 0.04 < 1, so the system is controllable.

From these examples, it is clear that our method is very simple
and much less conservative than the existing method in checking
the robust controllability of the uncertain LTI system.

In next examples, we check the (un)-controllability of the
interval system using Theorem 2.4. For convenience, from Theo-
rem 2.4, we make the following corollary:

Corollary 3.3: For all SI ∈ SX and for all its corresponding
S0 ∈ SXc and ∆S ∈ ∆SX , if there exist a natural number p such
that, element-wisely,

Ip ≤
(
∆S

∣∣(S0)
−1

∣∣)
p
,

then the interval system is uncontrollable.
Proof: In Theorem 2.4, by replacing R by (S0)

−1, and based
on Theorem 2.4, the proof is immediate.

Example 4: Let us consider the fully-populated interval A
matrix and interval B matrix such as:

A ∈ AI =

(
1 ± 1 × α 2 ± 2 × α −1 ± 1 × α
−2 ± 2 × α 1 ± 1 × α 1 ± 1 × α

0.5 ± 0.5 × α −2 ± 2 × α 4 ± 4 × α

)

B ∈ BI =

(
1 ± 1 × α 0

0 0
0 1 ± 1 × α

)

To check the conservatism, we vary α. That is, we test different
percent interval uncertainties in AI matrix and BI matrix. The
controllability and un-controllability are checked by Corollary 3.1
and Corollary 3.3, respectively. For example, with α = 0.1, the
controllability matrix is calculated as:

C ∈ CI =

(
1 ± 0.1 0 1 ± 0.21 −1 ± 0.21

0 0 −2 ± 0.42 1 ± 0.21
0 1 ± 0.1 0.5 ± 0.105 4 ± 0.84

)

So, from S1, S2, S3, we calculate ρ
(∣∣(Si

0)
−1

∣∣∆Si
)

as 0.21,
0.21, and 0.3088, respectively; hence the system is controllable.
However in Corollary 3.3, we calculate

(
∆S

∣∣(S0)
−1

∣∣) from S1,
S2, S3, and S4 as:

(
∆S1

∣∣(S1
0)−1

∣∣) =

(
0.1000 0.1550 0

0 0.2100 0
0 0.0775 0.1000

)
;

(
∆S2

∣∣(S2
0)−1

∣∣) =

(
0.1000 0.3100 0

0 0.2100 0
0 1.2400 0.1000

)

(
∆S3

∣∣(S3
0)−1

∣∣) =

(
0.1000 0.1641 0.0859

0 0.2100 0.0988
0 0.0988 0.2100

)
;

(
∆S4

∣∣(S4
0)−1

∣∣) =

(
0.6300 0.4200 0
0.8400 0.6300 0
2.6350 1.3950 0.1000

)

Thus, since S1, S2, and S3 do not satisfy Ip ≤
(
∆S

∣∣(S0)
−1

∣∣)
p
,

we cannot conclude that the system is uncontrollable. Now, we
increase α, and the test results are summarized in Table I.
In table,

√
confirms (un)-controllability, but · represents that

(un)-controllability cannot be checked. So, in this case, there is
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TABLE I
THE CONTROLLABILITY AND UNCONTROLLABILITY TESTS OF EXAMPLE-4

α 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Controllability
√ √ √ √ √ √ √ · ·

Uncontrollability · · · · · · · √ √

TABLE II
THE CONTROLLABILITY AND UNCONTROLLABILITY TESTS OF EXAMPLE-5

α 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Controllability
√ √ √ √ √ · · · ·

Uncontrollability · · · · · · √ √ √

almost no conservatism in checking the controllability and un-
controllability. Example-5: Let us consider the fully-populated
interval B

A ∈ AI =

(
1 ± 1 × α 2 ± 2 × α −1 ± 1 × α
−2 ± 2 × α 1 ± 1 × α 1 ± 1 × α

0.5 ± 0.5 × α −2 ± 2 × α 4 ± 4 × α

)

B ∈ BI =

(
1 ± 1 × α −0.1 ± 0.1 × α

0.1 ± 0.1 × α 0.1 ± 0.1 × α
−0.1 ± 0.1 × α 1 ± 1 × α

)

From Corollary 3.1 and Corollary 3.3, we have the test results as
shown in Table II. In this case, with 35 percent uncertainty, we
cannot conclude the controllability nor un-controllability. So, with
fully populated B matrix, there exists conservatism, because with
35 percent uncertainty, we cannot draw any conclusion about the
system from Corollary 3.1 and Corollary 3.3.

Remark 3.1: The robust observability is dual to the robust
controllability problem and can be checked similarly as done in
the robust controllability.

Remark 3.2: In [17], [19], they provided the necessary and
sufficient condition for checking the robust controllability. How-
ever, this approach is not practically meaningful, and furthermore,
our method can be developed for the necessary and sufficient
conditions as done in [17], [19]. In above examples, we just
showed that our method, on its own, is much more simple and
the result is less conservative than existing results. Furthermore,
from the fact that our method can check the un-controllability, it is
clear that our method is advantageous over the existing methods.

IV. CONCLUSIONS

In this paper, we suggested the concept of “linear dependency”
and “linear independency” of interval vectors and for the possible
application, we applied our result to the robust (un)-controllability
tests of the uncertain interval LTI system. From the tests with
existing examples, we could verify that, from our method, the
controllability of the interval system was checked with much less
conservatism and in a simple manner. For the un-controllability
tests, we developed two examples; even if there exists conser-
vatism in Example-5, from the tests, we found that the suggested
methods based on interval vectors can also be effectively used
to check the robust un-controllability of the uncertain interval
systems.
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