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Abstract— We consider local minimality with respect to
short duration variations, called ‘blips’. It is shown that for
quadratic differential integrals either there are no such optimal
trajectories, or that all stationary trajectories are local minima
with respect to blips. Conditions on the polynomial matrix that
defines the quadratic integral for the stationary trajectories to
be local minima with respect to blips are derived. We motivate
this problem by the variational principles of mechanics, and
show that if the Hessian of the Lagrangian with respect to the
generalized velocities is positive definite, then the solutions of
the Euler-Lagrange equations are the local minimum of the
action integral w.r.t. blips as variations.

Keywords: Mechanics, linear-quadratic control, blips, stationar-
ity, variational principles, principle of least action.

I. INTRODUCTION

One of the main ‘principles’ from classical mechanics
and the calculus of variations relates the trajectories of
a mechanical system to minimality or stationarity of the
integral of the Lagrangian. We consider in this introduction,
by way of an extensive motivation for the problem to be
discussed in this paper, a simple version of this principle
(for a general and modern treatment, see for example [1],
[3]). Let q be the generalized configuration coordinates and ¢
the generalized velocity coordinates of a mechanical system.
Assume that the configuration space is R®. Hence q, ¢ € R".
Let

K:(q,q) eR*xR* — K(q,q) €R

denote the kinetic energy, and
P:qeR*— P(q) €R

denote the potential energy of this mechanical system. The
difference of the kinetic and the potential energy

L:(q,q) — L(q,q) == K(q,9) — P(q)

is called the Lagrangian.

The variational principles of mechanics relate the possible
trajectories ¢ : R — R® of the configuration variables to
properties of the action integral

+oo
/ L(q(t), %(t)) dt.

— 00
More specifically, the ‘principle of least action’ states that
q : R — R" is a possible trajectory of a mechanical system if
and only if it is a minimum of the associated action integral.
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This principle, first articulated by Maupertuis in 1746, and
later further developed by Euler, Lagrange, Hamilton, and
many others, has become a cornerstone of physics, including
quantum mechanics. It opens up the rather amazing possi-
bility of describing the motions of a physical system from
knowledge of one single scalar function, the Lagrangian. We
will not deal with these ramifications here. Neither will we
comment on the teleological, almost animistic, content which
this principle, according to some, seems to attribute to inert
bodies, which appear to determine their path by minimizing a
cost. Nor will be speculate that, as is sometimes suggested,
it is this principle of least action that led Leibniz to the
absurd claim that ‘ours is the best of all possible worlds’,
later ridiculed by Voltaire in Candide, and by many others.
What does the principle of least action state, mathe-
matically? In the previous paragraph, we were discussing
the minimization of an infinite integral, which in most
relevant circumstances will not be not defined. One possible
interpretation is to consider a restricted class of variations,
as follows. Assume, in order to avoid complications which
are not germane to our purposes, that K, P, and hence L,
and the feasible trajectories ¢ : R — R™ and their variations
A : R — R® are smooth. Let A : R — R" be of compact
support. Then the integral (o denotes map composition)

aA(Q7 A)

oo dg dA dg

._/ (Lota+ a2+ 2~ Lo(a, ) dt
is obviously finite. We interpret the principle of least action
to mean that ¢ : R — R® is a feasible trajectory of the
mechanical system if and only if, for all A of compact
support, 04(q,eA) > 0 for € > 0 sufficiently small. In
words, the possible trajectories g are precisely those for
which any small compact support variation away from g
leads to an increase of the action integral.

It is easy to see that for ¢ : R — R*® to have this property,
it is necessary that it satisfies the Euler-Lagrange equation

4OL dgy DL dg
dt 94 i dq i
This may be obtained by expanding J4(g,eA) in a Taylor
series in €:

— 00

) =0.

alg,eA) =0 (q, A) + terms in e 3, - .
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It can be shown that the obvious necessary condition for
minimality &’4(¢,A) = 0 for all A of compact support,
holds if and only if ¢ : R — R® satisfies the Euler-Lagrange
equation. But, compact support variations from solutions
of the Euler-Lagrange equations may actually decrease the
action integral. So, the Euler-Lagrange equation does not
imply that the action integral cannot be lowered by compact
support variations.

Consider, as an example, the motion of a pointmass with
configuration space R, kinetic energy %M 42, and potential
energy %qu, with M > 0, the mass, and K € R. The
Lagrangian equals 3(M¢? — Kq?). The Euler-Lagrange
equation becomes

2

d*q
M—2 + Kqg=0.
az T

For the case at hand, the Taylor series is finite

+oo 2

da(q,eA) :5/ —A(Mq+K%)dt

1, [T dA |, )
= M(Z2) = KA?) dt.
t3° / ( ()
A solution of the Euler-Lagrange equation satisfies

04(q,eA) > 0 for £ > 0 sufficiently small if and only if

1 [t dA )
5/ (M(E) — KA )dtzo. (1)

Therefore a trajectory that satisfies the Euler-Lagrange equa-
tion is such that, for all A of compact support, J4(q,cA)
> 0 for € > 0 sufficiently small if and only if (1) holds for
all A of compact support. It turns out that this is the case if
and only if K < 0. Hence in the case K < 0, for hyperbolic
flows, the principle of least action holds (in the sense that
we obtain a local minimum for compact support variations),
but it in the case K > 0, for the harmonic oscillator, it
simply does not hold. In order to see this, simply consider
a variation A : R — R that consist of a truncated high
frequency sinusoid.

We conclude that the laws of mechanics, i.e. the Euler-
Lagrange equation, merely state that the action integral is
stationary with respect to compact support variations along
the possible trajectories of the configuration variables. All
this is, to be sure, very well-known, and has been pointed
out numerous times before. See for example [4], [5].

It is very appealing to try to recover the Euler-Lagrange
equation as a principle of least action in the sense of some
simple, true minimization. It is also well-known [5] that
if the Lagrangian is convex, then indeed solutions of the
Euler-Lagrange equations minimize the action integral for
variations that are of sufficiently short duration.

In this paper, we establish this idea of minimization by
considering as variations ‘blips’, that is, smooth compact
support variations of short duration, in the context of high or-
der differential forms. The aim is to obtain general conditions
for minimality with respect to blips of quadratic differential
integrals. Towards the end of the paper, we return to the least
action principle in mechanics.

— 00

— 00

II. NON-NEGATIVITY W.R.T. BLIPS

The notation used is standard, with R[¢] the one-variable
and R[(,n] the two-variable polynomials with real coeffi-
cients, with the obvious generalization to vectors and ma-
trices. €>°(IR, R¥) denotes set of the infinitely differentiable
maps from R to R¥, and D (R, R") the subset of those with
compact support.

Consider the map * : R"1*¥2[¢] — R¥2*¥1[£], defined by
P*(§) := PT(=£). P* is called the dual, or para-hermitian
conjugate of P. If P = P*, we call P self-dual, or para-
hermitian. Denote the set of self-dual elements of R¥*¥[¢]
by Rg™¥[¢].

Denote by (-, -) the map

—+oo
v,w € C°(R,RY) — (v,w) := / v wdt.
Note that this infinite integral may not be well-defined, but
it is as soon as v and/or w have compact support.
Let P € R"'*¥2[¢], and consider the operator

(9P : DR,R") x D(R,R*"?) - R

defined by (v,w)p := (v, P(<)w). This bilinear form is
symmetric iff P is para-hermitian, and induces the quadratic
form

w € D(R,RY) — (w,w)p € R.
Note that since

<w7w>P = <w’w>P* = <w7w>%(P+P*)7

we may as well assume that in this quadratic form P is
para-hermitian. We call the map

w € D(R,RY) — (w,w)p € R

the quadratic differential integral induced by P € RE*"[¢].

Quadratic differential integrals occur frequently as inte-

grals of quadratic differential forms. A quadratic differential

form (QDF) is a finite sum of quadratic expressions of the

components of a vector w of variables and their derivatives:
dr T ds

Z (dtrw) @LS(%U}),

r,s

with the &, € R"*". Two-variable polynomial matrices
lead to a compact notation and a very convenient calculus
for QDF’s. Introduce the two-variable polynomial matrix ®
given by

() =Y Prsln®,

and denote the above expression by Qg (w). Note that
Qq : €°(R, RIMW)) , ¢°(R, R).

Call ®* defined by ®*((,n) := ®'(n,() the dual of ¥;
O € RY¥¥[(, 7] is called symmetric :< ® = ®*. Obviously,
Qo(w) = Qo+ (w) = Q1 (g4e+)(w), which shows that in
QDF’s we can assume without loss of generality that @ is
symmetric.
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Note that for w € D(R,R"), the integral

—+oo
Qq> (w) dt

equals the quadratic differential integral induced by P(¢) =
®(—¢&,£). This correspondence is very important in the
theory of QDF’s (see [6]), and will be used later in this
paper.

We now pose two questions regarding the non-negativity
of quadratic differential integrals:

1) When is (w,w)p >0 for all w € D(R,R¥)?

2) When does there exist € > 0 such that (w,w)p > 0
for all w € D(R,RY) with |support(w)| <e?
With |support(w)| < €, we mean that the support of
w is contained in an interval of length < e.

The first question is central in LQ control, and has been
studied in many different forms (see, for example, [6], [7],
[8]). It is well known and easy to prove, that {(w,w)p > 0
for all w € D(R,R¥) iff the hermitian matrix P(iw) > 0 for
weR.

The second question pertains to non-negativity w.r.t. short
duration compact support w’s. We think of such w’s as
‘Dlips’. If 3 ¢ > 0 such that (w,w)p > 0 for all w €
D(R,R") with |support(w)| < e, we will say that (-,-)p
is non-negative w.r.t. blips. Note that non-negativity w.r.t.
blips is implied by, but not equivalent to, instantaneous non-
negativity of Qg, meaning that for all w € D(R,RY) with
support on [0, c0), fos Qa(w)dt > 0 for e > 0 sufficiently
small.

The main question studied in this paper is to derive
conditions on P for non-negativity w.r.t. blips.

We will use the following notion of equivalence of para-
hermitian polynomial matrices. P € RE*¥[{] and P> €
REV[E] are said to be uni-modularly equivalent if there
exists a unimodular U € R**¥[¢] such that P, = U*P,U.
This is obviously an equivalence relation on RE*¥[¢]. Note
that if P, and P» are unimodularly equivalent, then, for any
w€R, Pi(iw) >0 & Py(iw) > 0.

The following theorem is the main result of this paper.

Theorem 1: (Non-negativity w.r.t. blips). Letr P €

REV[€]. The following are equivalent:
(i) {(-,-yp is > 0 w.rt. blips,
(ii) P(iw) > 0 for w € R sufficiently large,
(iii) there exists P' € RE"[¢], uni-modularly equivalent to
P, of the form
r_|Q@ 0
=i
and Q) of the form
Q(€) = A(—€)QrcadingA(€) + Q'(),
with
A(E) = diag(en, €2,

T
Qleading = Qleading > O’

. ’gndim(Q),dim(Q))7

and Q' € REV[E] with the degree of the (k,1)-th
element of less than ny x + 1y 1.
Proof:
(i))=-(iii): This is done by means of the following reduction
to pass from P to P’. This reduction procedure also serves
as an effective algorithm for verifying (ii) (and hence (i)).

Reduction procedure:

Data: The para-hermitian polynomial matrix P € RE*"[¢],
with P(iw) > 0 for w € R sufficiently large.

1. Let Py denote the (k,1)-th element of P, and ny,
its degree. Clearly P(iw) > 0 for w € R sufficiently large
implies

1
g < §(nk,k +mn34).

2. Define the leading term of P, denoted by Plcading, as
the matrix formed by (—1)%““«k times the coefficient of the
ng 1-th power of B ;. Observe that P para-hermitian implies
Pieading = Plqing- Note that

P(&) = A(=&) PeadingA(§) + R(8),
with 1 1 1
A(E) = ding(e3 ghmaa, . ghme)

with the degree of the (k, 1)-th element of R strictly less than
2 (nkx +n1,1). Verify that P(iw) > 0 for w € R sufficiently
large implies Peading = 0.

3. Now consider three possibilities:

3.1  Peading > 0, in which case the implication (ii) =
(iii) is proven.

3.2 For some k, nyx = —oo (as is commonly done, the
degree of the zero polynomial is defined to be —oo). Then
the k-th row and column of P are zero. After a permutation
of rows and the corresponding columns, P becomes P =
[ 0]. Now replace P by P’ and go back to step 3.1, until
ngx > —oo for all k.

3.3 ngx > —oo for all k. Permute the rows and columns
of Puntilny ;3 > ng2 > -+ > nyy. Denote by Peading, the
k-th column of Picading. Now assume that the k-th column
of Pleading 1s linearly dependent on the columns that follow
1t, say

Plcadingk = ak+11:)lcadingk+1+
ak+2Pleadingk+2 +- 1+ awPleadingw'

Now post-multiply P by the unimodular matrix

T 1xx—1 0 0 O 0
0 1 0 O 0
0 Y L TS E R 0
U = 0 e eI o |,
0 a0 0 e 1

pre-multiply by its para-hermitian conjugate, and verify that
this leaves the diagonal elements intact, except for the k-th
diagonal element, that is lowered in degree. Now go to 3.1
with P replaced by U*PU.
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It is clear that, each time we go through 3., either the
dimension of P is decreased, or one of the diagonal elements
is decreased in degree. Hence this process must stop. Now
verify that when the process stops, a matrix of the form
P’ claimed (iii) of theorem 1 is obtained. This proves the
implication (ii) = (iii).

(iii)=-(ii): Follows from the fact that if P, and P, are uni-
modularly equivalent, then P; (iw) > 0 for w € R sufficiently
large < P5(iw) > 0 for w € R sufficiently large.

For the remainder of the proof, we need the following very
well-known result.

Lemma 2: Consider the usual linear time-invariant system

d
Ew = Ax + Bu,

and the functional

u(t) € R® z(t) € R 2)

—+oo
J(u, ) = / (u" Ru+2u' Sz + x' Qx) dt,
with A, B,R = R'",S,Q = Q" appropriately sized
matrices. Then, if R = RT > 0, there exists ¢ > 0
such that if (u,z) € €*(R,R™ x R*) satisfies (2) and
lsupport((u,z))| < e, then J(u,z) > 0, and J(u,z) =
0< (u,z) =0.

Proof: (see [2], section 21). There exists € > 0, such that for
any t € R, the Riccati differential equation

d
—K=-Q+S'R'S-K(A-BR™'S)

dt
— (A" -STR'B")K + KBR'BTK
has a symmetric solution on [t,t + ¢]. For (u, ) that satisfy

(2), there holds, on [t,t + €],

d
ExTK:v = —(u" Ru+2u'Sz+ 2" Qx)

+(u+RYS+B"K)x) R(u+ RS+ B"K)x).

Now assume that support((u,z)) C [¢,¢+¢], and integrate,
to obtain

J(u,x) = /+Oo(u+ RYS+B'K)x)"

— 00

R(u+ RS+ B"K)z) dt.

The result follows. [
The remainder of the proof of theorem 1 is actually a
repeated application of this lemma.

(iii)=(@): Assume without loss of generality that P = @
and Pleading > 0. Then

P({) = A(_g)PlcadingA(g) + R(f)a
with ) ) )
A(&) = diag(€§n1’1 ) 651’12,2, e 7€§nw’w)7

with the degree of the (k,1)-th element of R strictly less
than %(nkyk +n; 7). Define the QDF Qg (see [6], [7])

(I)(Ca 77) = A(C)HeadingA(n) + (I)/(<7 77)7

with ®(¢,n) = ®'T (5, ) such that ®'(—¢, &) = R(€). Note
that is possible to choose ®’ such that the monomials Cn; 17“i
in the terms of the (k, 1)-th element satisfy nj < nyy, nj <
ny 1, and ng + n} < ngx + n; 7. Observe that for all w €
¢ (R,R¥), we have

+o0 d +o0
/ wTP(E)w dt = Qo (w) dt

Now define

dnl,l dn2,2
e O ggpaa U2

v

u = col( o Fww)

and x the vector consisting of the lower order derivatives of
the components of w. Note that

+oo
Qq> (w) dt

— 00

is of the form

—+o0
/ (u' Ru+2u' Sz + 2" Qx)dt
with u, z related by a linear system (2), and R = Peading,
and certain matrices S, Q). Now apply lemma 2.

(i)=(ii):  According to the reduction procedure and uni-
modular equivalence, the contrary of (ii) is that either the
degree ny ; of its (k,1)-th element exceeds %(nk_,k +mn11),
or P has either Peading z 0. In the interest of brevity, we
analyze only the latter situation. The proof in the former case
is similar.

Assume that a € RY is such that a ' Peadinga < 0. In
order to find a trajectory w that violates non-negativity for
blips, we couple the components of w by the scalar input
according to

dnl,l dn2,2
— W, ———W
dtrir D dgnae

B

). ()

au = col( 2y

Let x again be the vector consisting of the lower order
derivatives of the components of w. Then the quadratic
differential integral (w, w) p for this w reduces to the integral

—+o0
/ (uRu + 22" Su + x " Qx) dt

for a scalar input linear system, with R = aTPlcadinga <0,
and certain matrices .S, (). Now apply lemma 2, to show
that there exists & > 0 such that for (u,x) satisfying these
equations (2) and with [support(u, )| < e we have

+oo
0> / (uRu+ 22" Su + x ' Qx)dt =

o +oo —+oo d
Q@(w)dtz/ wTP(E)wdt

whenever w is related to u by (3). We have established a
whole family of blips such that

+oo T d
P(—)wdt <0
/ w (dt)w <0,

— 00
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showing that Picading > 0 is a necessary condition for (i) to
hold. The proof of theorem 1 is complete. n

Theorem 1 basically proves that blips correspond to high
frequency behavior. The proof also gives a concrete algo-
rithm for verifying non-negativity.

III. LOCAL MINIMALITY W.R.T. BLIPS

Let P € REV[E]. We will say that w € €*°(R,RY) is a
local minimum of the quadratic integral induced by P w.rt.
blips if there exists € > 0 such that

| (w8 (G + )

— 00

d
T
— >
w P(dt)w) dt >0

for all A € D(R,RY) with |support(A)| <e.
Note that

+oo
[ ((w+A)T(P(%)(w+A))—wTP(%)w)dt
_2/+Oo ATP(%)wdH/M ATP(%)Adt.

— 00 — 00

From here we see that w € €>°(R,R¥) is a local minimum
w.r.t. blips iff

1) Stationarity: fj;j ATP(Lywdt = 0 for all A €
D(R,R") with |support(A)| < ¢, and
2) {-,-)p > 0 w.r.t. blips.

It is easy to see that the stationarity is equivalent to

d

P(dt

Hence, either all these stationary trajectories are local min-

ima w.r.t. blips, or there are no local minima w.r.t. blips at all.

It follows from theorem 1 that the stationary trajectories are

local minima w.r.t. blips iff any of the equivalent conditions
(i) P(iw) > 0 for w € R sufficiently large, or

(i) there exists P’ € RE*"[¢], uni-modularly equivalent to

P of the form given in (iii) of theorem 1

Jw=0

are satisfied.

IV. LOCAL MINIMALITY W.R.T. BLIPS AND THE
EULER-LAGRANGE EQUATIONS

In this section, we return to the problem discussed in the
introduction, using the notation introduced there. We say that
q : R — R® locally minimizes the action integral w.r.t. blips
if for all ¢ € R, there exists ’,¢” > 0 such that

oo dg dA
A) = L A L4 =
oaa.d) = [ (Lo@ra g+ D)
dq
—L —) ) dt >
° (g, dt)) >
for all A : R — R® with
1) support(A) C [¢,t + €]
2 AL <" Vieltt+el

Theorem 3: Assume that the Lagrangian L € €3(R,R3),
and that the Hessian
2
() >0
for all q,4 € R® (the Lagrangian, therefore, is assumed
to be convex). Then q : R — R® locally minimizes the
action integral w.r.t. blips if and only if it satisfies the Euler-
Lagrange equation
d 0L dq oL dg
%(8_0((1’_)) - _O(qv_
q dt 0q dt
Proof: This result is actually well-known [5]. We provide
a proof using the Riccati equation, more familiar to control
theorists. Let ¢,A : R — R®, and assume that A has
compact support. Expand 04(g,eA) in a Taylor series in
€. The constant term is zero. The term in € becomes
+too dATOL dq +OL dgq
/ (E 8_qo(q’EH—A a—qo(qva))dt-

After integration by parts, this term becomes

Feo d 0L dq oL dq
— T —_ _ EE— _— RE—
/ A (dt(aq ° (4, dt)) dq ° (4 dt)) dt.

— 0o

)= 0.

— 0o

The term in €2 becomes

L[
2 ) o \dt 02 ) at

dAT 92L d

2 o(g, A

dt  040q dt

0%L dg
AT—Z —)A ) dt.
+ 0q? ° (4 dt) )

The remaining term is of order 3.

For 04(q,eA) to be non-negative for a given ¢, and for
all A as required in the theorem, it is obviously necessary
that the term which multiplies A in the ¢ term is zero. This
yields the Euler-Lagrange equation.

Consider next the term in £2. Define

2

RO = G (o). o)
2

SO = g (a0, 50,
2

Q) = 5 (. 50).

For any ¢ € R, there exists ¢ > 0 such that the Riccati
differential equation in K

Dk~ Q)+ S TRMS®)

dt
+KR(t)7'SH) +St) " R(t) 'K+ KR(t) 'K

has a symmetric solution on [t, ¢ + ¢’|. There holds

d v
EA KA =
dA  dAT

dA T .
— (T R 42 SALATQA)
+ (% + RS+ K)A)TR(Z—? +R7Y(S + K)A).
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Assume that support(A) C [¢,t + £'], and integrate. This
shows that the £2 term then equals

t+e’
/ ||% + RS + K)Al% dt.
¢ dt

This term is obviously non-negative and zero iff A = 0.

Whence, under the conditions of the theorem, the £ term
in da(q,eA) equals zero, and the €2 term is positive for non-
zero blips. To finish the proof, replace A by €A, let € — 0,
and use Taylor series estimates. n

Now reconsider the example discussed in the introduction
in the light of the results obtained in theorem 1. The
Lagrangian 5 (M¢? — Kq?), with M > 0 and K € R leads
to the Euler-Lagrange equation

d2
M fg + Kq=0.

Because of the quadratic nature of the Lagrangian, 94 (q, A)
is independent of the particular solution ¢ and equals

1t dA )
8A(Q7A)—§Lm (M(E) - KA )dt.

If K <0, da(g,A) > 0 for any A of compact support.
The pointmass follows a trajectory that is a local minimum
w.r.t. all compact support variations. If K > 0, da(q, A) > 0
for all A’s that have support in a sufficiently small interval.
This is an immediate consequence of theorem 1, since the
relevant condition is that Mw? — K should be > 0 for
w € R sufficiently large, which it is. In fact, for the case

at hand, it is possible to prove that 94(q, A) > 0 as long as

|support(A)| < /L.

V. CONCLUSIONS

In this article, we have studied the problem of local
optimality w.r.t. blips. We examined the non-negativity of
quadratic differential integrals. We showed that, whereas
non-negativity for compact support trajectories requires non-
negativity of the para-hermitian polynomial matrix that in-
duces the quadratic differential integral for all frequencies
w, non-negativity for blips merely requires non-negativity of
this polynomial matrix for frequencies w sufficiently large.
We discussed the application of these ideas in classical me-
chanics, and showed that positive definiteness of the Hessian
with respect to the velocities of the configuration variables
implies that solutions of the Euler-Lagrange equations are
local minima of the action integral w.r.t. blips.
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