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Abstract— We consider an infinite-horizon minimax optimal
control problem for nonlinear stochastic uncertain systems
governed by a discrete-state continuous-time chain. The chain
and system dynamics are subject to uncertain disturbances.
Using the large deviations theory we construct a robust stabiliz-
ing suboptimal guaranteed-performance controller. Conditions
are presented under which this controller is optimal. We
then present a numeric algorithm for calculating a robust
(sub)optimal controller using a Markov chain approximation
technique.

I. INTRODUCTION

Minimax optimal control and robust control of uncertain

stochastic systems, in which perturbations are restricted to

satisfy a constraint on probability laws associated with distur-

bances, have been actively developed in the past decade [1],

[2], [3], [4]. The majority of the results in this area deal with

robust control of stochastic systems in which perturbations

affect the process and/or measurement noise. This theory

has been less successful in capturing some other types of

uncertain perturbations occurring in stochastic systems. In

this paper, we consider one such class of systems, namely,

nonlinear hybrid jump parameter systems governed by a

discrete state uncertain chain. In addition, dynamics of each

mode of the system are uncertain.

The major novelty of this paper is the “hybrid” uncertainty

model which combines the uncertainties in the discrete-event

and continuous-state components of the system into a unified

uncertain system model. Thus, uncertain jump parameter

systems under consideration in this paper are substantially

more general than those considered in the literature, e.g.,

see [5], [6], [7] and the references therein.

In this paper we exploit the duality between dynamic

games and risk-sensitive control problems [8], [9]. This

approach has proven to be useful in solving a number

of stochastic LQ robust control and filtering problems [1],

[3], [10], because the related risk-sensitive control problems

admitted a tractable dynamic programming solution. In the

general nonlinear case, such as that considered in this paper,

the corresponding DP equations are not so easy to solve;

e.g., see [11]. We therefore follow a more direct path and

solve the risk-sensitive control problem numerically, using

the techniques developed in [12].

Using the Markov chain approximation technique, the

original continuous time dynamics are approximated by
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“locally consistent” Markov chain dynamics in discrete-time

[12]. Under these local consistency conditions, certain weak

convergence results can be established that allow the original

non-linear risk-sensitive control problem to be approximated

by an analogous risk-sensitive control problem on these

approximating Markov chain dynamics. This allows us to

develop numerically tractable algorithms for calculating our

desired controller.

II. MATHEMATICAL PRELIMINARIES

A. Uncertain Markov chains

We first give a review of uncertain Markov chains [9]. Let

Ωr be a Skorokhod space of cadlag functions [0,+∞) →
E = {1, . . . , N} [13] endowed with the Borel σ-algebra F r.

Let P r and r(·) be a probability measure on (Ωr,Fr) and

a Markov chain with values in E, respectively. Let us define

the natural filtration {Fr
t , t ≥ 0} generated by mappings Mt,

t ≥ 0 of the form Mt[r(·)] = r(t), for all r(.) ∈ Ωr. The

probability space (P r,Ωr,Fr) is assumed to be complete.

The chain r(·) is assumed to be homogeneous, stationary,

irreducible and aperiodic [14]. In particular, this implies that

its state transition probabilities satisfy [15]

P r(r(t+∆t) = j|r(t) = i) =

{
πji∆t + o(∆t), j �= i,

1 + πii∆t + o(∆t);
(1)

here πij ≥ 0, and πii = −∑
j �=i πji. Let Π := [πij ]. For

each j ∈ E, the probability rate of r jumping to the state j
at time t defines the mapping bj : [0,∞] × Ωr → R

+,

bj
t (r) = πji if r(t) = i �= j and bj

t (r) = 0 otherwise. (2)

Also, define a counting process N j
t (r) in (Ωr,Fr, P r),

which is known to admit the decomposition [9], [16] N j
t =∫ t

0
bj
sds + vj

t ; vj
t is a martingale.

Following [9], consider perturbations of the measure P r

characterized in terms of Fr
t -progressively measurable pro-

cesses δj
t , j = 1, . . . , N , satisfying the conditions:

(δ1) For all T > 0, there exists a probability measure Qr,T

on (Ωr,Fr
T ) under which ṽj

t = N j
t − ∫ t

0
δj
sb

j
sds is a local

martingale with respect to the filtration {F r
t , t ∈ [0, T ]}.

(δ2) For each j ∈ E,
∫ T

0
bj
s

(
1 −

√
δj
s

)2

ds<∞ Qr,T -a.s..

(δ3) Conditions (δ1) and (δ2) ensure that the probability

measures Qr,T are absolutely continuous with respect to

the probability measure P r,T , Qr,T � P r,T [9], [16]; the

latter is the restriction of the measure P r to Fr
T . In addition

to properties (δ1) and (δ2), we restrict attention to those

perturbation processes δt for which

h(Qr,T ‖P r,T ) := E
Qr,T

log
dQr,T

dP r,T
< ∞; (3)
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here h(Q‖P ) denotes the relative entropy between probabil-

ity measures Q and P [8],

h(Q‖P ) :=

{
E

Q log
(

dQ
dP

)
Q � P , log

(
dQ
dP

)
∈ L1(dQ)

+∞ otherwise,

and E
Q denotes the expectation with respect to Q.

Conversely, for any probability measure Qr,T on (Ωr,Fr
T )

such that h(Qr,T ‖P r,T ) < ∞, an Fr
t -progressively mea-

surable process δj
t can be found which satisfies the above

conditions [9]. This allows us to proceed regarding processes

[δj

(·)]
N
j=1, or equivalently, collections {Qr,T , T ≥ 0}, satisfy-

ing conditions (δ1), (δ2), and (δ3) as uncertain perturbations

of the chain r(t).
We note that properties (δ1), (δ2) and (δ3) describe a rich

class of perturbations of the reference Markov chain which

include nonhomogeneous, or nonstationary processes.

B. Jump parameter systems governed by uncertain chains

1) Nominal system governed by a Markov chain: We will

consider a class of stochastic systems driven by the Markov

chain r and a Brownian motion w, both processes being

defined on a joint probability space. Such a probability space

can be thought of as the product-space (Ω,F , P ), where

Ω = Ωr × Ωw, P = P r × Pw and F is the completion

of Fr ×Fw. Here, (Ωr,Fr, P r) is the canonical probability

space of the Markov chain r constructed in Section II-A,

and (Ωw,Fw, Pw) denotes the canonical noise space of a

Wiener process w(t).
On (Ω,F , {Ft, t ≥ 0}, P ), consider a stochastic system

dx(t) = f(x(t), u(t), r(t))dt + σ(x(t), r(t))dw(t), (4)

z(t) = g(x(t), u(t), r(t)), x(0) = x0 ∈ R
n,

r(t) and w(t) are independent. Here, x(t) ∈ R
n is the state,

z(t) ∈ R
q is the uncertainty output, u(t) is the control input

which takes values in a compact metric space U , and f , g,

σ are continuous and globally Lipschitz in x, uniformly in

u mappings R
n × U × E → R

n, R
n × U × E → R

q,

R
n × E → R

n×p. Also, σ(x, e)σ′(x, e) ≥ σ0I > 0 for all

x ∈ R
n, e ∈ E. Furthermore, for each e ∈ E, ρ > 0, the set

{x : supu∈U g(x, u, e) ≤ ρ} is compact.

Following [11], we focus on the set Ud of determinis-

tic (nonrandomized) Markov controls of the form u(t) =
K(x(t), r(t)), K is a measurable function R

n × E → U .

2) Perturbed jump parameter systems: As in [1], [2], [3],

the probability measure P is not fixed, rather collections

of probability measures {QT , T > 0} on (Ω,FT ) will be

considered such that h(QT ‖PT )<∞; PT is the restriction

of P to (Ω,FT ). For each T >0, the set of such probability

measures QT will be denoted PT . The system (4) under

QT ∈ PT will be regarded as a perturbed system. Accord-

ingly, the system (4) under P T is the nominal system.

Although admissible perturbations of the nominal model

remain unknown, they are usually assumed to be bounded in

magnitude in some sense. Following [1], [2], [3], we use the

relative entropy functional to measure the size of admissible

perturbations.

Definition 1 Let d > 0 be a given constant. A collection
of probability measures {QT , T ≥ 0} is said to define an
admissible perturbation of the system (4) if for each T > 0,
QT ∈ PT and there exists a nonnegative constant εT =
o(1/T ) such that the measure QT satisfies the constraint

sup
T ′>T

1

T ′

(
h(QT ′‖PT ′

) − E
QT ′

∫ T ′

0

‖z‖2dt

)
≤ d+εT . (5)

III. ROBUST CONTROL PROBLEM

We study a robust control problem for nonlinear systems

(4) whose dynamics evolve in uncertainty probability spaces

(Ω,FT , QT ), T > 0, under the uncertainty constraint (5). To

evaluate the system performance we will use the cost

J(u,Q) = lim
T→∞

1

T

∫ T

0

E
QT

c(x(t), u(t), r(t))dt; (6)

Here lim denotes lim sup. The running cost c(x, u, e) ≥ 0
is continuous in (x, u) for each e ∈ E, and the set {x :
supe∈E,u∈U c(x, u, r) ≤ ρ} is compact for each ρ > 0. The

variable Q refers to an admissible collection of measures

{QT , T > 0}; the set of such perturbations is denoted Ξd.

Therefore, the objective is to find a suboptimal solution u∗

to the optimization problem

infu supQ∈Ξd
J(u,Q) ≤ supQ∈Ξd

J(u∗, Q). (7)

The suboptimal controller is sought in the class of suitable

deterministic Markov control policies providing a certain ro-

bust closed loop stability. Also, the controller u∗ is desirable

which gives a tight bound on the worst-case performance so

that inequality (7) becomes the exact equality.

In [11], solutions to a related risk-sensitive control prob-

lem (see (9) below) for the nominal system were sought in

the class of deterministic Markov controls u ∈ Ud for which

the closed-loop process (x(t), r(t)) (4) has a unique invariant

probability measure on R
n×E; such control strategies were

termed in [11] stabilizing policies; see Definition 3 below. A

similar blanket assumption of positive recurrence was used

in [17]. However, in the presence of uncertain perturbations

considered in this paper an invariant measure may not exist.

To account for this fact, we present the stability property

relevant to the uncertain system (4).

Definition 2 The closed loop system corresponding to a
control policy u(·) ∈ Ud is absolutely stable if there exists a
β > 0 such that for all admissible perturbations,

lim
T→∞

1

T

∫ T

0

E
QT ‖x(t)‖βdt ≤ γ, (8)

where the constant γ > 0 is independent of QT ∈ Ξd.

The following risk-sensitive control problem will be in-

strumental in the derivation of a solution to the problem (7),

inf
u∈Ud

Jθ(u), (9)

Jθ(u) := lim
T→∞

θ

T
log E exp

[
1

θ

∫ T

0

cθ(x(t), u(t), r(t))dt

]
,

cθ(x, u, e) := c(x, u, e) + θ‖g(x, u, e)‖2.
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Theorem 1 Suppose there exists an admissible controller uθ

such that Vθ := infu∈Ud
Jθ(u) < +∞. Then this controller

solves the guaranteed cost control problem (4), (5), (7), and
supQ∈Ξd

J(uθ, Q) ≤ Vθ + θd. Furthermore,

infu∈Ud
supQ∈Ξd

J(u,Q) ≤ infθ(Vθ + θd); (10)

the infimum on the RHS is taken over the set of parameters
θ ≥ 0 for which the problem (9) admits a solution. If
c(x, u, i) ≥ α‖x‖β for all i ∈ E, then the controller obtained
from (10), is an absolutely stabilizing controller.

We will now show that the right-hand side of (10) gives the

optimal worst-case performance, provided robust controllers

of interest are those which exercise stationary stabilizing
Markov state-feedback.

Definition 3 A control u ∈ Ud is said to be stationary
stabilizing for the nominal system (4) if there exists a unique
invariant probability measure µu on R

n × E, i.e.,∑
i∈E

∫
Rn

P

(
x(t) ∈ B,
r(t) = j

∣∣∣∣ x(0) = x,
r(0) = i

)
µu(dx, i) = µu(B×j)

for any Borel set B ∈ R
n. The set of all stationary stabilizing

controls will be denoted Uds.

To present a rigorous formulation of the necessity result

to complement that of Theorem 1, some additional technical

conditions on control solutions are needed. These conditions

are taken from [11].

Condition 1 Let P u(t, (x, i), B × {j}) denote the transi-
tion probability function for the nominal composite Markov
process (x(t), r(t)). Let a control solving Theorem 1 be
stationary stabilizing, u = u(x, i) ∈ Uds, and let there exist
a τu > 0, a σ-finite measure ηu on R

n × E and a function
qu(x, i, y, j) such that
(a) qu(x, i, y, j) > 0 for ηu-almost all (x, i) ∈ R

n × E;
(b) Pu(τu, (x, i), B × {j}) =

∫
B

qu(x, i, y, j)ηu(dy, j);
(c) For all ε > 0 there exists a δ > 0 such that

if |x − x′| < δ then
∑N

j=1

∫
Rn |qu(x, i, y, j) −

qu(x′, i, y, j)|ηu(dy, j) < ε.

Consider a set Vd of two-component nonrandomized

Markov disturbances v = [v1 v2] : Rn × E → R
p+1, whose

second component v2 is a measurable positive function

R
n×E→R

1. Also define r̃ to be a continuous time Markov

chain taking values in E, with generator matrix entries

π̃ji = π̃ji(x, v2) = πji

v2(x, j)

v2(x, i)
, j �= i, and

π̃ii = π̃ii(x, v2) = −
∑

l �=i
π̃li(x, v2). (11)

To formulate the second assumption of [11], consider the

system in (Ω,F , P )

dx̃(t) = (f(x̃(t), ũ(t), r̃(t)) + σ(x̃(t), r̃(t))ṽ1(t))dt

+ σ(x̃(t), r̃(t))dw(t), (12)

z̃(t) = g(x̃(t), ũ(t), r̃(t)), x̃(0) = x0 ∈ R
n,

ũ(t) := u(x̃(t), r̃(t)), ṽ1(t) := v1(x̃(t), r̃(t)).

Condition 2 For a stationary stabilizing control solving
Theorem 1, u ∈ Uds, there exists a nonnegative function
φu ∈ C2(Rn × E) such that

(i) lim|x|→∞ φu(x, i) = ∞;
(ii) There exists ρ > 0, ε > 0 such that (Au,vφu)(x, i) <

−ε for |x| > ρ and i ∈ E, and
∣∣∣∂φu

∂x
(x, i)

∣∣∣2 > σ−1
0 ;

Au,v is the infinitesimal generator of (12).

(iii) φu(x, i) and
∣∣∣∂φu

∂x
(x, i)

∣∣∣2 have polynomial growth in x.

Conditions 1 and 2 guarantee that for any Markov dis-

turbance v(·) ∈ Vd, the system (12) has a unique invariant

measure µu,v [11]. Further, define

H(x, i, u, v2)=
∑
j∈E

[
π̃ji(x, v2) log v2(x, j) − πji

v2(x, j)

v2(x, i)

]
,

Cθ(x, i, u, v) = cθ(x, i, u) − 1

2
‖v1‖2 − H(x, i, u, v2),

and consider the functional associated with the system (12),

J̄(u, v) = lim
T→∞

1

T

∫ T

0

Cθ(x̃(t), r̃(t), ũ(t), ṽ(t))dt.

In view of Condition 2, we have

J̄(u, v) =
∑N

i=1

∫
Rn

Cθ(x, i, u, v)µu,v(dx, i).

We now denote the elements of Uds that also meet the

conditions 1 and 2 as Ūds. Theorem 4 of [11] claims that

Jθ(u) = supv∈Vd
J̄(u, v) ∀u ∈ Ūds. (13)

We are in a position to present a result which can be

regarded as a converse result to Theorem 1. Let V 0
θ :=

infu∈Ūds
Jθ(u).

Theorem 2 (i) If the set {θ : V 0
θ < ∞} is not empty then

the robust minimax control problem given on the left-hand
side of (7) admits a solution in the class of deterministic
stationary stabilizing controls Ūds.

(ii) The robust minimax control problem given on the left-
hand side of (7) admits a solution in the class Ūds, only if
the set {θ : V 0

θ < ∞} is not empty. In this case,

inf
u∈Ūds

sup
Q∈Ξd

J(u,Q) = inf
θ:V 0

θ
<∞

(V 0
θ + θd). (14)

IV. NUMERIC SOLUTIONS USING A MARKOV CHAIN

APPROACH

The dynamic programming equation for the risk-sensitive

control problem (9) is given in [11]. Finding its direct

solution is difficult in general. This motivates consideration

of a numeric approximation approach based on the Markov

chain scheme of [12]. In this approach, the risk-sensitive

control problem for unperturbed continuous-time hybrid dy-

namics (4), (1) is approximated by a risk-sensitive control

problem on controlled discrete-time Markov chain dynamics.

To simplify presentation, we have only considered approxi-

mations of dynamics with diagonal σ(x, e). Approximations

for dynamics with non-diagonal σ(x, e) can be developed in

a similar way [12, pp. 108–110].
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In the first two parts of this section we will need to assume,

as a technical condition, that f and σ are bounded for all x ∈
Rn, u ∈ U and e ∈ E. In practice, this assumption is easily

satisfied due to a practical requirement to approximate the

dynamics on a bounded region of state-space (on a bounded

region, f , σ are bounded under the original assumptions on

the dynamics).

A. Construction of a Markov chain approximation

We follow the approach taken in [12, Ch. 5]. Let us define

di ∈ Rn to be indicator column vectors, dii = 1, dij = 0 for

j �= i. Then a uniform grid of size h is defined as follows:

S̄h = {x : x = h
∑

i dimi : mi = 0,±1,±2, . . .}.

To approximate our original unperturbed dynamics (1), (4)

we consider two discrete-time Markov chains, x̄k ∈ S̄h,

r̄k ∈ E for k = 0, 1, . . ., defined on complete probabil-

ity spaces (Ω̄hx, F̄hx, P̄hx), (Ω̄hr, F̄hr, P̄hr), respectively.

These probability spaces will be interpreted as approxima-

tions for (Ωr,Fr, P r), (Ωw,Fw, Pw). We assume that these

spaces are endowed with the natural filtrations F̄x
k , F̄r

k ,

k ≥ 0, generated by the processes x̄k, r̄k, respectively.

Below we will define appropriate transition probabilities

for these approximating Markov chains. P̄hx(ȳ|x̄, u, e) will

denote the transition probability from state x̄k = x̄ to state

x̄k+1 = ȳ when r̄k = e and control action u ∈ U is applied.

P̄hr(j|e) will denote the transition probability from r̄k =
e to r̄k+1 = j. From these two chains we will define a

composite chain (x̄k, r̄k) on the product probability space

(Ω̄h, F̄h, P̄h) where Ω̄h = Ω̄hx × Ω̄hr, P̄h = P̄hx × P̄hr

and F̄h is the completion of F̄hx × F̄hr.

To develop an approximating Markov chain consistent

with our original unperturbed continuous-time dynamics we

define a fixed time step ∆t̄h = h2

Dh , where Dh ≥ σ0 > 0 is

defined by

Dh = max
x̄∈S̄h

max
u∈U,e∈E

{
σ2(x̄, e, u) + h

∑
k

|fk(x̄, e, u)|
}

.

We assume h is small enough so that 0 ≤ |πee|∆t̄h < 1.

As a first step in constructing a suitable Markov chain

approximation, we consider approximation of (4) for each

mode value. For each e ∈ E, consider a discrete-time Markov

chain with probabilities of transition to neighboring states

P̄hx ( x̄ ± hdj | x̄, u, e) =
σ2(x̄, e, u)/2 + hf±

j (x̄, e, u)

Dh

(15)

where j ∈ {1, . . . , n}, fj(·) is the jth component of f(·),
f+

j = max[fj , 0] and f−
j = max[−fj , 0]. Further, we

assume that the probability of transition to non-neighboring

states is zero. With this choice of transition probabilities, the

probability of remaining in a particular state is given by

P̄hx ( x̄| x̄, u, e) = 1 −
∑

ȳ �=x̄
P̄hx ( ȳ| x̄, u, e) .

To complete our approximation of the original unperturbed

dynamics we define a discrete-time Markov chain represent-

ing the mode process, r̄k, with the transition probability

matrix P̄hr = exp(Π∆t̄h).

We define the processes x̄k and r̄k to have independent

increments so that for the composite Markov chain (x̄, r̄) we

define a product probability measure under which

Ph ( (ȳ, j)| (x̄, e), u) = P̄hr(j|e)P̄hx ( ȳ| x̄, u, e) .

E
h[·] will denote the expectation with respect to P h(·) (and

similarly define conditional expectations).

With the composite Markov chain (x̄, r̄) we associate a

continuous parameter interpolation process

Xh(t) = x̄k and Rh(t) = r̄k, t ∈ [k∆t̄h, (k + 1)∆t̄h)

It is this continuous parameter interpolation process that ap-

proximates our original unperturbed continuous-time hybrid

dynamics (when σ(x, e) is diagonal for all x ∈ Rn, e ∈ E)

in the sense given in the next lemma.

Lemma 1 Consider the unperturbed dynamics (4), (1) and
additionally assume that f , σ are bounded, and that σ(x, e)
is diagonal for all x, e. Let x̄+ = Xh((k + 1)∆t̄h), x̄ =
Xh(k∆t̄h), r̄+ = Rh((k +1)∆t̄h) and r̄ = Rh(k∆t̄h). The
continuous parameter interpolation process (Xh(t), Rh(t))
with transition probabilities P̄h ( (ȳ, j)| (x̄, e), u) is locally
consistent with the unperturbed dynamics in the sense that

E
h

[
x̄+ − x̄|r̄, x̄, u

]
= f(x̄, r̄, u)∆t̄h + o(∆t̄h),

E
h
[
(x̄+−x̄)(x̄+−x̄)′|r̄, x̄, u

]
= σ(̄x, r̄)σ(x̄, r̄)′∆t̄h+o(∆t̄h),

P̄hr
(
Rh(k∆t̄h + ∆t̄h) = j|Rh(k∆t̄h) = e

)
=

[
eΠ∆t̄h

]je

,

Ph
(
x̄+, r̄+|r̄, x̄, u

)
= Ph

(
x̄+|r̄, x̄, u

)
Ph

(
r̄+|r̄, x̄, u

)
,

sup
t

E
h[|Xh(t + ∆t̄h) − Xh(t)|] h→ 0,

sup
t

E
h[|Rh(t + ∆t̄h) − Rh(t)|] h→ 0.

Our choice of approximating dynamics is not the only

choice that meets these local consistency conditions. For

example, locally consistent dynamics in which ∆t̄h varies

over the state space and with control variable choice are also

possible. However, these types of approximations are avoided

because they are not well suited to time-averaged control

problems [12]. Moreover, our assumption that σ is diagonal

can be relaxed by using other Markov chain approximation

structures.

The established local consistency results allow us to apply

most of the results from [12, Ch. 11] in a fair routine

manner. Before proceeding to establish the main result of this

section we need to introduce the concept of a relaxed control.

Consider the σ-algebras B(U) and B(U × [0,∞)) defined

as the collections of Borel subsets of U and U × [0,∞),
respectively. An admissible relaxed control is then a random

variable m(.) taking values in the space of Borel measures

on B(U × [0,∞)) and such that m(U × [0, t)) = t for all

t ≥ 0 and m(A × [0, t]) is Ft-adapted for all A ∈ B(U).
We can then define a ‘derivative’ mt(.), where mt(A) is

Ft-adapted for all A ∈ B(U), such that

m(B) =

∫
U×[0,∞)

I(α,t)∈Bmt(dα)dt w.p. 1
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for all B ∈ B(U × [0,∞)) and such that for each t, mt(.)
is a random measure on B(U) satisfying mt(U) = 1 with

probability 1. The space of such relaxed controls can then

be metrized using the Prohorov metric [12].

B. Weak convergence of Markov chain approximations

To connect the approximation Markov chain dynamics

with the original unperturbed dynamics we establish weak

convergence of the approximation as h → 0.

Within the next theorem, motivated by [12], we will

assume that for each h > 0, there is a probability space

on which are defined a filtration Fh
t , a process wh(.),

an admissible relaxed control mh(.) and solution pro-

cesses (Xh(.), Rh(.)). The wh(.) and Rh(.) are independent

and adapted to Fh
t where the filtration satisfies Fh

t ⊃
F(Xh(s), Rh(s),mh

s (.), wh(s), s ≤ t). Thus, Xh(.) satisfies

Xh(t) = Xh(0) +

∫ t

0

∫
U

f(Xh(s), Rh(s), α)mh
s (dα)ds

+

∫ t

0

σ(Xh(s), Rh(s))dwh(s) + o(h).

This representation follows from Lemma 1 and noting that

for h > 0 these integrations can be expressed as summations.

Theorem 3 Consider dynamics (4), (1) and assume that
f , σ are bounded. Suppose the local consistency con-
ditions of Lemma 1 hold. Let Xh(0)

h→ x0. Then
any sequence

{
Xh(.), Rh(.),mh(.), wh(.)

}
as h → 0

is tight. Let (X(.), R(.),m(.), w(.)) denote the limit
of a weakly convergence subsequence. Define Ft =
F (X(s), R(s),ms(.), w(s), s ≤ t), Fr

t = F (R(s), s ≤ t).
Then w(.) and R(.) are mutually independent standard Ft-
Wiener process and Fr

t -Markov chain, respectively, m.(.)
is admissible with respect to (w(.), R(.)), X(0) = xo,
x(.) = X(.) satisfies the dynamics (4) weakly and R(.)
satisfies the dynamics (1) weakly.

We next outline the solution to the appropriate discrete-

time risk-sensitive Markov chain problem.

C. Risk-sensitive control of discrete-time Markov chains

Consider a discrete-time, stationary, controlled Markov

chain z̄k that takes values from a finite state space Z̄ , that

is z̄k ∈ Z̄ for all k = 0, 1, . . .. Further, we consider controls

from a compact set Ū , a set of Markov (possibly randomized)

policies ŪR = {u(.) : Z̄ → P (Ū)}, and a set of stationary

deterministic Markov policies ŪD = {u(.) : Z̄ → Ū}.

For each u ∈ Ū we have controllable transition probability

matrices P̄ z(i|j, u) that are assumed irreducible and ape-

riodic for each control. Further we assume that P̄ z(i|j, u)
is continuous in u and P̄ z(i|i, u) > 0 for all i ∈ Z̄ and

all u ∈ Ū . Associated with these controlled dynamics we

consider a non-negative bounded one-stage cost c̄θ(z̄, u).
The risk-sensitive control problem for these discrete-time

Markov chain dynamics is to design a control policy u(.) ∈
ŪR that minimizes the cost J̄ θ(z̄0, u) from initial state z̄0,

J̄ θ(z̄0, u) = lim
m→∞

θ

m
log E

P̄ z

e
1

θ

Pm
k=0

c̄θ(z̄k,u(z̄k)). (16)

If c̄θ(., .) = ∆t̄hcθ(., ., .), then J̄ θ(z̄0, u)/∆t̄h is a suit-

able discrete-time discrete-state approximation for the risk-

sensitive control problem (9).

According to [18], suppose there is a λ > 0 and a ψ̄ :
Z̄ → R which is a strictly positive function such that

λψ̄(i) = minu∈Ū

{
e

1

θ
c̄θ(i,u)

∑
j∈Z̄

P̄ z(j|i, u)ψ̄(j)
}

(17)

for each i ∈ Z̄ . Then these dynamic programming equations

solve the discrete-time Markov chain risk-sensitive control

problem in that, infu(.)∈ŪR
J̄ θ(j, u(.)) = θ logn λ for every

j ∈ Z̄ . If u(i) ∈ Ū is the minimizing control in (17) then

u(.) ∈ ŪD ⊂ ŪR is the optimal control policy for this

problem [18, Thm 2.1]. Further, from our irreducible and

aperiodic assumption on P̄ z , we know that the minimizing

control meets a natural analogy of Conditions 1 and 2.

Further, under the above assumptions, a suitable λ and ψ̄
always exists [18, Thm 2.2] and convergence of a suitable

value iteration for (17) can be established [18, Thm 2.3]. Al-

though unaware of convergence results for a policy iteration

algorithm when Ū is a compact set, we prefer to use a policy

iteration solution technique in our numeric algorithms.

V. EXAMPLE: CONTROL OF A POWER GENERATION NODE

We consider the problem of controlling one node of an

interconnected power system. This example and the main

dynamic model parameters are given in [19].

We assume that no direct information about other power

generation nodes is available, but that these other nodes can

induce changes to power generation dynamics of the node

under consideration. The influence of the power generation

grid is represented through the presence of a discrete-valued

process r(t) ∈ E = {1, 2} which corresponds to possible

induced changes in the dynamics of power generation of the

node being controlled. These changes are due to changes in

loads connected to the grid; see [19] for details.

In our controlled dynamic model of one power generation

node: let x(t) = [∆δ(t),∆δ̇(t)]′ be the change in generator

rotor angle (relative to the reference angle) and its rate of

change, respectively; let u(t) = [∆P (t),∆Q(t)]′ be changes

in real and reactive input power (control inputs); and let r(t)
describe the dynamics of the power grid interference due to

load changes. We assume |∆P (t)| ≤ 1 and |∆Q(t)| ≤ 1;

this constraint reflects physical limitations on the amount of

power which can be received from mechanical drives.

Consider the following hybrid dynamic description of a

power generation node:

dx(t) = (Ar(t)x(t) + Br(t)u(t))dt + σdw(t). (18)

In accordance with the approach outlined in Section II-

B, we assume that the system (18) is defined in a true

probability space. The latter space is associated with physical

disturbances, and is therefore uncertain. In the reference

probability space however, w(t) is a standard Wiener process

with unity covariance, σ is a diagonal 2×2 matrix with both

diagonal elements equal to
√

0.1, r(t) is a Markov chain
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process with 2 × 2 transition probability rate matrix (1) in

which πij = 0.1 for i �= j, and

[A1|A2] =

[
0 1

−1.810 −0.476

∣∣∣∣ 0 1
−1.841 −0.476

]

[B1|B2] =

[
0 0

0.476 −7.323

∣∣∣∣ 0 0
0.476 −6.435

]
.

We assume that there is some uncertainty in our model

of the grid interconnection dynamics in that admissible

perturbations of the class Ξd with d = 0.05 (with g(., ., .) =
0) are present in our system. According to Definition 1,

this constraint captures unmodeled dynamics which have

bounded power, and also imprecisely known and time-

varying deviations of transition-probability rates from the

nominal values specified above. Consider a running cost

c(x, u, e) = |x|2 + |u|2. With this choice of running cost,

consider the worst-case infinite-horizon cost as defined by

(6). Our robust control problem on these power generation

node dynamics is to find a suboptimal control law u∗ as

defined by (7). Note that with the above choice of the running

cost, Theorem 1 will yield the robust closed-loop stability.

As described by Theorem 1, our robust suboptimal control

design is achieved through a line-search (over θ) of Vθ +θd.

Using the Markov chain approximation technique presented

in Section IV (with N̄h = 1.5 and h = 3/28) we numerically

solved the risk-sensitive control problem for various θ to

enable us to approximately find the θ0 that minimizes Vθ+θd.

These particular choices of parameters N̄ and h were found

to offer a reasonable trade-off between computational effort

and accuracy. It was numerically found that a reasonable

estimate of the minimum of Vθ + θd is θ0 = 1.

Let our designed robust suboptimal control u∗ be the

optimal control u1 for the (θ = 1) risk-sensitive control

problem. Then Theorem 1 states that the designed u∗ control

provides a guaranteed cost control solution so that

sup
Q∈Ξd

J(u∗, Q) ≤ V1 + d ≈ 0.265

where V1 + d = 0.265 was numerically calculated in this

problem. To correctly interpret this performance bound, it

should be noted that our approximation for V1 is only as

accurate as provided by our choice of N̄ and h. Refining N̄
and h will refine our performance bound.

Figure 1 shows the second component while in mode 1 of

the resulting approximation of the resulting state-feedback

robust controller u∗.

Although the presented robust suboptimal control design

approach requires a computationally expensive line search

over θ, this compares favorably with a more standard robust

control design approach that would require a more compli-

cated search over the admissible perturbation class Ξd.
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