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Abstract— In this paper we consider a control problem for
a manufacturing system comprising a single machine subject
to a deterioration process. The system produces a single part
type and the model is fluid. The objective is to minimize a long
term average cost index which penalizes both inventory surplus
and backlog. The machine deterioration rate depends on the
production rate and a maintenance operation is performed
when the deterioration reaches a specified alarm level. In this
paper it is shown that the optimal control operates the machine
alternating the maximum production capacity with idle or
conservative periods (policy µ-d-µ) if the machine deterioration
rate is a concave function of the production rate while it
is a continuous feedback function of the buffer level if the
deterioration rate is convex. This confirms the results obtained
in the past for Markov failure prone systems.

I. INTRODUCTION

The problem of failure prone manufacturing systems has
been investigated since a long time. Analytical results are
known in some particular cases, e.g. if the failure process is
Markov, the control minimizing a long term average expected
cost including inventory surplus and backlog penalties is
the hedging point policy if and only if the dependence of
the failure rate on the production rate is affine [3]. The
result in [3] includes the well known constant failure rate
case, investigated among others by [1], where the analyt-
ical expression of the safety stock was also derived. In
the general, still Markov, case, according to [3], it seems
optimal to decrease the production rate as the buffer level
approaches a hedging level, to gain in reliability of the
machine. Actually, in [5], using a numerical approach, it
was observed a major difference between the case where the
failure rate is a concave function of the production rate and
the case where such a dependence is convex. In particular,
it was observed that the hedging point policy is optimal
(among stationary feedback policies) if the dependence of
the failure rate on the production rate is a concave function.
This seems to contrast the result of [3] where the optimality
of the hedging point policy is stated to hold if and only if such
a dependence is affine. To explain this, in [5] it was remarked
that in the concave non affine case the hedging point policy
is optimal only among stationary feedback policies and is
optimal among all policies only in the affine case. So in
the concave non-affine case, it was conjectured that the
optimal policy is a non stationary feedback policy which,
to maintain the buffer at the safety stock level, switches
infinitely fast the production rate among 0 and the maximum
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capacity of the machine. In the convex case, the hedging
point policy is not optimal and numerical findings [5] confirm
that the production is continuously reduced as the buffer level
approaches a safety stock. These results are also confirmed
by the analysis in [7] and [8]. In order to gain insight
into this problem, a slightly different version of it has been
considered in this paper, where the down time of the machine
is deterministic and the uptime ends when the deterioration
state of the machine (which increases through a deterministic
function of the production rate) reaches an alarm level. This
deterministic formulation can be successfully approached us-
ing the maximum principle. The results in this paper confirm
the general behavior described above for the Markov system,
in the sense that also here a major difference arises among the
convex and the concave case. In particular, it seems that if the
deterioration rate is a concave function of the production rate,
the optimal policy either works at maximum rate either at the
demand rate. Moreover, also in this deterministic scenario, in
the concave non affine case, a production rate equivalent to
the demand rate is obtained through a fast switch among
0 and the maximum capacity production. Finally, in the
convex case, the production rate changes in a continuous
fashion as the buffer level approaches certain optimal levels
of the buffer. The problem considered in this paper is not
an optimal maintenance planning problem, investigated by a
large body of literature in the past (see e.g. [2]). This mainly
depends on the fact that, as stated above, this research has
been performed to better understand the interesting switching
phenomenon observed in the Markovian case. So the point
of view is quite different. However, it is important to remark
that the interesting behavior observed and analyzed in this
paper is not simply a theoretical subject but may provide
useful applications to real world systems, as briefly discussed
at the end of Section IV-C1.

II. NOTATION AND PROBLEM FORMULATION

According to a standard notation, let x(t) denote the
buffer content at time t, with x(t) > 0 representing an
inventory surplus and x(t) < 0 a backlog of −x(t). Let
d be the constant demand rate to be met. Then the buffer
level x(t) at time t satisfies the dynamical equation ẋ(t) =
u(t) − d where the production rate u(t) ≡ 0 if at time t
the machine is in the down state (also referred to as state
0), and u(t) ∈ [0, µ] if at time t the machine is in the up
state (also referred to as state 1). The down time Tg of the
machine is constant and deterministic. The uptime is also
a deterministic quantity but is not constant: it depends on
the production history of the machine since the last repair
time t0f . In particular, we introduce a deterioration function
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z(t) =
∫ t

t0f

(
auβ(τ) + b

)
dτ where a, b and β are non-

negative constants. The machine is stopped at time tff where
tff is such that z(tff ) = 1. After the repair the machine is
good as new. We consider an instantaneous quadratic cost
g [x(t)] = cx2(t), c > 0, which penalizes equivalently the
backlog and the inventory surplus. The problem considered
in this paper is then the determination of the optimal control
u(·) which minimizes the following cost index:

J = lim
t→+∞

1

t

∫ t

t0

cx2(τ)dτ (1)

In the following, an equivalent formulation is given which
allows to apply directly the maximum principle.

A. An equivalent formulation

Since the problem is deterministic and stationary, if an
optimal control exists (this will be discussed below), the
solution at steady state will be periodic. We will call cycle
each period and T its time duration. Let:

JT =
1

T

∫ T

0

cx2(t)dt (2)

Once the problem of minimizing (2) has been solved, the
original problem of minimizing (1) is simply solved by
considering any policy which brings the buffer level to an
optimal initial level X0 and then, from that time on, applies
the control minimizing (2) every T time units. So, from now
on, we will consider the problem of the determination of
the production control which minimizes (2). Let Tf be the
uptime of the machine (Tf is a function of the production
control law applied since the last failure, i.e. since 0 for
the new problem). Since the machine is down in [Tf , T ],
the problem of finding the optimal u(·) is restricted to
[0, Tf ]. Clearly T = Tf + Tg is also a function of the
control applied in [0, Tf ]. Let X0 and X1 be respectively
the buffer level at the beginning of the cycle and at the
end. Then, considering the down interval [Tf , T ], it trivially
follows X0 = X1 − dTg Then, the index in (2) can be
written taking into account the contribution in [0, Tf ] and
the contribution in [Tf , T ]. The first quantity depends on
the production control, the second one, once the X1 level
has been specified, can be univocally determined. We have
1
T

∫ T

Tf
cx2(τ)dτ =

cTg(d2T 2
g −3X1dTg+3X2

1)
3(Tf+Tg) . To apply the

maximum principle to the considered problem, we have
performed some transformations on the original formulation.
In particular, we introduce an auxiliary variable y(t) :=∫ t

0
c x2(τ)dτ and we will denote yf = y(Tf ). The problem

can be now formulated as follows.
Problem 1: Determine the policy u(·) solving the follow-

ing constrained optimization problem:

min
u(·)

yf

(Tf + Tg)
+

cTg

(
d2T 2

g − 3X1dTg + 3X2
1

)
3(Tf + Tg)

(3)

subject to

[ẋ(t), ż(t), ẏ(t)]
T

=
[
u(t) − d, auβ(t) + b, cx2(t)

]T
(4)

u(t) ∈ [0, µ], 0 ≤ t ≤ Tf , with the following boundary
initial conditions:

[x(0), z(0), y(0)]
T

= [X1 − dTg, 0, 0]
T (5)

and final conditions:

[x(Tf ), z(Tf ), y(Tf )]
T

= [X1, 1, yf ]
T (6)

We will denote as J∗ the minimum value of (3) (hence of
(2) and also of (1) if the machine has enough capacity).

B. Feasibility analysis

A finite solution for Problem 1 exists if the machine
has enough capacity to meet the demand. In such a case
there exists a function u(·) which gives a finite cost, i.e. the
minimum value of J in (1) is finite. If such a control exists, as
mentioned above, the control law (and the optimal trajectory)
is periodic, hence it satisfies the following equations:⎧⎨

⎩
∫ Tf

0

(
auβ(τ) + b

)
dτ = 1∫ Tf

0
(u(τ) − d)dτ = dTg

u(t) ∈ [0, µ] 0 ≤ t ≤ Tf

(7)

To understand if (7) can be solved we introduce the following
feasibility function:

S(u) :=
u − d

a uβ + b
− dTg (8)

Equation (8) represents the buffer level reached at the end of
a cycle if the buffer level at time 0 starts at 0 and the machine
(during the uptime) is operated at a constant production rate
u. The following theorem allows to analyze the feasibility
problem in a straightforward manner.

Theorem 1: It is possible to find a solution to (7) (hence
the system is feasible) if and only if there exists at least a
ū ∈ [0, µ] such that S(ū) ≥ 0.
Proof. As for the sufficiency, assume a ū such that S(ū) ≥ 0
exists. Then, if it is possible to find a ū such that S(ū) = 0,
u(t) = ū for all t ∈ [0, Tf ] is solution of (7). If S(ū) > 0,
just apply u(t) = ū until the buffer level dTg is reached (if
starting the cycle at 0) and keep then u(t) = d (hence the
buffer level constant) until failure. This control satisfies (7).
As for the necessity, assume that for all u ∈ [0, µ], S(u) < 0
and consider the following optimization problem:

XMAX(Tf ) = max
u(.)

∫ Tf

0

(u(τ) − d)dτ (9)

with ⎧⎪⎪⎨
⎪⎪⎩

ż(t) = auβ(t) + b
z(0) = 0
z(Tf ) = 1
u(t) ∈ [0, µ] 0 ≤ t ≤ Tf

(10)

where XMAX(Tf ) denotes the maximum buffer level that
can be reached in an uptime interval starting from 0. Intro-
ducing the Hamiltonian

Hes(u(t), t, λ(t)) = −(u(t)−d)+λ(t)
(
auβ(t) + b

)
, (11)

the auxiliary system is described by the following dynamic:

dλ(t)

dt
= −

∂Hes(u(t), t, λ(t))

∂z
= 0 (12)
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From this it trivially follows that λ(t) = λ is constant, hence
Hes is stationary and the optimal u(·) is constant. Now,
S(u) + dTg represents the value of the buffer level that can
be reached in an uptime interval starting from 0 and working
at constant rate u. Since S(u) < 0 for all u ∈ [0, µ], and
the maximum buffer level is reached working at a constant
rate, we have XMAX(Tf ) < dTg for all control policy u(·),
hence no solution can be found to (7).

Remark 1: Observe that, while the existence of a u such
that S(u) = 0 is enough to maintain the steady state periodic
trajectory (i.e. to find a solution to (7)), if the buffer level at
the beginning is below the optimal initial level X0, we can
only obtain a bounded J∗ whose value depends on initial
conditions. In other words it is not always possible to bring
the buffer to 0 (or in general to any desired level) if we don’t
have S(u) > 0 for some u ∈ [0, µ].

Based on Theorem 1, the feasibility of the system can
simply be checked by verifying if S(u) is positive for some
u ∈ [0, µ]. Now, if β < 1, there always exists a U1 such that
S(u) > 0 for all u > U1. If β = 1, it is possible to find
a U1 as for the β < 1 case only if 1/a > dTg . Otherwise
S(u) < 0 for all u. A solution to Problem 1 exists in these
cases only if µ ≥ U1. If β > 1, S(u) is bounded from
above and goes to −dTg as u → ∞. If the maximum of
S(u) is non negative, there exists an interval [U1, U2] where
S(u) ≥ 0. If such an interval exists, a solution to Problem 1
can be found if µ ≥ U1. We will denote by β∗ > 1 the value
of β such that the two solutions of S(u) = 0 are coincident,
i.e. U1 ≡ U2 (so, if β = β∗, S(u) < 0 for all u �= U1 ≡ U2).

III. THE β = 0 CASE

This very simple case is reported to introduce the general
problem considered in the sequel of the paper. In this case,
the uptime is independent of the production and is given
by Tf = 1

a+b
. With an approach similar to the one used

in [4], it is possible to show that, in this case, the optimal
policy in each cycle spends the maximum time allowed with
the buffer empty, going from 0 to the safety stock X1 at
the last possible time (hence working at maximum rate µ
from 0 to X1) and reaching as soon as possible from X0,
at the beginning of the cycle, the 0 level (hence working at
maximum rate µ if X0 < 0 and not working at all if X0 > 0).
The cost associated with such a policy can be evaluated in a
straightforward manner: it only depends on the safety stock
X1. Minimizing with respect to this quantity, gives

X1 = −X0 =
dTg

2
(13)

which agrees with intuition since the instantaneous cost
function is symmetric. The optimal policy, which due to its
behavior will be called in the following µ-d-µ policy, during
the active part of each cycle (i.e. [0, Tf ]), works according
to the following equation (defined if the system is feasible):⎧⎪⎨

⎪⎩
u(t) = µ 0 ≤ t <

dTg−X1

µ−d

u(t) = d
dTg−X1

µ−d
≤ t < X1(a+b)+d−µ

(a+b)(d−µ)

u(t) = µ X1(a+b)+d−µ

(a+b)(d−µ) ≤ t < 1
a+b

(14)

IV. THE GENERAL CASE

Problem 1 is approached through the maximum principle
[6]. First of all, we define the following Hamiltonian func-
tion, where x(t) = [x(t), z(t), y(t)]

T and λ(t) ∈ R
3:

H(x(t), u(t), t, λ(t)) = λ1(t)(u(t) − d)+

λ2(t)
(
auβ(t) + b

)
+ λ3(t)cx

2(t) (15)

The auxiliary system dynamics are given by:

dλ1(t)

dt
= −

∂H

∂x
= −2λ3(t)cx(t) (16)

dλ2(t)

dt
= −

∂H

∂z
= 0 (17)

dλ3(t)

dt
= −

∂H

∂y
= 0 (18)

Based on (17) and (18), we have that λ2(t) and λ3(t)
are constant (λ2 and λ3 in the following). According to
the maximum principle, the optimal

(
x
∗(·), u∗(·), T ∗

f , λ∗(·)
)

must satisfy the following equations (necessary conditions):
1) Minimum condition:

H
(
x
∗(t), u∗(t), T ∗

f , λ∗(t)
)
≤ H

(
x
∗(t), u, T ∗

f , λ∗(t)
)

t ∈ [0, T ∗

f ],∀u ∈ [0, µ] (19)

2) Transversality condition:

λ∗

1(T
∗

f )
(
u∗(T ∗

f ) − d
)

+ λ∗

2

(
a(u∗(T ∗

f ))β + b
)

+ λ∗

3cX
∗2
1

−
y∗

f

(T ∗

f + Tg)2
−

cTg

(
d2T 2

g − 3X∗

1dTg + 3X∗2
1

)
3(T ∗

f + Tg)2
= 0 (20)

3) Orthogonality conditions:

λ∗

1(T
∗

f ) −
cTg (6X∗

1 − 3dTg)

3(T ∗

f + Tg)
= θ1 (21)

λ∗

2 = θ2 (22)

λ∗

3 −
1

T ∗

f + Tg

= θ3 (23)

Since θ1, θ2 and θ3 are free constants, the transversality
conditions are always trivially satisfied. Let, as above, X0 the
buffer level at the beginning of the cycle. The maximum prin-
ciple only provides necessary conditions, so the optimality of
the considered policies can not be established. However, the
continuity of the deformation of the optimal trajectory as β
increases and the knowledge of the optimal policy if β = 0
seem to indicate that the considered policies are actually the
optimal policies. The main assumption we will use in the
following to derive these candidate policies is that, since
the instantaneous cost function is symmetric with respect to
the 0 level of the buffer, a symmetry property characterizes
the optimal trajectory around the point x(Tf/2) = 0. In
particular, (13) is satisfied. This will imply a symmetry
property around time Tf/2 also of other variables.

A. β = 0. In Section III, it was observed that if β = 0 the
optimal policy is the µ-d-µ policy. This policy operates the
machine at maximum capacity µ from X0 to 0, then works
at rate d keeping the buffer at 0 for a certain amount of
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time, finally operates the machine at maximum rate µ until
the buffer level X1 which is reached at time Tf , where the
machine goes down (see Fig. 2). It is straightforward to check
that the µ-d-µ policy satisfies the maximum principle. The
Hamiltonian becomes in this case a line with slope λ1(t). If
λ1(t) > 0, the minimum is achieved by u(t) = 0, if λ1(t) <
0, the minimum is achieved by u(t) = µ. Finally, if λ1(t) =
0, any value of u(t) in [0, µ] minimizes the Hamiltonian.
Since no constraint applies on λ2 and λ3, the transversality
condition is always satisfied. Selecting:

λ10 := λ1(0) = −
λ2

3cd
2T 2

g

4(µ − d)
(24)

and λ3 > 0, the integration of (16) is such that, with a µ-d-µ
policy, λ1(t) is negative (⇒ u(t) = µ) until x(t) is negative.
When both x(t) and λ1(t) become 0, we set u(t) = d, which
maintains both x(t) and λ1(t) at 0. Finally, when the control
becomes µ, x(t) increases while λ1(t) decreases, according
to the minimum condition.

B. β = 1. This case is similar to the previous one,
the µ-d-µ is still optimal. The Hamiltonian is again a line
but the slope is now λ1(t) + aλ2. Following a procedure
similar to the one of the β = 0 case, the slope of this
line must be negative in such a way that starting at the
beginning with a production rate u(t) = µ satisfies the
maximum principle. It is necessary to select λ10 in such
a way that at the time instant where x(t) reaches 0, one
has λ1(t) = −aλ2, which makes admissible, according to
the maximum principle, the choice u(t) = d (with λ1(t)
remaining constant) and subsequently u(t) = µ (with λ1(t)
which returns below −aλ2).

C. β �= 1 , β �= 0. In this case the optimal policy
depends on the convexity properties of the Hamiltonian. If
the Hamiltonian is convex with respect to u(t) and its local
minimum is in the interval [0, µ], the production control
satisfying the maximum principle will be given by the value
of u for which the derivative of the Hamiltonian is 0. If
such a minimum does not belong to the interval [0, µ],
the solution will be either 0 or µ. If the Hamiltonian is
concave, the minimum will be either 0 or µ. To discriminate
if the Hamiltonian is convex or concave, we will compute
its second derivative with respect to u:

∂2H(x(t), u(t), Tf , λ(t))

∂u2

∣∣∣∣
u(t)=ũ(t)

= aβ(β − 1)λ2ũ
β−2(t)

(25)
Since a, β and u(t) are all positive, (25) is positive (and
the Hamiltonian is convex) if and only if (β − 1)λ2 > 0.
Otherwise the Hamiltonian is concave. In the following we
will study the optimal production control in the two cases
(convex and concave). Clearly the sign of λ2 is not known
and the analysis below would appear not applicable. How-
ever, we will present at the end of this section a procedure
to estimate the sign of λ2.

C1. (β−1)λ2 < 0: concave Hamiltonian. In this case, the
minimum is either at u = 0 or µ. We define:

∆H := H(µ) − H(0) = µ
(
λ1(t) + aλ2u

β−1
)

(26)

−aλ2µ(β−1)−aλ2µ(β−1) + ε

−aλ2µ(β−1)
− ε

λ1(t)

x(t)

∆x

−∆x

0

λ10

Tf

X0

X1

u = µu = µu = µu = µ

u = 0u = 0u = 0

λ
+
10

λ+
1 (t)

Fig. 1. λ1, λ+

1
and x as a function of time for the concave case

When λ1(t) < −aλ2u
β−1, we will produce at rate u(t) = µ,

otherwise at rate 0. However, it is not straightforward in
this case to find a policy satisfying the maximum principle
as in the previous cases. Suppose for instance, as in the
previous cases, to apply a µ-d-µ policy and to select the
initial λ10 in such a way that, through the integration of
(16), λ1(t) = −aλ2u

β−1 when x(t) = 0. Once x(t) has
reached 0, however, it is not possible to work at rate d as
in the µ-d-µ policy, since now the rate d does not minimize
the Hamiltonian. On the other hand, working at rate µ, λ1(t)
decreases and x(t) increases arriving at X1 too early, i.e. with
the machine not completely deteriorated. Similarly, if we set
u = 0 once the buffer has reached 0, λ1(t) would increase
and the buffer level decrease, never reaching the X1 level.
If we consider a policy that at the beginning and at the end
of the uptime works at maximum capacity (u(t) = µ), the
only way to satisfy the maximum principle once the buffer
has reached the 0 level, is to work with a fast switching
among u(t) = 0 and u(t) = µ with an equivalent average
production rate equal to d. It is possible to see (see below)
that this kind of policy, if the number of switches goes to
infinity, meets all the constraints of the maximum principle.
The buffer trajectory x(t) on a cycle and the corresponding
λ1(t) for the switching policy just described (with a finite
number of switches) are reported in Fig. 1. This policy does
not satisfy the maximum principle if the number of switches
is finite, as it will be discussed below, but, as the number of
switches goes to infinity, the obtained trajectories all satisfy
the constraints of the maximum principle. To see how this
can happen, we introduce a small quantity ∆x > 0 and
consider the aforementioned switching policy, which works
at maximum rate µ from X0 to 0 at the beginning of the
cycle and also from 0 to X1 at the end of the uptime. It
remains around 0 (between −∆x and ∆x) for a certain
amount of time with a switching production which alternates
maximum and 0 production, each switching occurring when
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the trajectory reaches −∆x (switch from 0 to µ) or ∆x
(switch from µ to 0). So, in this intermediate phase, the
average resulting production rate is ū = d. For this policy,
it is not possible to find a λ1(t) to satisfy the maximum
principle. So we will proceed as indicated in Fig. 1. At first,
we consider as above a function λ1(t) with initial condition
λ10 selected in such a way that, through the integration of
(16), λ1(t) reaches −aλ2u

β−1 when x(t) reaches 0. Then
an additional auxiliary function λ+

1 (t) with different initial
condition λ10 + ε is considered. The value of λ10 + ε is
selected as the minimum initial condition for which λ+

1 (t),
obtained by integrating (16), is always not smaller than
−aλ2u

β−1 during the switching phase (see figure). Clearly
ε depends on ∆x and goes to 0 as ∆x → 0. During the
switching phase, we will switch among λ1(t) and λ+

1 (t),
considering active the auxiliary function which at the current
moment, according to the minimum condition (19), allows to
apply the production control giving the desired switching of
x(t) between −∆x and ∆x (the selected λ1(t) is the solid
curve in Fig. 1, while the two auxiliary functions λ1 and
λ+

1 are the dotted curves). Now, if ∆x → 0, also ε → 0, the
switching rate increases to infinity and λ+

1 and λ1 collapse in
a unique, differentiable function with which the considered
policy meets the maximum principle constraints.

From a practical point of view, a fast switching policy
does not seem realistic. In real applications, we expect that,
for a given plant, there exists a maximum finite switching
rate which can be applied. Comparing the cost of this finite
switching rate policy with the cost of a µ-d-µ policy, will
allow to select the optimal production control. We want to
remark that it is always possible to compute the number of
switches such that the corresponding finite switching rate
policy has the same cost of the µ-d-µ policy.

C2. (β − 1)λ2 > 0, convex Hamiltonian. In this case, the
Hamiltonian is minimized by

u(t) =

(
−

λ1(t)

aβλ2

) 1
β−1

(27)

A unique positive u(t) satisfying (27) may exist, and it
does exist if λ1(t) and λ2 have different sign and λ2 �= 0.
Otherwise, if λ1(t) and λ2 have the same sign, the solution
exists only for some particular values of β. Integrating (16)
and substituting in (27) gives:

u(t) =

(
2λ3c

∫ t

0
x(τ)dτ − λ10

aβλ2

) 1
β−1

, (28)

which is a feedback control. At this point, λ10, λ2 and λ3

should be derived such that (7) are met. This problem will
be solved numerically by introducing two constants C1 and
C2 and writing (28) as

u(t) =

(
C1 + C2

∫ t

0

x(τ)dτ

) 1
β−1

(29)

Given C1, a unique C2 may exist satisfying (7) with a x(t)
symmetric around x(Tf/2) = 0. So, the set of admissible
values for C1 and C2 is actually a curve in the (C1, C2)

0

0 0Tf Tf T

X1 = 17.5

X0 = −17.5

x(t)

d = 7

µ = 20

Fig. 2. The µ-d-µ policy optimal for the β = 0 case of Section V: the
production control u (left) and the corresponding trajectory x (right) as a
function of time

plane and we can consider, in this case, the cost J in (1) as
a function of C1, i.e. J = J(C1). Then, the optimal policy
may be derived by numerically finding the value of C1 which
minimizes J(C1). Observe that the set of C1 for which a C2

can be found to satisfy (7) with a x(t) symmetric around
x(Tf/2) = 0 is a bounded interval. Let [Cmin

1 , Cmax
1 ] such

an interval. A numeric search of the optimal C1 will be then
performed in [Cmin

1 , Cmax
1 ]. In the remaining of the paper,

this numeric search will be referred to as C1-search.
C3. The procedure for the case β �= 1 , β �= 0. As

mentioned above, the method described so far can be applied
only if the sign of λ2 is known. How can we determine it
without knowing the solution? The answer to this question
is based on the following procedure. We first consider as
candidate optimal policy the switching policy described for
the concave case. This would allow to derive λ2, using the
orthogonality conditions, since u(Tf ) = µ (for the kind of
policy considered) and λ1(TF ) = λ10 (for the symmetry
properties). Then, λ10 can be computed considering that
λ1(t) = −aλ2u

β−1 when x(t) = 0. This is because the
integration of (16) is the integration of a line and it is easy
to compute λ1(t) as a function of λ10 and of λ2. Once the
sign of λ2 is known, based on the value of β, it is possible
to understand if we are in the convex or in the concave case
above, and, consequently, if the considered switching policy
can be optimal. If the answer is positive the problem has
been solved. On the contrary, it is necessary to apply the C1-
search method described in the convex case, which allows to
determine the optimal C1 and C2, from which the correct λ10

and λ2 can be derived. Now, in all the examples considered,
λ2 was actually a positive quantity. If one is able to show
that this holds in general, it would be possible to say that the
switching policy is optimal for 0 < β < 1, while, for β > 1,
the optimal policy would be the one given by the C1-search
algorithm described above.

V. A NUMERICAL CASE STUDY

In this section we report a case study for a system with
the following parameters: a = 0.0008, b = 0.0002, c = 1,
d = 7, Tg = 5, µ = 20. The value of β will be specified in
the following. Time durations are expressed in hours. Based
on the results of Section II-B, it is possible to see that the
considered system is feasible if 0 ≤ β ≤ β∗ 
 2.093. In
addition, (13) gives X1 = −X0 = 17.5. In the following,
we will consider different values for β, which will allow to
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Fig. 3. The policy optimal for the β = 2 case of Section V: the production
control u (left) and the corresponding trajectory x (right) as a function of
time

0
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X1 = 17.5

X0 = −17.5

x(t)
u(t) � 13.5

d = 7

µ = 20

Fig. 4. The policy optimal for the β = 2.093 case of Section V: the
production control u (left) and the corresponding trajectory x (right) as a
function of time

explore all the cases analyzed in this paper.
A. β = 0. The µ-d-µ policy, which is optimal in this

case, gives J = .7813 and Tf = 1000. The control and the
state trajectory of the optimal policy are reported in Fig. 2.
Observe that the state trajectory on the right is reported for all
the cycle (i.e. also during the repair interval [Tf , T ]), while
the control law is reported on the left only in the uptime
portion of the cycle (in the remaining part of the cycle the
production control is trivially 0).

B. β = 0.5. If we try to apply a switching policy, we get
λ2 = 2.86, hence (β − 1)λ2 < 0, which allows to establish
that the computed switching policy is indeed optimal. Ap-
plying this policy, we get J = 1.14 and Tf = 684. The
control law and the state trajectory look macroscopically
undistinguishable from the previous case. So they are still
represented in Fig. 2. However, we want to remark that
now, during the phase where the average production is d,
actually an infinite number of switches is performed between
µ and 0. It is interesting to observe that if the µ-d-µ (non
switching) policy was applied to this case, a much larger
cost J = 1.81 and a much shorter final uptime Tf = 430
would be obtained. Another interesting observation is that
it is possible to compute the minimum number of switches
such that a switching policy performs better than the µ-d-µ
policy: we get 1091 switches, with a switching time of 0.62
hours.

C. β = 1. As for the β = 0 case, the µ-d-µ policy is
optimal and gives a cost J = 4.55 and an uptime of duration
Tf = 168. The control law and the state trajectory are always
given in Fig. 2.

D. β = 2. If we try to apply a switching policy in this case,
we get λ2 = 55.86, with (β−1)λ2 > 0. So, actually, we are
in the convex case, and the considered switching policy is
not optimal. The C1-search is then applied and the optimal

production control computed is reported in Fig. 3 (left), with
J = 57.56 and Tf = 9.53. The corresponding state trajectory
is reported in Fig. 3 (right). If the µ-d-µ policy was applied
in this case, a significantly larger cost J = 70.16 and a
shorter uptime Tf = 6.19 would have been obtained.

E. β = β∗ = 2.093. In this case S(u) ≥ 0 for a unique
value of u (which is u 
 13.5). Actually, applying the
procedure for the convex case above, we get C2 = 0. Hence
the optimal policy is constant and it is given by u 
 13.5.
The solution for this case is reported in Fig. 4. In this case
J = 102.73 and Tf = 5.15.

VI. CONCLUSIONS

The solution of the problem considered in this paper,
established through the maximum principle, shows that when
the deterioration is an affine function of the production
rate, the optimal policy, called µ-d-µ, operates the machine
at maximum rate toward the origin of the buffer space,
and remains there (with u = d) until the last possible
time. Subsequently, the production control is set again to
its maximum value until the machine is halted for mainte-
nance. In the concave case, the optimal production control
is macroscopically equivalent to the affine case, but the
production control actually obtains the d rate with an infinite
number of switches among the maximum and the minimum
production rate. In the convex case the optimal production
control continuously changes as the buffer level increases.
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