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Abstract— The output feedback variable structure control
problem is considered for a class of single input single output
uncertain linear plants with arbitrary relative degree and with
parameter perturbations, unmodeled dynamics and bounded
disturbance simultaneously. A novel passivity-based control
scheme composed of linear feedback and variable structure
control is proposed. If exact differentiations of system output
provided, this scheme results in asymptotic stability; if a class
of singular perturbation based linear differentiators adopted,
it leads to an arbitrarily small regulation/tracking error.

I. INTRODUCTION

Variable structure control (VSC) has become one of the
most popular methods to deal with linear or nonlinear
uncertain plants for its remarkable robust properties ([1],
[2]). Particularly, the research on static or dynamic output
feedback variable structure control (OFVSC) has attracted
considerable attentions in the recent decade.

As is well known, relative degree is a crucial factor in
a VSC system. For a linear plant with relative degree one,
static OFVSC is possible ([3]–[5]), and a general result was
achieved in [2]. In contrast, OFVSC of higher relative degree
plants is a much more challenging problem, and several
complex methods have been introduced. Firstly, the concept
high order sliding mode (HOSM) may play an important
role ([6]–[10]). With the so-called robust exact differentiators
([8], [11]), a number of 2-order sliding mode controllers
([12]) and universal HOSM controllers ([7], [13]) have been
proposed to deal with nonlinear plants. Secondly, high gain
observer (HGO) is another useful tool for output feedback
control. For instance, [14], [15] and [16] discussed how to
synthesis a VSC system with linear HGOs to realize an
arbitrarily small tracking error. Thirdly, variable structure
model reference adaptive control (VS-MRAC) schemes are
applicable to linear models with unknown parameters and
unmodeled dynamics ([17]–[19]). Finally, in a single-relay
control system where the relative degree of the continuous
part is greater than one, oscillations will inevitably occur.
Fortunately, if the continuous system can be divided into
a slowly-varying sub-system and a rapidly-varying one, the
closed loop behavior can be subtly studied by singular
perturbation analysis ([20], [21]).

In this paper, we study a class of single input single output
uncertain linear systems. Higher relative degree, bounded
external disturbance at the input channel, parameter pertur-
bations and unmodeled dynamics are all considered. We will
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adopt VSC strategy combined with dynamic output feedback
to realize robust stabilization and disturbance attenuation,
where the passivity-based linear feedback is introduced to
stabilize (passify) the nominal model set and the variable
structure control to deal with other uncertainties and distur-
bances. The proposed scheme guarantees local asymptotic
stability if exact differentiations of system output provided,
or guarantees an arbitrarily small regulation/tracking error if
the exact differentiators are replaced by a class of singular
perturbation based linear differentiators.

We summarize the innovations of this paper as follows.
First, the passivity idea is introduced to the synthesis of
VSC systems, and the robust passification problem is con-
sidered and solved for the first time (Lemma 2). Second,
in comparison with some existing control methods (e.g. [7],
[13]–[16] and [17]–[19]), the proposed one seems simpler
and more suitable for the stabilization of a general class of
well-modeled uncertain linear plants (where various kinds
of uncertainties are permitted). Finally, this scheme can be
viewed as a new analysis framework of a class of relay
control systems as well (Lemma 4).

II. PROBLEM STATEMENT

Gp(s)

∆(s)
d(t)

u(t) y(t)
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Fig. 1. The model of uncertain linear plant.

Consider a class of single input single output uncertain
linear systems as shown in Fig. 1. The plant is described by

y(t) = G(s) [u(t) + d(t)] , 1 (1)

where the transfer function is

G(s) = Gp(s) [1 + ∆(s)] =
np(s)

dp(s)
[1 + ∆(s)] . (2)

The nominal model Gp(s), unmodeled dynamics ∆(s) and
external disturbance d(t) satisfy the following assumptions.

Assumption A: The numerator np(s) = nls
l + · · ·+n1s+

n0 (of a known degree l) and the denominator dp(s) = sq +
dq−1s

q−1 + · · · + d1s + d0 (of a known degree q) are both
interval polynomials. System relative degree r= q−l ≥ 2.2

1In the representation y(t) = G(s)u(t), y(t) and u(t) are the output
and input signals of linear filter G(s) respectively.

2Since the variable structure control problem of systems with r = 1
has been well-solved, we will not consider such a simple case. In fact, our
conclusions can be shown compatible with the existing results in this case.
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Uncertain coefficients ni ∈ [ni, n̄i] (i = 1, 2, · · · , l), di ∈
[di, d̄i] (i = 1, · · · , q−1); especially, nl > 0. Besides, every
possible np(s) should be Hurwitz. The set of np(s) and dp(s)
are denoted as Fn and Fd respectively, and the set of nominal
plant Gp(s) is denoted as G, that is:

G :=

{
Gp(s)

∣∣∣∣Gp(s) =
np(s)

dp(s)
, np ∈ Fn, dp ∈ Fd

}
Assumption B: The unmodeled dynamics ∆(s) ∈ RH∞

satisfies ‖∆(s)‖1 ≤ ι < 1. The set of ∆(s) is denoted as D.
Assumption C: The external disturbance d(t) is bounded

as |d(t)| ≤ ν (y(t)) +κ0, where κ0 is a known constant and
ν(·) is a known continuous non-negative function, ν(0) = 0.

Remark 1:
• Equation (1) describes how the unknown external dis-

turbance d(t) affects the plant, and (2) describes both
the unmodeled dynamics and the interval plant model. It
is not difficult to transform the transfer function Gp(s)
into a state-space representation Σ(A, b, c) of a fixed
order q, while this is impossible for G(s) because of
the presence of unmodeled dynamics ∆(s).

• Assumption A is quite similar to the assumptions of
[22] or the assumptions of Theorem 13.1 (simultaneous
strong stabilization) in [23]. It is required that every
np(s) ∈ Fn is Hurwitz. This condition can be verified
by Kharitonov’s Theorem (see e.g. [23]).

• Since ‖∆‖∞ ≤ ‖∆‖1 < 1, the relative degree of G(s)
is the same as the relative degree of Gp(s).

• It should be pointed out that all the coefficients of Gp(s)
are defined in bounded closed intervals (compact sets).
As a result the set G is compact; moreover, the range
of system norm ‖ · ‖µ : G → R+ is a bounded closed
interval in R+, infimum and supremum exist.

In this note, we will first solve the regulation problem.
That is, to find a control law under which the system output
y(t) will converge to zero or to a small neighborhood of zero.
After that, we will revise the proposed control law so that
y(t) can track a class of bounded reference signals yr(t).

III. EXACT DIFFERENTIATION BASED OFVSC CONTROL

As implied in [2], strictly positive real (SPR) transfer
function may play an important role in variable structure
control systems.

Definition 1 (SPR, [24]): A transfer function φ(s) for a
linear single input single output system, with relative degree
m = 1, is SPR if and only if

(a) φ(s) is analytic in �{s} ≥ 0;
(b) �[φ(jω)] > 0, ∀ω ∈ (−∞,∞);
(c) limω→∞ ω2�[φ(jω)] > 0.
Remark 2: If the relative degree m = 0, the condition (c)

should be modified as: φ(∞) > 0.
Lemma 1: Consider a closed loop system as shown in Fig.

2, where the strictly proper linear plant G(s) ∈ SPR, and
the time-variant relay satisfies

u(t) = −K̃(t) sgn (y(t)) , (3)

where 0 < κ ≤ K̃(t) ≤ κ + D. Then for any initial
state x0, limt→∞ x(t) → 0 and y(t) converges to zero in

Relay

G(s)
−

u(t) y(t)

Fig. 2. Closed loop system composed of a SPR linear unit and a time-
variant relay.

finite time. Moreover, for any fixed constant κ > 0, there
exists a neighborhood B(δ) of the equilibrium point such
that ∀x0 ∈ B(δ), y(t) converges monotonously.

Proof: Assume Σ (A, b, c) is a minimum realization
of G(s). Define V (x) = xτPx as a Lyapunov function of
the closed loop system, where the positive definite matrix P
satisfies the Kalman-Yakubovich-Popov conditions

PA + AT P = −Q < 0, P b = cτ . (4)

Then in the non-sliding mode dynamics,

V̇ (x) = −xτQx − 2K̃(t) |y(t)| < 0. (5)

Since G(s) is minimum phase, the sliding mode dynamics
(if exists) is also globally asymptotically stable. Hence the
whole VSC system is globally asymptotically stable. After
a finite-time transient period, ‖x(t)‖ < (cbκ − ε)/‖cA‖
(where ε < cbκ is a given positive constant). Then

ẏ(t) sgn (y(t)) = cAx sgn (y(t)) − cbK̃ < −ε < 0, (6)

which means the existence of sliding mode in Filippov sense
and finite-time convergence of y(t). Furthermore, inequality
(6) holds in a neighborhood of equilibrium point if κ fixes.
This implies the monotonous convergence of y(t).

Lemma 1 shows that SPR property is welcome under the
VSC framework. Inspired by this result, we will first robustly
passify (means rendering a system SPR) the nominal model
set G by a linear dynamic feedback controller C1(s), a
cascade filter C2(s) and a Hurwitz polynomial h(s) of degree
(r − 1). Then according to Lemma 1, an additional variable
structure control scheme may deal with other uncertainties
and disturbances. Fig. 3 shows the entire control scheme.

uvsc(t)

Gp(s){1+∆(s)} h(s) C2(s)

C1(s)

− +

+

d(t)

ū(t)

+

−
uL(t)

y(t) ỹ(t)

Fig. 3. VSC control scheme with exact differentiations.

Lemma 2 (Robust Passification): There exist two proper,
stable and minimum phase transfer functions C1(s) and
C2(s) and a Hurwitz polynomial h(s) of degree r − 1, such
that ∀Gp(s) ∈ G, G(s) ∈ SPR where

G(s) :=
Gp(s)

1 + C1(s)Gp(s)
C2(s)h(s). (7)

Proof: See Appendix.
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Theorem 3 (exact differentiation based OFVSC scheme):
Consider the VSC system shown in Fig. 3, where the plant
to be controlled satisfies Assumptions A, B and C. Assume
robust exact differentiators can provide 1-order to (r − 1)-
order differentiations of signal y(t), and two linear filters
C1(s), C2(s) and a Hurwitz polynomial h(s) satisfy Lemma
1. Then in a neighborhood of the equilibrium point, the
following control law

u(t) = uvsc(t) − C1(s)y(t) (8)

uvsc(t) = −Kvsc sgn(ỹ(t)) (9)

ỹ(t) = C2(s)h(s)y(t) (10)

(where Kvsc > κ0(1 + ι)/(1 − ι) is a positive constant)
guarantees asymptotic stability of the closed loop system and
the convergence of y(t).

uvsc(t)

Gp(s) C2(s) h(s)

C1(s)

− +

+

d̃(t)

ū(t)

+

−
uL(t)

y(t) ỹ(t)

Fig. 4. Equivalent control scheme of Fig. 3.

Proof: Transform the proposed control scheme (Fig. 3)
into an equivalent form as shown in Fig. 4, where the uncer-
tain model G(s) is replaced by the nominal model Gp(s) and
the disturbance d(t) is modified by d̃(t) accordingly. The two
diagrams are equivalent in the sense that their input-output
behaviors are the same, that is, for any control input uvsc,

y = Gp(uvsc + d̃ − C1y) = Gp(1 + ∆)(uvsc + d − C1y).

Then the equivalent disturbance d̃(t) is

d̃(t) = (1 + ∆) d(t) + ∆(s)uvsc(t) − ∆(s) (C1y(t)) . (11)

In a neighborhood of origin, it satisfies

|d̃(t)| ≤ (1 + ι)[ν(y) + κ0] + ιKvsc + ι ‖C1‖1|y(t)|
< ιKvsc + (1 + ι)κ0 + ε0 (12)

where ε0 is a positive constant depending on the concerned
neighborhood.

Substituting (12) into control law (9), we will see the
“real” input ū(t) = uvsc(t) + d̃(t) implemented on the local
closed loop (dashed line area) satisfies

−ū(t) sgn(ỹ(t)) = Kvsc + d̃(t) sgn(ỹ(t))

> (1 − ι)Kvsc − (1 + ι)κ0 − ε0 > 0 (13)

if ε0 < [(1 − ι)Kvsc − (1 + ι)κ0].
Since the transfer function from ū(t) to ỹ(t) is
Gp

1+C1Gp
(C2h) ∈ SPR, according to Lemma 1, the closed

loop system is asymptotically stable and the auxiliary vari-
able ỹ(t) converges to 0 in finite time. Therefore system
output y(t) = 1

C2(s)h(s) ỹ(t) also converges to 0, although
not in finite time.

Remark 3:

• Since a transfer functions sk represents k-order exact
differentiation, in (10), h(s)y(t) =

∑r−1
k=0 hky(k)(t)

represents a linear combination of the output signal y(t)
and its 1-order to (r − 1)-order differentiations. The
construction of robust exact differentiators can be found
in [11] and [8].

• In Lemma 1, only the nominal set G is considered and
passified, despite whether the real plant (2) has been
stabilized or not. In another word, single linear dynamic
feedback C1(s) does not guarantee stability.

• Theorem 3 leads to local asymptotic stability. The larger
Kvsc, the larger stability region. In a special case that
D is null (no unmodeled dynamics), d̃(t) = d(t). Let

Kvsc(t) = ν(y(t)) + κ0 + ε ε > 0 (14)

instead of (9), inequality (13) will hold for all t ≥ 0.
This results in global asymptotic stability.

IV. LINEAR DIFFERENTIATION BASED OFVSC
CONTROL

In comparison with the nonlinear differentiator which is
exact in Filippov sense, a class of singular perturbation based
linear differentiators is more practically used for its simpler
structure and less calculation burdens (see e.g. [16]). In this
section, we try to answer such a question: with the same
control scheme in section III, can we directly replace the
nonlinear exact differentiators by linear differentiators? And
what is the behavior of the new closed loop system?

Define a Hurwitz polynomial

f(s) = a0 + a1s + a2s
2 + · · ·+ ar−1s

r−1 (a0 = 1) (15)

whose roots are all negative real, then F (s) := 1
f(s) is a low

pass filter with F (0) = 1. Define

fµ(s) = f(µs) Fµ(s) =
1

fµ(s)
, (16)

then Fµ(s) may act as a fast tracker as µ → 0. In
other words, 1

fµ(s)u(t) may track u(t), s
fµ(s)u(t) may track

u′(t), . . . sr−2

fµ(s)u(t) may track u(r−2)(t) respectively. Finally,

regarding sr−1

fµ(s)u(t) as a tracker of u(r−1)(t), we obtain a
group of linear differentiators. Now the linear combination of
exact differentiations h(s) may be replaced by h(s)

fµ(s) , which
is a stable, minimum phase and proper linear filter.

Lemma 4: Assume the closed loop system shown in Fig.
5 is composed of a linear plant G(s) ∈ SPR, a fast filter
Fµ(s) defined by (16), and a time-variant relay satisfies (3).
Consider a neighborhood of the equilibrium point, for any
given error bound ε, there exists a sufficiently small constant
µ and a finite time T0, such that ∀t > T0, |y(t)| < ε.

Relay

Fµ(s) G(s)
−

u(t) y(t)ũ(t)

Fig. 5. Closed loop system composed of a SPR linear unit, a fast filter
and a time-variant relay.
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Proof: See Appendix.
Theorem 5 (linear differentiation based OFVSC law):

Under the same condition of Theorem 3, where the exact
differentiation polynomial h(s) is directly replaced by
a linear filter Fµ(s)h(s) (Fµ(s) is defined by (16) with
all poles negative real). In a neighborhood of the origin,
for any given constant ε > 0, there exists a sufficiently
small constant µ, such that the control law (8), (9) (where
Kvsc > κ0

1+ι
1−ι

) and (17)

ỹ(t) = C2(s) [Fµ(s)h(s)] y(t) (17)

guarantees |y(t)| < ε after a finite-time transient process.
Proof: As have been done in the proof of Theorem

3, we first modify the disturbance d(t) by d̃(t) so that the
unmodeled dynamics can be removed. It can be seen that
(11) does not vary and (13) still holds in a neighborhood of
origin. Dragging the fast filter Fµ(s) to the front of Gp(s),
we get an equivalent block diagram (Fig. 6) of the closed
loop system described by Theorem 5.

uvsc(t)

Fµ(s) Gp(s) C2(s)h(s)

C1(s)

− +

+

d̃(t)

ū(t)

+

−
uL(t)

ỹ(t)

Fig. 6. Equivalent control scheme of Theorem 5.

Since Gp

1+C1Gp
C2h ∈ SPR , according to Lemma 5, if µ is

sufficiently small, ỹ(t) will converge to an arbitrarily small
neighborhood of zero. Notice that

y(t) =
fµ(s)

h(s)

1

C2(s)
ỹ(t) =

(
r−1∑
k=0

µkaksk

h(s)

)
1

C2(s)
ỹ(t),

ỹ(t) can be arbitrarily small means y(t) can be arbitrarily
small as well. Then the theorem conclusion is immediate.

Remark 4:

• As singular perturbation based linear filter introduced,
there is only one switching function appears in the
proposed control law in Theorem 5.

• The peaking phenomenon aroused by singular perturba-
tion based linear differentiators does not matter, because
the auxiliary signal ỹ(t) is not an energy signal and
only the sign of it is concerned. But, on the other
hand, linear differentiators are sensitive to measurement
noise3, which may be the main defect of this method.

• As µ → 0 is sufficiently small, the larger Kvsc, the
larger neighborhood of the origin that can be regu-
lated. Generally speaking, Kvsc should be determined
according to the system initial states or the neighbor-
hood which is concerned, and µ should be determined
according to Kvsc and the desired error bound ε.

• This control scheme is different from the proposed ones
in [14], [15] and [16], because (a) we introduce signal

3In comparison, the exact differentiators are, to some extent, robust ([11]).

differentiators rather than state observers; (b) we do not
construct any sliding mode dynamics in Filippov sense;
in fact, no sliding mode exists at all. Although the closed
loop behaviors are similar, our scheme seems simpler
and more practical to deal with uncertain linear plants.

V. OUTPUT TRACKING PROBLEM

Assume that the reference signal yr(t) satisfies:
Assumption D: Reference signal yr(t) = GR(s)r0(t) is

generated by an exo-signal r0(t) and a reference model
GR(s), where GR(s) = nR(s)/dR(s) is stable, minimum
phase and with relative degree r at least, and r0(t) is
uniformly bounded, i.e. sup |r0(t)| ≤ ϑ.4

G(s)

C1(s)

d(t)

+

+

+ −

yr(t)

−+

y(t) e(t)

(a) Reference signal.

G(s)

C1(s)

d(t) dR(t)

+

+ + +

−
e(t)

(b) Equivalent disturbance.

Fig. 7. Convert a tracking problem into a regulation problem.

The main idea is to regard the signal yr(t) as a distur-
bance, and discount it to the input channel. (Fig. 7) Define

dR(t) =
yr(s)

G(s)
=

GR(s)

Gp(s) (1 + ∆(s))
r0(t)

and denote

sup
Gp(s)∈G

∥∥∥∥GR(s)

Gp(s)

∥∥∥∥
1

= sup
Gp(s)∈G

∥∥∥∥nR(s)dp(s)

dR(s)np(s)

∥∥∥∥
1

:= ς,

then
sup |dR(t)| ≤ ς

1 − ι
ϑ := ψ (18)

is uniformly bounded. Thus the tracking problem has been
converted into an equivalent regulation problem.

VI. SIMULATION EXAMPLE

Consider an uncertain linear plant, where the nominal set
and unmodeled dynamics are restricted as

G =

{
[1, 1.2]

s3 + [1, 3]s2 + [−3, 0]s + [1, 1.5]

}
and D = {‖∆(s)‖1 < 0.2}; disturbance |d(t)| ≤ 2.5. The
system output is expected to track a bounded reference
signal yr(t), which is the solution of Van der Pol equation
ÿr + (y2

r − 1)ẏr + yr = 0 with initial states yr(0) = 1 and
ẏr(0) = 1. (thus maxt |yr(t)| = 2.) In simulation, we take
Gp(s) = 1.05/(s3+3s2−0.5s+1.2) as the “real” model and
∆(s) = 0.15 (s+1)(s−2)

s2+0.4s+1 as the “real” unmodeled dynamics;
and d(t) is composed of a periodic pulse signal (amplitude
[0, 2], period 0.1 and pulse-rate 30%) and a stochastic signal
uniformly distributed in [−0.5, 0.5].

It can be verified that C1(s) = 150(s+1)2

(s+5)(s+10) , C2(s) = s+3
s+10

and h(s) = (s + 1)2 will guarantee Gp

1+C1Gp
C2h ∈ SPR

4Assumption D is equivalent to such a condition: yr(t), y′
r(t), y

(r−1)
r (t)

are all uniformly bounded, so is dR(t) := yr(t)/Gp(s).
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(c) u(t) in period [15, 17].
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(d) ẽ(t) in period [15, 17].

Fig. 8. Simulation results.

(∀Gp ∈ G). (coefficients can be turned-up “off-line” easily,
see Appendix A.) The controller is designed according to
Theorem 5, where Fµ(s) = (µs+1)−2. The large coefficient
Kvsc = 15 and the sufficient small coefficient µ = 0.05 are
determined “on-line”, according to the “real” model.

Simulation result is shown in Fig. 8. Besides of the track-
ing ability and convergence, it can be seen (a) the auxiliary
signal ẽ(t) oscillates around zero with high switching fre-
quency; (b) the oscillations seem similar to the “chattering”
phenomenon in standard VSC systems, although no ideal
sliding motion exists at all.

VII. CONCLUSIONS

We have proposed a novel output feedback variable struc-
ture control scheme based on the passivity idea. In the case
that exact differentiations provided, it guarantees asymptotic
stability; in the case that singular perturbation based linear
differentiators adopted, it guarantees an arbitrarily small
regulation/tracking error.

We believe this scheme is practically significant that: (a)
it can deal with a wide class of uncertain linear plants;
(b) it seems rather simple and the control performance is
acceptable; and (c) the coefficients of the proposed controller
are physically significative and can be tuned up easily. We
also believe the scheme is theoretically significant that it can
be viewed as a new analysis framework of a class of relay
control systems without sliding mode (Lemma 4).

APPENDIX

A. Sketch of the proof of Lemma 2.

∀Gp(s) = np(s)/dp(s) ∈ G, (s + 1)r−1np(s)/dp(s) is
with relative degree 1. According to the Lemma 3 in [22], a
sufficiently large K1 stabilizes (s + 1)r−1np(s)/dp(s), i.e.
n1(s) := dp(s) + K1np(s)(s + 1)r−1 is a Hurwitz polyno-
mial. Moreover, the q roots of n1(s) approximate the roots of

np(s), −1 (r−1 multiplicity) and −K1nl respectively. That

is, (details omitted) supω≥0

∣∣∣φ{
np(jω)(jω+1)r−1(jω+K1nl)

n1(jω)

}∣∣∣
can be arbitrarily small if K1 is large enough.

Next, define d1(s) = sdp(s), the relative degree of
n1(s)/d1(s) is one, and a sufficiently large K2 (depends
on K1) stabilizes n1(s)/d1(s). That is,

n2(s) := d1(s) + K2n1(s)

= (s + K2)dp(s) + K1K2np(s)(s + 1)r−1

is a Hurwitz polynomial. Moreover, the q +1 roots of n2(s)
approximate the roots of n1(s) and −K2 respectively. That

is, supω≥0

∣∣∣φ{
n1(jω)×(jω+K2)

n2(jω)

}∣∣∣ can be arbitrarily small if
K2 is large enough (depends on K1).

Define d2(s) := (s + K2)d1(s) = s(s + K2)d(s)
and so on, until a sufficiently large constant Kr

(depends on K1, K2, . . . , Kr−1) makes the polynomial
nr(s) := dr−1(s) + Krnr−1(s) Hurwitz; and moreover,

supω≥0

∣∣∣φ{
nr−1(jω)×(jω+Kr)

nr(jω)

}∣∣∣ can be arbitrarily small.
It can be verified that we finally obtain a proper, stable

and minimum phase controller C1(s):

C1(s) =
K1K2 · · ·Kr(s + 1)r−1

(s + K2)(s + K3) · · · (s + Kr)
(19)

that stabilizes np(s)/dp(s). Define

C20(s) = (s + K1n̄l) h(s) = (s + 1)r−1 (20)

the feedback and cascade transfer function will be

Ḡ(s) :=
Gp(s)

1 + Gp(s)C1(s)
C20(s)h(s)

=
np(s)(s + 1)r−1(s + K1n̄l)

∏r

i=2 (s + Ki)

nr(s)
(21)

which is with relative degree 0 and satisfies

sup
ω≥0

∣∣φ{
Ḡ(jω)

}∣∣ ≤ sup
ω≥0

∣∣∣∣φ
(

jω + K1n̄l

jω + K1nl

)∣∣∣∣
+

r∑
i=2

sup
ω≥0

∣∣∣∣φ
{

ni−1(jω)(jω + Ki)

ni(jω)

}∣∣∣∣
+ sup

ω≥0

∣∣∣∣φ
{

np(jω)(jω + 1)r−1(jω + K1nl)

n1(jω)

}∣∣∣∣ (22)

Notice that the first item in the righthand of (22) is less than
π
2 and the following two items can be arbitrarily small. This
means: properly choosing coefficients K1, K2, . . . , Kr, we
have

∣∣φ (
Ḡ(jω)

)∣∣ < π/2, and thus Ḡ(s) ∈ SPR. Since the
set of Ḡ(s) (denoted as Ḡ) is compact, this inequality is strict.
It can be proved that there exists a sufficiently large constant
β, such that ∀Ḡ(s) ∈ Ḡ, G(s) := Ḡ(s)/(s + β) ∈ SPR.

Finally, define a proper, stable and minimum phase transfer
function

C2(s) =
C20(s)

s + β
=

s + K1n̄l

s + β
, (23)

we complete the proof of Lemma 2 constructively, where the
transfer functions C1(s), C2(s) and h(s) are defined in (19),
(20) and (23). It should be pointed out that it is easy to adjust
these coefficients (K1, . . . , Kr, β), because they are merely
expected to be sufficiently large.
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B. Sketch of the proof of Lemma 4.

First, it can be proved that system output y(t) oscillates;
that is, if y(0) 	= 0, there exists a constant T < ∞ such
that y(T ) = 0. When the sign of y(t) changes, the sign of
u(t) will change immediately; and after at most O(µ) time5,
the sign of ũ(t) will be the same as the sign of u(t) and
retain |ũ(t)| > ρκ (0 < ρ < 1), until y(t) returns to zero
and another switching occurs.

Denote tk as the switching time series of y(t), and denote
t′k ∈ (tk, tk+1) (if exists) such that ∀t ∈ (t′k, tk+1), ũ(t) >
ρκ (if u(t) > 0) or ũ(t) < −ρκ (if u(t) < 0). Assume
S(x) = xτPx is the storage function of G(s), where the
positive definite matrix P satisfies conditions (4). Since
G(s) ∈ SPR, ∀t > 0, S(xt) ≤ S(x0) +

∫ t

0 ũ(τ)y(τ)dτ .
Consider the time interval [tk, tk+1],

Sk+1 ≤ Sk +

∫ t′k

tk

ũ(τ)y(τ)dτ +

∫ tk+1

t′
k

ũ(τ)y(τ)dτ

< Sk + β(t′k − tk) − ρκ

∫ tk+1

t′
k

|y(τ)|dτ

:= Sk + D
(1)
k − D

(2)
k (24)

where Sk is the abbreviation of S(x(tk)), and β ≥
sup |ũ(t)|×sup |y(t)| is a boundary constant (independent of
ε and µ). Intuitively, since (t′k − tk) < O(µ), the term D

(1)
k

can be arbitrarily small as µ → 0; while the term D
(2)
k can

not be “too small” because |ẏ(t)| is bounded independent of
µ. Mathematically speaking,∫ tk+1

t′
k

|y(τ)|dτ ≥ 1

2α

(
max

t∈[t′
k
,tk+1]

|y(t)|
)2

.

where α = sup |ẏ(t)| is independent of µ.
Assume (t′k − tk) ≤ λµ, then

D
(1)
k + λβµ ≥ D

(2)
k (25)

will hold sooner or later after a finite-time transient process
(otherwise the “energy” series {Sk} will decrease at a speed
greater than λβµ to negative.) From then on, at each interval
[tk, (t′k), tk+1], the series {Sk} can be divided into 3 cases:
(c1) Sk − Sk+1 ≤ λβµ;
(c2) Sk > Sk+1 + λβµ but Sk ≤ Sk′ ;
(c3) Sk > Sk+1 + λβµ and Sk > Sk′ > Sk+1;
The three cases are complete (if time t′k exists) and case (c1)
is finite-time recurrent.

It can be proved that every time interval [tk, tk+1] belongs
to (c1) or (c2) satisfies

max
t∈[tk,tk+1]

|y(t)| < O(
√

µ). (26)

While case (c3) means “energy” decreasing monotonously
and (26) can also be obtained.

Finally, if |ũ(t)| < ρκ holds in some whole time interval
[tk, tk+1], we also have maxt∈[tk,tk+1] < O(µ).

5Here the symbol O(·) denotes a non-negative continuous function
defined in a neighborhood of zero, satisfying limε→0

O(ε)
|ε|

< A < ∞

where A is a positive constant independent of ε.

The analysis above indicates that as long as µ → 0, y(t)
will converge to an arbitrarily small neighborhood of zero
and will not escape any longer.
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