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Abstract— This paper develops a new reference management
algorithm for constrained nonlinear systems with unmeasurable
states. Instead of the state itself, the present method utilizes
an ellipsoidal region in which the state is guaranteed to lie.
Such a region can be obtained by using the set-valued observer
due to Scholte and Campbell [9]. The present method requires
a solution of the optimization problem which may not be
solved effectively. For ease of implementation, we introduce
a relaxed problem which is always efficiently solvable. When
neither noise nor disturbance are present and the reference
is constant, we show sufficient conditions for the modified
reference to be settled to the reference in a finite time, and
consequently for the convergence of the state to the desired
equilibrium. In the presence of noise and/or disturbance, we
derive somewhat conservative conditions for the finite-time
settling of the modified reference to the original one and for the
convergence of the state to the neighborhood of the equilibrium.
The effectiveness of the present method is demonstrated by a
numerical example.

I. INTRODUCTION

Most of practical control systems inherently have con-
straints due to the nonlinear characteristics of actuators or for
the safety of hardwares. This can lead to the performance de-
terioration or even the instability of the closed-loop system,
if not properly accounted for. Thus, when we deal with the
tracking control problem, it is required not only to achieve a
good tracking performance but also to avoid the violation
of these constraints. One of the ways to simultaneously
meet these requirements is to add an auxiliary mechanism
called a reference governor or a reference management
algorithm [1]–[3],[5]–[7] to the closed-loop system. The
reference governor modifies the reference signal, and input
the resulting signals to the closed-loop system.

Heretofore, various reference management algorithms
have been proposed and most of them are aimed at linear
systems [1],[3],[7]. Linear systems possess an important
advantage that there is an algorithm to calculate a so-called
maximal output admissible set, which is the maximal set
consisting of the initial states satisfying the infinite-time
constraints [4],[8]. In contrast, for nonlinear systems, there
is no way to compute such a set.

Bemporad et al. [2] proposed the first reference man-
agement algorithm for nonlinear systems based on the fact
that the initial states satisfying the constraints in enough
long finite-time interval guarantee the infinite-time constraint
fulfillment. However, this algorithm requires a great deal of
on-line computational effort. Gilbert et al. [5],[6] provided
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algorithms with less computation using the inside approxi-
mation of the maximal output admissible set.

For linear systems, some output-feedback reference gov-
ernors have been reported in the literature [1]. However,
all the reference governors for nonlinear systems are state-
feedback ones which assume the exact measurements of all
the states. Since, in the real world, it is often the case that
some states are not available for control or are contaminated
by the noise, the application of the conventional methods is
limited. To overcome this difficulty, this paper proposes an
output-feedback reference governor for nonlinear systems.
Though Gilbert and Kolmanovsky [6] considered the case
where the closed-loop system suffers from the disturbance,
the noisy measurement case was not considered. In contrast,
the present method allows us to design the modified reference
in consideration of the sensor noise.

The following notations are used throughout this paper.
For vectors g, h ∈ Rm, g ≥ h means gi ≥ hi for all i. 0
and 1 denote the column vectors with appropriate dimension
whose elements are 0 and 1, respectively. For a positive
definite symmetric matrix K ∈ Rn×n and a vector xo ∈ Rn,
Ω(xo,K) is an ellipsoid

Ω(xo,K) = {x ∈ Rn|(x − xo)�K−1(x − xo) ≤ 1}.
II. PROBLEM STATEMENT

Consider the following nonlinear closed-loop system Σ
consisting of a plant Σp and a feedback controller Σc, which
is given a priori. Suppose that Σc is not necessarily designed
in consideration of constraints on state and control though, in
general, the systems are required to fulfill these constraints
as well as achieving a good control performance.

x(t + 1) = f(x(t), r(t)) + w(t), (1)

y(t) = h1(x(t), r(t)), (2)

z(t) = h2(x(t), r(t)) + v(t), (3)

c(t) = h0(x(t), r(t)), (4)

where the function f : Rn × Rp1 → Rn and h2 : Rn ×
Rp1 → Rp2 are assumed to be C2 function.

The vector x(t) ∈ Rn is the state of Σ and is unknown
vector which cannot be measured directly. Though its initial
value x(0) is also unknown, it is known to be confined in
the ellipsoid Ω(x0,K0), namely

x(0) ∈ Ω(x0,K0), (5)

where the vector x0 and symmetric positive definite matrix
K0 are known.

The vector r(t) ∈ Rp1 is the reference that belongs to
a compact convex set R. Let the output of the reference
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Fig. 1. Conventional method

governor be g(t) ∈ Rp1 , and we refer to it as the modi-
fied reference. Moreover, y(t) ∈ Rp1 is the output to be
controlled, z(t) ∈ Rp2 is the measurement, w(t) ∈ Rn

is the disturbance, and v(t) ∈ Rp2 is the sensor noise.
The disturbance and sensor noise are unknown deterministic
signals and assumed to be bounded by ellipsoids given by

w(t) ∈ Ω(0, Qw), v(t) ∈ Ω(0, Qv) ∀t ≥ 0, (6)

respectively. The vector c(t) ∈ Rp0 is the auxiliary output
that describes state and control constraints. Namely, c(t)
must be constrained within a prescribed set C as

c(t) ∈ C := {c ∈ Rp0 |c ≤ 0} ∀t ≥ 0. (7)

A desired equilibrium state for the step reference r(t) ≡
r ∈ R and the zero disturbance w(t) ≡ 0 is denoted by
xe(r). Namely, xe(r) is a vector which satisfies xe(r) =
f(xe(r), r). Assume that h0(xe(r), r) ∈ C ∀r ∈ R and
that, for simplicity, xe(r) is unique for any r ∈ R and the
controller is designed in such a way to stabilize xe(r), r ∈ R.

The present algorithm provides the modified reference
based on a function V and its sub-level set

S(r) = {x ∈ Rn|V (x, r) ≤ 0}. (8)

For any ε > 0, define the set Sε(r) as

Sε(r) = {x ∈ Rn|V (x, r) ≤ −ε}.
Assumption 1:
(a) The function V : Rn × R → R is continuous.
(b) There exists ε0 > 0 such that xe(r) ∈ Sε0(r) ∀r ∈

R.
(c) There exists a compact set X ⊂ Rn such that

S(r) ⊂ X ∀r ∈ R.
(d) Let φ(t, x, r, w(·)) be the solution of (1) for the

initial state x(0) = x, step reference r(t) ≡
r ∈ R and disturbance w(·) ∈ Ω(0, Qw). Then,
h0(φ(t, x, r, w(·)), r) ∈ C holds for all w(·) ∈
Ω(0, Qw), t ≥ 0, r ∈ R and x ∈ Rn satisfying
V (x, r) ≤ 0.

(e) For any r ∈ R, the set S(r) is a polyhedron or a
convex set.

The function V (x, r) can be constructed by the methods in
[5] or [6]. State-feedback reference governors do not require
the Assumption 1(e) and allow S(r) of any form. Namely, the
present algorithm restricts the construction of S(r). However,
the typical selection such as a polyhedron or an ellipsoid
belongs to the class of this assumption.

In the real world, it is often the case that some states are
not available for control. Nevertheless, most of the conven-
tional reference governors [2], [3], [5]–[7] are state-feedback
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Fig. 2. Present method

ones (Fig. 1), which require the exact measurements of all
the states. This paper develops a new reference management
algorithm which guarantees the constraints fulfillment even
when some states are unmeasurable.

III. REFERENCE MANAGEMENT ALGORITHM

The design of the modified reference is based on the
references [5],[6]. Namely, for λ ∈ [0, 1], we define g(t;λ) =
g(t−1)+λ(r(t)−g(t−1)), and then the modified reference
is given by g(t) = g(t;λ(t)), where λ(t) is computed at each
time step. In the following, we will see how to compute the
desired λ(t) ∈ [0, 1].

To begin with, at each time step, we calculate the maxi-
mum λ∗(t) among λ ∈ [0, 1] satisfying

x(t) ∈ S(g(t;λ)). (9)

That is to say, the reference governor aims at only making the
modified reference close to the original one while satisfying
the constraint (7). This implies that it is assumed that the
closed-loop system achieves a good response characteristic
in the absence of the constraint.

Since, in this paper, the state vector is not available,
we cannot check the condition (9). On the other hand,
for nonlinear systems with deterministic disturbances and/or
noises, some recursive algorithms to compute the set within
which the true state is guaranteed to fall have been proposed
([9] and references therein). Hereafter, we refer to the set
as a state existence region. The present algorithm computes
an ellipsoidal state existence region Ω(x̂(t),K(t)) by using
the set-valued observer due to Scholte and Campbell [9]
and utilizes the region instead of the true state vector x(t)
(Fig. 2). The initial condition for the set-valued observer is
given by (5).

Recall that x(t) lies within Ω(x̂(t),K(t)). Hence, we
shall find the largest λ∗(t) among λ ∈ [0, 1] satisfying the
following condition instead of (9).

Ω(x̂(t),K(t)) ⊂ S(g(t;λ)). (10)

This leads to the following optimization problem.

Optimization Problem OP

data : r(t), x̂(t),K(t), g(t − 1) (11)

max
λ

λ (12)

subject to λ ∈ [0, 1] and (10) (13)

If there does not exist any λ ∈ [0, 1] satisfying the
constraint (13), let λ(t) = 0, namely g(t) = g(t; 0) =
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g(t − 1). Furthermore, similarly to [6], we set ε, δ > 0, and
admit small change of g satisfying

‖g(t, λ∗(t)) − g(t − 1)‖∞ < δ (14)

only when

max
x∈Ω(x̂(t),K(t))

V (x, g(t − 1)) ≤ −ε. (15)

Note that we set ε in such a way that xe(r) ∈ Sε(r) ∀r ∈ R.
To sum up the above discussion, the reference manage-

ment algorithm is described as follows.

[Reference Management Algorithm RMA]

Step 0: Let t = 0,K(0) = K0 and x̂(0) = x0 and set
g(−1), ε > 0 and δ > 0.

Step 1: Compute K(t) and x̂(t) by the set-valued
observer[9].

Step 2:
• If there is a feasible solution of OP, compute the optimal

solution λ∗(t).
– If λ∗(t) satisfies (14) and (15) does not hold, let

λ(t) = 0
– otherwise let λ(t) = λ∗(t).

• If there exists no feasible solution of OP let λ(t) = 0.
Step 3: Input g(t) = g(t;λ(t)) to Σ.
Step 4: t = t + 1 and go to Step 1.
If the set S(r) is given by a polyhedron as well as the

linear system case [1], the satisfaction of (10) for fixed λ
can be easily checked. Hence OP is solved by using the
grid search for λ over the interval [0, 1]. Additionally, the
assessment of (15) is also easy. However, if S(r) is a general
convex set, checking (10) requires to solve

max
x∈Ω(x̂(t),K(t))

V (x, g(t;λ)) ≤ 0, (16)

even for fixed λ. In this case, it is difficult to compute even
a sub-optimal solution of OP. Thus, we relax (10) by using
a convex polyhedral approximation of Ω(x̂(t),K(t)). We
compute a convex polyhedral approximation Π0 of the unit
sphere Ω(0, I) and its vertices x̃i

0, i ∈ [1, N ] a priori. At
each time step t, let x̃i(t) be defined by

x̃i(t) = x̂(t) + K1/2(t)x̃i
0, i ∈ [1, N ]. (17)

Then, the polyhedron Π(x̂(t),K(t)) formed by the vertices
x̃i(t) becomes an outer approximation of Ω(x̂(t),K(t)).
By the convexity of S(r), x̃i(t) ∈ S(g(t;λ)) ∀i ∈ [1, N ]
guarantees (10), and hence (9). As a result, we have to
solve the following problem instead of OP. If the problem
is feasible, then a sub-optimal solution can be computed by
the grid search for λ over the interval [0, 1].

Relaxed Optimization problem ROP

data : r(t), x̃i(t), g(t − 1) (18)

max
λ

λ (19)

subject to λ ∈ [0, 1] (20)

x̃i(t) ∈ S(g(t;λ)) ∀i ∈ [1, N ] (21)

In accordance with this relaxation of the optimization
problem OP, (15) is also replaced by

V (x̃i(t), g(t − 1)) ≤ −ε ∀i ∈ [1, N ]. (22)

The resulting reference management algorithm is given as
follows.

[Relaxed Reference Management Algorithm RRMA]

Replace Step 2 of RMA as follows.

• If there is a feasible solution of ROP, compute the
optimal solution λ∗(t).

– If λ∗(t) satisfies (14) and (22) does not hold, set
λ(t) = 0.

– Otherwise, set λ(t) = λ∗(t).
• If there does not exist a feasible solution of ROP, set

λ(t) = 0.

Theorem 1: Suppose that V satisfies Assumption 1 and
x(0) ∈ S(g(−1)) holds. Then RRMA guarantees the fol-
lowing.

(i) At any time step t ≥ 0, the state x(t) ∈ Rn and
the modified reference g(t) ∈ R is well-defined.

(ii) The constraint (7) is satisfied.
Proof: The statement (i) immediately follows from (1),

the convexity of R and the above algorithm RRMA. Thus,
we prove only (ii).

There are two possibilities : (a) T = ∅ (b) T 
= ∅, T =
{t ≥ 0|λ(t) 
= 0}.

In the case of (a), g(t) ≡ g(−1) holds. Hence x(0) ∈
S(g(−1)) and Assumption 1(d) guarantee the infinite-time
constraint fulfillment.

We consider the case (b). If t̃ ∈ T , then Ω(x̂(t̃),K(t̃)) ⊂
S(g(t̃)), that is

x(t̃) ∈ S(g(t̃)) (23)

holds. Firstly, it follows from x(0) ∈ S(g(−1)) and As-
sumption 1(d) that g(t) = g(−1) ∀t ∈ [0, tmin), where
tmin = mint∈T t. Any t̃ ∈ T is contained in either of the
following two sets.

T1 = {t̃ ∈ T | ∃σ ∈ (0,∞) s.t. t̃ + σ ∈ T}
T2 = {t̃ ∈ T | λ(t) = 0 ∀t ≥ t̃}

Thus, it is sufficient to show

(b-1) For any t1 ∈ T1, t2 ∈ T (t1 < t2), the constraint
over [t1, t2] is satisfied.

(b-2) For t̃ ∈ T2, the constraint since t̃ + 1 is satisfied.

The item (b-2) is obvious from (23), Assumption 1(d) and
g(t̃) = g(t̃ + 1) = g(t̃ + 2) = · · · .

We show (b-1). For any t̃ ∈ T1, there exists the minimal
σ > 0 satisfying t̃ + σ ∈ T . Then g(t̃ + σ − 1) = · · · =
g(t̃ + 1) = g(t̃) and g(t̃ + σ) 
= g(t̃ + σ − 1) hold. The
equation (23) and Assumption 1(d) guarantee the constraint
fulfillment over [t̃, t̃+σ−1]. Moreover, x(t̃+σ) ∈ S(g(t̃+σ))
holds from t̃ + σ ∈ T , implying the constraint fulfillment at
time t̃+σ. Therefore, the constraint over [t̃, t̃+σ] is satisfied.
By setting t̃ = t̃ + σ and repeating the above discussion, it
is shown that the constraint over [t̃, t] is satisfied for any

7560



t(≥ t̃) ∈ T . Since this result is obtained for any t̃ ∈ T1,
(b-1) holds.

Assembling these results completes the proof of (ii).
For the subsequent discussion, we give the following

lemma.
Lemma 1: In ROP, if there exists a λ satisfying (20) and

(21) and λ∗(t) < 1, then

max
i

V (x̃i(t), g(t;λ∗(t))) = 0 (24)

holds.
Remark 1: In the construction of Π0, the larger N is

set, the smaller conservativeness of the approximation is
achieved. However, a large N increases the on-line computa-
tion of the reference management. Thus, we need to choose
an appropriate N taking account of this trade-off.

Remark 2: The present method postulates that the func-
tions f and h2 are C2 functions, which imposes a strong
limitation on the controller design. However, suppose that
the functions describing the dynamics of the plant are C2

functions and the controller states are available without the
sensor noise, (e.g. consider the situation of sampled-data
control). Then the present algorithm can be applied to such a
case, regardless of the structure of the controller, by adding
the set-valued observer only to the plant.

Remark 3: With some appropriate modification similar to
[6], the present algorithm can be applied to continuous-time
systems. We regard the reference governor as a sampled-
data system. However, it has a problem that there is no
algorithm to compute the state existence region for nonlinear
continuous-time systems, though the region is required at
each sampling instant. Hence, we need an exact discrete-
time model without discretization error.

IV. CONVERGENCE ANALYSIS

This section discusses the convergence of the state x(t) to
the desired equilibrium xe(r) under the assumption that the
reference is a step function r(t) ≡ r ∈ R. As a preparation,
we make the following assumption. A sufficient condition for
this assumption is given by so-called uniform observability.
For more detail on this, the readers are recommended to refer
to the reference [9].

Assumption 2: There exists a s̃ > 0 such that K(t) ≤
s̃I ∀t ≥ 0.

Proposition 1: Suppose that Assumption 2 holds. If
w(t) ≡ v(t) ≡ 0, then the center of the ellipsoid
Ω(x̂(t),K(t)), x̂(t), converges to the true state vector x(t)
asymptotically. Furthermore, if w(t) and/or v(t) are not zero,
then the upper bound of the error between x(t) and x̂(t),
namely ‖x(t) − x̂(t)‖, can be computed. In this paper, let
the square of the upper bound be γ > 0.

A. Noise Free Case

Suppose that w(t) ≡ 0 and v(t) ≡ 0. We assume the
following.

Assumption 3: For any r(t) ≡ r ∈ R and x(0) ∈ S(r)
(V (x(0), r) ≤ 0), φ(t, x(0), r, 0) → xe(r) (t → ∞) holds.
That is, the set S(r) is a region of attraction for xe(r).

Proposition 1 and Assumption 3 yield the next lemma.
Lemma 2: For any g(t) ≡ g ∈ R, the center of the

ellipsoid Ω(x̂(t),K(t)) converges to xe(g) asymptotically.
Namely, for any ρ > 0, there exists a τ̄ ∈ [0,∞) such that
x̂(t) ∈ Ω(xe(g), ρI) ∀t ≥ τ̄ .

We first define Vm(s, ρ) by

Vm(s, ρ) = max
K≤sI,i∈[1,N ]

x̃i
0
�Kx̃i

0 + ρ. (25)

The optimization problem in (25) is a linear matrix inequality
problem, and can be solved by an existing convex program-
ming algorithm.

Proposition 2: Suppose that x̂(t) ∈ Ω(xe(g), ρI) and
K(t) < sI hold. Then we have

Π(x̂(t),K(t)) ⊂ Ω(xe(g), Vm(s, ρ)I)

for any g ∈ R and ρ > 0.
Next, let

s̄(r, ρ) = max
s>0

s (26)

subject to Ω(xe(r), Vm(s, ρ)I) ⊂ Sε(r)

The optimization problem (26) can be solved by the bisection
method over (0, sm] where sm is a sufficiently large constant.
The satisfaction of (26) is checked by using the polyhedral
approximation of Ω(xe(r), Vm(s, ρ)I) with sufficient large
N .

Assumption 4: There exists τ∗ ∈ [0,∞) and ρ∗ > 0 such
that

K(t) ≤ s̄(r, ρ∗)I ∀t ≥ τ∗ (27)
For simplicity of notation, we hereafter denote s∗ =
minr∈R s̄(r, ρ∗), and V ∗

m = Vm(s∗, ρ∗). It is obvious from
(26) that

Ω(xe(r), V ∗
mI) ⊂ Sε(r) ∀r ∈ R. (28)

From the above discussion, we obtain the following theo-
rem.

Theorem 2: Let the reference be a step signal r(t) ≡ r ∈
R. Suppose that RRMA is applied to the closed-loop system
Σ. If Assumption 1–4 and x(0) ∈ S(g(−1)) hold, then it
follows for any r ∈ R that

(i) there exists a t̃ ∈ [0,∞) such that g(t) = r̄ ∀t ≥ t̃,
(ii) the state x(t) converges xe(r) asymptotically.

Proof: For a certain t̃ ≥ 0, if g(t̃) = r, then g(t) =
r ∀t ≥ t̃ clearly holds. Hence the theorem is false only if
λ(t) < 1 ∀t ≥ 0. We show that this leads to a contradiction.

Define

I0 = {t ≥ 0 | λ(t) = 0},
I1 = {t ≥ 0 | 0 < λ(t) < 1} = I2 ∪ I3,

I2 = {t ≥ 0 | ‖g(t) − g(t − 1)‖∞ ≥ δ},
I3 = {t ≥ 0 | ‖g(t) − g(t − 1)‖∞ < δ

and max
i

V (x̃i(t), g(t − 1)) < −ε}.
Similarly to [6], I2 is shown to be finite. We prove that
the set I0 is finite. For some time t0, assume t0 ∈ I1 and
t0 + t ∈ I0 ∀t ∈ [0, tf ], that is, g(t0 + t) = g(t0) ∀t ∈ [0, tf ],

7561



where tf = max(τ̄ , τ∗− t0) ∈ (0,∞). Since t0 ∈ I1, we get
x(t0) ∈ S(g(t0)). From this, Lemma 2 and tf ≥ τ̄ , we get

x̂(t0 + tf ) ∈ Ω(xe(g(t0)), ρ∗I). (29)

Assumption 4 and t0 + tf ≥ τ∗ yield

K(t0 + tf ) < s∗I. (30)

Hence we see from (29), (30) and Proposition 2 that Π(x̂(t0+
tf ),K(t0 + tf )) ⊂ Ω(xe(g(t0)), V ∗

mI). Moreover, (28) and
g(t0) = g(t0 + tf ) imply Π(x̂(t0 + tf ),K(t0 + tf )) ⊂
Sε(g(t0 + tf )), namely

V (x̃i(t0 + tf ), g(t0 + tf )) < −ε ∀i ∈ [1, N ]. (31)

From the continuity of V and (31), there is a nonzero feasible
solution of ROP at time t0+tf . Furthermore, because g(t0+
tf − 1) = g(t0 + tf ),

V (x̃i(t0 + tf ), g(t0 + tf − 1)) < −ε (32)

holds and (22) is satisfied. Thus, λ(t0 + tf ) must not be zero
and t0 + tf /∈ I0. This contradicts t0 + t ∈ I0 ∀t ∈ [0, tf ],
and there is a t ∈ [0, tf ] such that t0 + t /∈ I0. By the similar
discussion, it is shown that {t ≥ 0} = I0 cannot occur.
Namely, λ(t) = 0 does not continue infinitely. Therefore, I0

is a finite set. This implies that I3 must be an infinite set.
From Lemma 1, it follows for any t ∈ I3 that

max
i

V (x̃i(t), g(t)) = 0 (33)

V (x̃i(t), g(t − 1)) < −ε ∀i ∈ [1, N ]. (34)

By the continuity of V , there exists δ̃ > 0 such that

|V (x, g1) − V (x, g2)| < ε (35)

for all g1, g2 and x ∈ X satisfying ‖g1 − g2‖∞ < δ̃.
Furthermore, since the set R is compact and 0 < λ(t) <
1 ∀t ∈ I3, if I3 is infinite then there exist an infinite
subset Ĩ3 ⊂ I3 and ḡ such that t ∈ Ĩ3 and t → ∞ imply
g(t) → ḡ ∈ R. Since g(t) approaches r monotonically,

‖g(t) − g(t − 1)‖∞ < δ̃ (36)

holds regardless of whether t−1 is contained in Ĩ3 or not, for
sufficient large t ∈ Ĩ3. For such a large t ∈ Ĩ3, define i(t) =
arg maxi V (x̃i(t), g(t)). Then we get V (x̃i(t)(t), g(t)) = 0
and x̃i(t)(t) ∈ S(g(t)) ⊂ X . From this, (35) and (36), it
follows that V (x̃i(t)(t), g(t − 1)) > −ε. This contradicts
(34) and (i) is proved.

Statement (ii) is obvious because of (i), Assumption 3 and
x(t̃) ∈ Ω(x̂(t̃),K(t̃)) ⊂ S(r).

Assumptions 1–4 and x(0) ∈ S(g(−1)) are a sufficient
condition for the convergence of the state to the desired equi-
librium. Roughly speaking, these imply that the set-valued
observer is stable and the size of Ω(x̂(t),K(t)) is smaller
than that of S(r). Therefore, s∗ = minr∈R s̄(r, ρ∗) deter-
mines the size of the state existence region Ω(x̂(t),K(t))
for the state to converge.

Remark 4: It follows that maxK≤sI,i∈[1,N ] x̃i
0
�Kx̃i

0 →
s (N → ∞). Thus, by replacing Vm(s, ρ) with s + ρ, we
obtain a sufficient condition for the convergence of the state
when RMA is applied.

B. Noisy Case

When the disturbance and/or noise is present, Assumption
3 is unrealistic. In order to cope with the noisy case, we
make the following assumption instead.

Assumption 5: For any w ∈ Ω(0, Qw), x(0) ∈ S(r) and
r(t) ≡ r ∈ R, there exist τ̄ ∈ [0,∞) and µ > 0 such that
φ(t, x(0), r, w) ∈ Ω(xe(r), µI) ∀t ≥ τ̄ .
Similarly to Lemma 2, from Proposition 1 and Assumption
5, if x(0) ∈ S(g) for any g(t) ≡ g ∈ R, there is a τ̄ ∈
[0,∞) such that x̂(t) ∈ Ω(xe(g), (µ + γ)I) ∀t ≥ τ̄ . Hence,
replacing ρ by µ + γ in Theorem 2 yields the following
theorem immediately.

Assumption 6: For any r ∈ R, there exists τ∗ ∈ [0,∞)
such that

K(t) ≤ s̄(r, µ + γ)I ∀t ≥ τ∗ (37)
Theorem 3: Let the reference be a step signal r(t) ≡ r ∈

R. Suppose that RRMA is applied to the closed-loop system
Σ. If Assumption 1 2, 5 and 6 and x(0) ∈ S(g(−1)) hold,
then it follows for any r ∈ R that

(i) there exists t̃ ∈ [0,∞) such that g(t) = r ∀t ≥ t̃,
(ii) the state x(t) converges into a sphere Ω(xe(r), µI)

in a finite time.

V. NUMERICAL EXAMPLE

Consider the bilinear plant Σp given by

xp(t + 1) = xp(t) + (1 + 0.4xp(t))u(t),
y(t) = xp(t),
z(t) = xp(t) + v(t).

Suppose that the output y has a constraint y(t) ≤ 27 ∀t ≥ 0
and the control input u has a constraint |u(t)| ≤ 0.3 ∀t ≥ 0
due to saturation. Let the sensor noise v be a bounded noise
satisfying |v(t)| ≤ 0.1 ∀t ≥ 0. Apply the following linear
controller Σc without taking account of the constraints.

xc(t + 1) = 0.5xp(t) + 0.2(r(t) − z(t))
u(t) = 0.2xc(t)

Then the resulting closed-loop system Σ is described as

x(t + 1) = Ax(t) + Fx�(t)Tx(t) + Br(t) − Bv(t),
y(t) = C1x(t),
z(t) = C1x(t) + v(t),
c(t) = C0x(t) + D0,

where

x(t) =

»
xp(t)
xc(t)

–
, A =

»
1.0 0.2
−0.2 0.5

–
,

F =

»
0.08
0

–
, B =

»
0

0.2

–
, T =

»
0 0.5

0.5 0

–
,

C1 =
ˆ

1 0
˜

, c(t) =

2
4 y(t) − 27

u(t) − 0.3
−u(t) − 0.3

3
5 ,

C0 =

2
4 1 0

0 0.2
0 −0.2

3
5 , D0 =

2
4 −27

−0.3
−0.3

3
5 .

The equilibrium xe(r) is uniquely given by xe(r) =[
r 0

]�
. Let the set R be R = {r ∈ R|0 ≤ r ≤ 25}.

Then xe(r) is stable for all r ∈ R.
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Fig. 3. Simulation result

We construct the function V (x, r) as

V (x, r) = (x − xe(r))�P (r)(x − xe(r)) − 1, (38)

where P (r) is determined by using the method of [6]. Firstly,
we compute S(ri) for ri = 0.5i, i = 0, 1, 2, · · · , 50 in such a
way that it is an inner approximation of the set of constraints
admissible initial states for r(t) ≡ ri. Next, P (r), r ∈ R is
constructed by the linear interpolation.

The simulation results are shown in Fig. 3, where we set
r = 25, x0 = xe(0) = 0, K0 = P (0), ε = 10−3, δ = 0.1,
N = 15, and we input a random noise v satisfying |v(t)| ≤
0.1 ∀t ≥ 0. Figs. 3 (a) – (c) illustrate the responses of y, u, g,
respectively. The red solid curves show the responses by
the present method, blue dashed curves show the responses
without a reference governor, green dash-dotted curves show
the responses by the method of Gilbert and Kolmanovsky [6]
(where we assume that all the states are available), and black
dotted curves show the bounds of the constraints. We solve
the ROP by the grid search with grid width 10−2.

We see from Fig. 3 that, without a reference governor, the
control input is saturated and the constraint on y is violated.
In contrast, the present method satisfies both constraints on
u and y in spite of the unmeasurable states. Though, by
necessity, the response of the modified reference is slow as
compared to the direct measurement case, the deterioration
is not so large and the modified reference tracks the original
one rapidly.

The above numerical computations were preformed over
MATLAB running on the PC with Pentium–IV 3.4[GHz]

processor. The present algorithm took 0.1756[s] per step
on average and there is room for improvement in terms
of reduction of the computational time. For example, when
we use the bisection method instead of the grid search, the
computational time is drastically reduced to 3×10−3[s]. Note
that λ∗(t) obtained by the bisection method may not be a
sub-optimal solution of ROP since the connectedness of the
feasible area of ROP is not always assured (in the case of
this example, it is assured).

VI. CONCLUSION

This paper has proposed an output-feedback reference
governor for nonlinear systems. The estimation of the state
vector is realized by the set-valued observer [9] and the
resulting ellipsoidal state existence region is used instead of
the true states. Furthermore, the convergence of the states
with the present algorithm has been analyzed. We have
first considered the noise-free case, and derived a sufficient
condition for the asymptotic convergence of the state to the
desired equilibrium. Next, we have derived, for noisy case,
a sufficient condition for the settling of the state within a
neighborhood of the desired equilibrium. The effectiveness of
the present method has been shown by a numerical example.
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