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Abstract— The purpose of this note is to highlight similarities
and differences between two alternative methodologies for
feedback control design under constraints on the McMillan
degree of the feedback system. Both sets of techniques focus on
uniformly optimal designs. The first is based on the work of
Gahinet and Apkarian, and Skelton, Iwasaki, Grigoriades and
their co-workers, while the other is based on earlier joint work
of the authors with C. I. Byrnes.

I. INTRODUCTION

The dimension of components in a feedback system is
often a critical design parameter. Robustness and reliability
are often adversely affected by the dimension of the compo-
nents, numerics are hampered by the size of problem, and
finally, high order dynamical response may be undesirable
to a human interacting with the particular system. Thus, it
is of interest to explore the possibility of effective control
design techniques that are capable of incorporating degree
constraints. The purpose of this note is to discuss and
compare two alternative methodologies for feedback control
design which allow a handle on the McMillan degree.

Gahinet and Apkarian [11], and Skelton, Iwasaki, and
Grigoriadis [19] have introduced methodologies for con-
troller design under degree constraints. Performance and
stability are expressed, in the spirit of current control design
practices, using suitable linear matrix inequalities, while a
rank condition relates directly to the dimension of the con-
troller. Controller design is treated herein as an interpolation
problem in the style of H∞ (circa 1980’s), and in fact,
we focus on the single input single output paradigm of
sensitivity minimization (despite its limited practical appeal).
Our goal is to contrast the aforementioned methods with a
more direct approach based on our own earlier work on
analytic interpolation with degree constraint (see e.g., [4],
[5]). The authors have repeatedly been asked to explain
the connection between the techniques in e.g., [4], and the
aforementioned approach using linear matrix inequalities, as
they both pertain to degree constraints. The purpose of this
paper is to answer this question and to explain similarities
and differences between the two approaches.

Consider the feedback interconnection in Figure 1 and
let d represent an external disturbance whose effect on the
output is to be minimized. When the dynamical system is
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Göran Gustafsson Foundation.

u y
P (s)

K(s)

d

Fig. 1. Feedback loop

linear, this can be formulated as a standard H∞-minimization
problem. The controller is chosen to ensure internal stability
and minimize the gain of the sensitivity function

S =
1

1 − PK
(1)

over selected frequency bands. Throughout, P, K repre-
sent the transfer functions of plant and controller and
deg(P ), deg(K) represent their respective McMillan de-
grees. In the standard H∞ formalism the perfomance is
encapsulated in a weighting function W (s) and the design
specifications cast in the form of ensuring a bound on the
weighted norm

‖W (s)S(s)‖∞ < γ (2)

subject to internal stability. Typically, deg(K), deg(S) de-
pend on deg(P ) and deg(W ) (and in fact, the sum of these
two McMillan degrees). Aside from the resulting “inflation”
of the degree for the controller, the choice of the weight
W (s) is a delicate task since it is not at all transparent
how it affects feasibility of the performance specification (2).
Indeed, small changes in the desired bandwidth of the system
and the desired “shape” of S(s) (dictated by our choice of
W (s)) may render the performance specification unattain-
able. Although the task of choosing weights in H∞-design is
somewhat intuitive and more accepted than that of choosing
design parameters in, say, linear quadratic problems, it is far
from straightforward and often a challenging task [23], [10].

Starting from a state-space formalism to H∞-control prob-
lems [8] and via a clever use of the bounded real lemma,
Gahinet and Apkarian [11] (see also [19]) expressed the
conditions for the existence of a controller which guarantees
performance and has given McMillan degree, in the form
of a linear matrix inequality (LMI) with a rank constraint.
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Typically, weighting functions are incorporated into the plant
description (“inflating” the degree of the “new” plant ac-
cordingly). With that in place, a case which is particularly
appealing is when, in our context, deg(K) = deg(P ).
Then the approach in [11], [19] leads to a set of ordinary
linear matrix inequalities (LMI’s). Requiring further degree
reduction is a highly nontrivial problem in general.

An alternative viewpoint is to consider the totality of
sensitivity functions of a given degree that meet a possibly
conservative bound, and then select a particular one within
this class. This hinges upon an effective parametrization
of sensitivity functions that can be so achieved. Such a
parametrization is in place for the precise class of sensitivity
functions that do not exceed in dimension the sum of
unstable plant poles and non-minimum phase plant zeros
[4]. The central object of interest is therefore the sensitivity
function and its dimension (or, more generally, any closed
loop mapping). Provided the plant is strictly proper and we
select the sensitivity function within this class, it also holds
that deg(K) < deg(P ) (see e.g., [17]). To determine such
controllers by the approach in [11], [19], one needs to impose
a rank condition, thus destroying the LMI structure of the
problem.

u y

d

G(z)

K(z)

z

Fig. 2. Standard feedback interconnection.

II. LMI-BASED DESIGN

We begin by explaining the pertinent formalism and key
findings in [19], [11]. Assume the standard setting of a
dynamical system G with two sets of inputs and outputs d, u
and z, y, respectively, as in Figure 2, and transfer function

G(z) =

(
D11 D12

D21 D22

)
+

(
C1

C2

)
(zI − A)−1

(
B1 B2

)
with (A, B2, C2) stabilizable and detectable, and D22 = 0.
The search for dynamic controllers

K(z) = DK + CK(zI − AK)−1BK

having input y, output u, dimension deg(K), and ensuring
an H∞-gain from d to y less than γ, proceeds as follows.
Determine a pair of symmetric matrices X, Y of dimensions
deg(P ) × deg(P ) satisfying(

X γI
γI Y

)
≥ 0, (3)

and(
B2

D12

)⊥ [(
X 0
0 γ2I

)
− (4)

−

(
A B1

C1 D11

) (
X 0
0 I

) (
A B1

C1 D11

)′
](

B2

D12

)⊥
′

> 0

(
C′

2

D′
21

)⊥ [(
Y 0
0 γ2I

)
− (5)

−

(
A B1

C1 D11

)′ (
Y 0
0 I

) (
A B1

C1 D11

)](
C′

2

D′
21

)⊥
′

> 0,

where M⊥ denotes any matrix whose rows form a basis
of the left null space of a matrix M . The above conditions
are linear matrix inequalities and can be easily solved by
standard methods.

For any such solution (X, Y ), we have X > 0, Y > 0
and hence

rank

(
X γI
γI Y

)
= rank(Y − γ2X−1) + deg(P ). (6)

Now compute a factorization

NM−1N ′ = Y − γ2X−1

with M is a k × k invertible matrix, and form the positive
definite matrices

Ŷ :=

(
Y N
N ′ M

)
, X̂ = γ2Ŷ −1.

For each such X̂ there is a ball of controllers defined by(
DK CK

BK AK

)
= K0 + R

1/2

leftLR
1/2

right

with L any matrix having norm ‖L‖ < 1. The center K0 and
the radii Rleft and Rright can be computed as in [19, page
174] and the dimension of the controller is deg(K) = k.
Clearly,

deg(K) ≥ rank(Y − γ2X−1); (7)

i.e., generically, deg(K) ≥ deg(P ). If one desires a con-
troller of lower dimension, one needs to choose (X, Y ) so
that Y − γ2X−1 has lower rank, which destroys the LMI
structure of the solution set.

The class of all controllers of dimension deg(K) is the
union of all (possibly overlapping) controller balls obtained
by varying X, Y over the solution set of the earlier linear
matrix inequalities together with the rank constraint. We
illustrate this with a simple example, to which we return
in the next section using a different approach.

Consider once again the sensitivity minimization problem
with

P (z) =
1

z − 2

and the feedback loop redrawn in Figure 3 in the standard
form. Then, the parameters of the nominal system G(z) are⎛

⎝ A B1 B2

C1 D11 D22

C2 D21 D22

⎞
⎠ =

⎛
⎝ 2 0 1

1 1 0
1 1 0

⎞
⎠ .
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Fig. 3. The feedback loop of Fig. 1 in the standard form.

The linear matrix inequalities (4)–(5) become

(
0 1

) [(
x 0
0 γ2

)
−

(
2 0
1 1

) (
x 0
0 1

) (
2 1
0 1

)] (
0
1

)
> 0,

(
1 −1

) [(
y 0
0 γ2

)
−

(
2 1
0 1

) (
y 0
0 1

) (
2 0
1 1

)] (
1
−1

)
> 0,

yielding, together with the positivity condition,

0 < x < γ2 − 1 and 0 < y <
γ2

3
.

Inequality (3) now implies that γ > 2. Let us choose

γ =
5

2
.

At this point x, y are independent of each other, and in
general (7) will require a controller of degree deg(K) = 1.
If we want controllers of degree deg(K) = 0, i.e., constant
gain, we need to take the lower bound in (7) to be zero; i.e.,

xy = γ2 =
25

4
.

This gives a range of values for x

3 < x < γ2 − 1 =
21

4
.

For each value of x in this range we compute

K0 = −
2x

1 + x
, Rleft =

x2 − 3x

x + 1
, Rright =

γ2 − (x + 1)

x + 1
.

Hence the range of controller gains for a given x is

K0 − R < K < K0 + R

where

R :=

√
x(x − 3)(γ2 − (x + 1))

γ(x + 1)
=

2
5

√
x(x − 3)(21

4
− x)

x + 1
.

Figure 4 displays the range of controller gains over each
admissible value of x. The dash-dotted curve represents K0

and the solid curves represent K0 ± R as functions of x. A
typical interval of admissible controller gains for x = 3.2
is highlighted with a thick vertical line (the center indicated
with a circle and the end points with an asterisk). Then, the
union of all control-gain intervals over the admissible range
of x is

−1.8 < K < −1.4.

Figures 5 and 6, display the range of sensitivity functions (by
showing their respective Bode plots) that can be obtained by
choosing K in the admissible ranges corresponding to values
x = 3.2 and x = 5.2, respectively, for comparison.
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Fig. 4. The range of admissible values for the pair (x, K).
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Fig. 5. Range of sensitivity shapes for x = 3.2

III. SPECTRAL-ZERO BASED DESIGN

We continue by explaining a formalism based on analytic
interpolation with degree constraint developed over the last
decade by the authors together with several co-workers; see
e.g., [4], [5], and the reference therein.

It is well known that H∞-control problems in the most
general form discussed in Section II, can be cast as an-
alytic interpolation problems [18], [1]. In fact, using the
Youla-Kucera parametrization of stabilizing controllers for
(A, B2, C2) (see [9]), the standard control problem in Figure
2 can be brought into the form a so-called 4-block interpo-
lation problem of selecting Q so as to minimize or bound

‖T1 − T2QT3‖∞,

where Ti, i = 1, 2, 3, and Q are H∞-matrix functions of
compatible dimension, Ti, i = 1, 2, 3, obtained from the
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Fig. 6. Range of sensitivity shapes for x = 5.2

problem data, while Q specifies the controller. The class
of possible functions T = T1 − T2QT3 is constrained at
the singularities of the Tk’s, k = 2, 3, where the value
of T is independent of Q and agrees with T1, giving rise
to “tangential interpolation” constraints. In turn, analytic
interpolation constraints of a most general nature can be
cast as moment constraints [15], [1], and the theory of
analytic interpolation with degree constraint can be extended
to cover the generalized moment problem [7]. While most
of the theory can be carried out in considerable generality
(incorporating degree constraints, e.g., see [3], and also
[13], [14]), we restrict our attention to the scalar sensitivity
shaping problem.

For disturbance attenuation one needs to prescribe the gain
of the sensitivity function of the feedback system over differ-
ent frequency bands according to specification. This is to be
achieved by a suitable selection of a (internally) stabilizing
controller. Zames [22] formulated the problem of shaping
the sensitivity function as an optimization problem. A stable
and stably invertible transfer function W1 is selected, and
the controller K is chosen to minimize the H∞ norm of
the “weighted sensitivity” W1S. This choice of controller,
namely

Kopt := arginf{‖W1S‖∞ : K stabilizing},

yields a lower bound

γopt = inf
K stabilizing

‖W1S‖∞

on the norm of the weighted sensitivity, where S is given by
(1). The optimal weighted sensitivity, whenever it is attained
(e.g., see [22], [9]), turns out to be an all-pass function. In
fact, because internal stability can be expressed in the form
of the interpolation conditions

S(zi) = 1, i = 1, . . . , ν and S(pj) = 0, j = 1, . . . , µ,
(8)

where z1, . . . , zν are the non-minimum phase zeros of the
plant P (z) and p1, . . . , pµ are the unstable poles [20], it can

be shown that

W1Sopt = γopt

β

α
,

where α is a Schur polynomial of degree n = ν +µ− 1 and
β(z) = znα(z−1).

Such optimization problems are often very sensitive to the
problem data [21], and therefore one could focus instead on
stabilizing controllers in the bigger class

Kγ := {K stabilizing : ‖W1S‖∞ < γ}

with γ > γopt. The so-called “central solution” in this class
of suboptimal controllers,

KME = argmax
K∈Kγ

∫ π

−π

log
(
γ2 − |W1(e

iθ)S(eiθ)|2
)
dθ

is easily computed in a state-space formalism [16]. This is
known as the maximum entropy solution, and the corre-
sponding weighed sensitivity function again takes the form

W1SME = γ
β

α

where α is a Schur polynomial of degree n and β is a
polynomial of degree at most n.

It turns out that there is an efficient characterization of
all admissible sensitivity functions of degree not exceeding
n, which of course includes the maximum entropy one, in
terms of a weighted entropy functional∫ π

−π

W2(e
iθ) log

(
γ2 − |W1(e

iθ)S(eiθ)|2
)
dθ, (9)

with

W2 =
∣∣∣ρ
τ

∣∣∣2 , (10)

where

τ(z) =

ν∏
j=1

(z − z̄−1
j )

µ∏
j=1

(z − p̄−1
j ),

and ρ ranges over the class Sn of all monic Schur poly-
nomials of degree at most n [5]. For each ρ ∈ Sn, the
corresponding optimization problem has a unique solution

Kρ = argmax
K∈Kγ

∫ π

−π

W2(e
iθ) log

(
γ2 − |W1(e

iθ)S(eiθ)|2
)
dθ

and the weighed sensitivity function again takes the form

W1Sρ = γ
β

α

where α ∈ Sn and deg β is also bounded by n.
These polynomials can be computed via convex optimiza-

tion [4], [5]. In fact the map

ϕ : Sn → Sn : ρ �→ α

is a homeomorphism onto its image A := ϕ(Sn) [6], and β
can be computed from the interpolation conditions once α
is determined. Furthermore,

|α|2 − |β|2 = λ|ρ|2 (11)
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on the unit circle, for some λ > 0. The correspondence
ϕ provides a complete and smooth parametrization of all
solutions in terms of ρ ∈ Sn. The roots of ρ can be given
the interpretation as being either transmission zeros of 1

γ Sρ

thought as the scattering function of a passive circuit or, as
being spectral zeros of an associated spectral density [4].

The weighted entropy functional in (9) suggests that
the polynomial ρ in (10) can be thought of as a “tuning
parameter” in controller design. In fact, ρ can be chosen to
yield large values for |W2| in a frequency range where low
sensitivity is desired. This added degree of freedom does
not increase the degree of W1Sρ. This may often permit a
choice of W1 of low degree, or simply the choice W1 ≡ 1.
The McMillan degree of the controller Kρ is bounded by

deg Kρ ≤ deg P + deg W1 − 1,

provided the plant P is strictly proper.
We illustrate this approach on the elementary example

discussed in Section II, where

P (z) =
1

z − 2
.

Of course, all computations can be done by hand and the full
power of convex optimization is not needed. Nevertheless,
this example highlights the differences with the approach of
Section II.

Since P has a non-minimum-phase zero at z = ∞ and
an unstable pole at z = 2, the interpolation conditions (8)
are S(∞) = 1 and S(z) = 0. Consequently, the sentitivity
function must take the form

S(z) =
z − 2

z − a
,

where we must have −1 < a < 1 for S to be analytic in
|z| > 1. It is easy to see that

γopt = inf
−1<a<−1

‖S‖∞ = 2.

We select γ = 5
2

as before, and write

Sρ(z) = γ
β(z)

α(z)
= γ

2
5
z − 4

5

z − a
.

As ρ(z) ranges over

S1 = {z − r : −1 ≤ r ≤ 1} ,

the polynomial α(z) ranges over

A =

{
z − a :

1

5
≤ a ≤

3

5

}
.

This can be readily verified from (11) without the need to
solve the optimizaton problem. Indeed, substituting α, β and
ρ in (11) and eliminating λ, we obtain that

r

1 + r2
a2 − a +

(
1

5

r

1 + r2
+

8

25

)
= 0.

The value a as a function of r is plotted in Figure 7 and
represents a smooth and complete parametrization of all
sensitivity functions of degree 1 (and controllers of degree

2.5 3 3.5 4 4.5 5 5.5

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

ρ

a

Fig. 7. a as a function of r

0). In general, (11) represent quadratic equations which are
difficult to solve directly. In view of (1),

K =
(
1 − S−1

)
P−1 = a − 2

is of degree zero. Consequently, the range of constant gains
that satisfy ‖Sρ‖∞ < γ lie in the interval

−1.8 ≤ K ≤ −1.4 (12)

in bijective correspondence with elements in ρ ∈ S1. (This
can also be verified directly, e.g., by computing ‖(z−2)/(z−
2−K)‖∞ over the range of K). Figure 8 shows Bode plots
of Sρ for ρ = z−r and r ∈ [−1, 1] at intervals of 0.25 apart.
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Fig. 8. The complete range of sensitivity shapes under the degree constraint.

A comparison of Figures 5, 6 and 8 reveals a fundamental
difference between the approach in Section II and that of
Section III. In Section III we parameterize all solutions of
degree one in terms of the tuning parameter r, and conse-
quently the whole range of possible sensitivity functions are
depicted in Figure 8. In the approach of Section II, the range
of sensitivity functions will depend on the particular solution
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of the LMIs (4)–(5) and the rank condition (7). The choice
x = 5.2 (Figure 6) yields a very narrow subclass of possible
sensitivity functions and controllers and the choice x = 3.2
(Figure 5) a somewhat wider. However, no choice of x will
yield the complete class of sensitivity functions depicted
in Figure 8 and the corresponding interval of controllers
given in (12). In this respect, note the difference of scale
in Figures 5 and 8.

IV. CONCLUDING REMARKS

It is important to point out that, in Section III, the range
of values for the controller and the closed-loop sensitivity
function is provided at the outset via the parameterizing set
Sn and the smooth mapping ϕ. By way of contrast, in Section
II, each particular solution of the linear matrix inequalities
(4)–(5) yields only a subset of possible controllers. More-
over, for the sensitivity shaping problem in particular, the
controller degree is larger than that obtained in Section III
if one wants to avoid imposing the rank condition (7); i.e.,
insisting on solving only LMIs. The framework of Section
III handles in the same way interior as well as boundary
points and provides a complete parametrization. This is not
the case for the LMI-based approach and in fact, the radii for
the balls of controller gains shrink to zero as the solutions
of the LMIs tend to boundary values.

The basic framework in [4], [5] extends to the matricial
setting, e.g., see [3], [14]. Detailed studies of various robust
control problems using this formalism have been carried out
in [17], [2] and a multivariable framework is currently under
development.
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