
Lyapunov Adaptive Stabilization of Parabolic PDEs—
Part I: A Benchmark for Boundary Control

MIROSLAV KRSTIC

University of California, San Diego

Abstract— We develop an adaptive controller for a bench-
mark parabolic PDE controlled from a boundary and contain-
ing an unknown destabilizing parameter affecting the interior
of the domain. This design departs from prior approaches
that impose relative degree or open-loop stability assumptions,
or require domain-wide actuation. An adaptive design for
our benchmark plant is a necessary step towards developing
controllers for physical systems such as fluid, thermal, and
chemical dynamics, where actuation can be only applied non-
intrusively, the dynamics are unstable, and the parameters,
such as the Reynolds, Rayleigh, Prandtl, or Peclet numbers
are unknown because they vary with operating conditions. Our
method builds upon our explicitly parametrized control formula
in [26] to avoid solving a Riccati or Bezout equation at each
time step.

I. INTRODUCTION

While for linear finite dimensional systems many adaptive
schemes have been proposed [8], adaptive control techniques
have been developed for only a few classes of PDEs re-
stricted by relative degree, stability, or domain-wide actu-
ation assumptions. In this paper and its companion [16]
we develop the first adaptive controllers for parabolic PDEs
controlled from a boundary and containing unknown desta-
bilizing parameters affecting the interior of the domain.
Our control laws are given by explicit formulae and open
the door for the use of a wealth of certainty equivalence
and Lyapunov techniques developed for finite dimensional
systems. They initiate an effort towards developing adaptive
controllers for physical systems such as fluid, thermal, and
chemical dynamics, where actuation can be only applied non-
intrusively, the dynamics are unstable, and the parameters,
such as the Reynolds, Rayleigh, Prandtl, or Peclet numbers
are unknown because they vary with operating conditions.
Our method builds upon our explicitly parametrized control
formulae in [26] to avoid solving Riccati or Bezout equations
at each time step.

a) Literature Overview: Early works on adaptive con-
trol of infinite-dimensional systems, surveyed by Loge-
mann and Townley [22], were for plants stabilizable by
non-identifier based high gain feedback, under a relative
degree one assumption. Model reference (MRAC) type
schemes were designed by Hong and Bentsman [7], Bohm,
Demetriou, Reich, and Rosen [2], Solo and Bamieh [30],
Orlov [23], and Bentsman and Orlov [1]. While the strength
of these results are the proofs of identifiability of infi-
nite dimensional parameter vectors, their limitation is that
they require control action throughout the PDE domain.
Other efforts such as Demetriou and Ito [5] and Wen and
Balas [32] have relied on positive realness assumptions.

Adaptive linear quadratic control with least-squares esti-
mation was pursued by Duncan, Maslowski, and Pasik-
Duncan [6] for linear stochastic evolution equations with un-
bounded input operators and exponentially stable dynamics.
Adaptive control of nonlinear PDEs has also received some
attention. Liu and Krstic [19] and Kobayashi [11] considered
a Burgers equation with various parametric uncertainties;
Kobayashi [13] also considered the Kuramoto-Sivashinsky
equation. Jovanovic and Bamieh [9] designed adaptive con-
trollers for nonlinear systems on lattices, which include
applications like infinite vehicular platoons or infinite arrays
of microcantilevers. An experimentally validated adaptive
boundary controller for a flexible beam was presented by
de Queiroz, Dawson, Agarwal, and Zhang [4].

b) The Results of the Paper: For several unstable
parabolic PDE systems controlled from the boundary we
assume that physical parameters like reaction, diffusion,
or advection coefficients are unknown. No adaptive con-
trollers for such models have been proposed, even though
they are frequent in applications that incorporate thermal-
fluid or chemically reacting dynamics. An obstacle to the
development of adaptive controllers has been the lack of
parametrized families of nonadaptive controllers. This ob-
stacle was removed by Smyshlyaev and Krstic [26] who
developed explicit formulae for boundary control of a class
of parabolic PDEs that includes the problems considered
here. Those formulae are not only explicit functions of the
spatial coordinates of the PDE, but also depend explicitly
on the physical parameters of the plant. This feature is
absent from standard methods like LQR extensions to PDEs
because parametrized solutions to Riccati equations cannot
be obtained. While an adaptive version of an LQR approach
would require a solution to a high-dimensional Riccati equa-
tion at each time step, our approach only requires that new
parameter updates be plugged into the control formula.

For clarity, we present results for scalar and vector parame-
ter problems. They can be extended to functional parameters
as in [1], [2], [7], [23], [30]. This is illustrated briefly in
Section VII and is a topic of a future paper [28]. With
the controllers parametrized in the physical parameters, our
schemes are of indirect type.

Three basic approaches to the design of parameter identi-
fiers for adaptive control exist [17]: the Lyapunov approach,
the passivity-based approach (pursued in [1], [2], [7], [23]),
and the swapping approach. The Lyapunov approach, which
ensures the best transient performance properties is seldom
possible without changing the control law to compensate
the potentially destabilizing effect of adaptation, even in the
linear case. We exploit the structural opportunities within
the class of PDEs we are considering and develop Lyapunov
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adaptation schemes.
Our Lyapunov design is inspired by an idea Praly [24]

developed for adaptive nonlinear control under growth con-
ditions. Since our PDE problems are linear, we have found
a way to significantly simplify this approach, however, we
retain its main feature—a logarithm weight on the plant state
in the Lyapunov function. This results in a normalization
of the update law by a norm on the plant state, which is
uncommon for Lyapunov designs.

To avoid tedium and keep the concepts clear we present
designs for the simplest classes of systems for which the
concepts are nontrivial. We start in this paper with a bench-
mark reaction-diffusion problem with only the destabilizing
reaction coefficient unknown. Then, in [16] it is shown how
to deal with parametric uncertainties in boundary conditions
or reaction terms involving boundary values. Finally, in [16]
a solutions is shown to a reaction-advection-diffusion prob-
lem with all three coefficients unknown. A skilled designer
can combine these tools to craft solutions to more general
problems.

c) Notation: The spatial L2(0, 1) norm is denoted by
‖ · ‖. The symbols I1(·), I2(·), J1(·), etc., denote the corre-
sponding Bessel functions.

II. CONTROL DESIGN FOR A SYSTEM WITH AN

UNKNOWN REACTION COEFFICIENT

We start the paper with a design for a benchmark system
and present extensions in subsequent sections. The bench-
mark system has a destabilizing reaction term and employs
control only at the boundary. The unknown reaction coef-
ficient is scalar, however, an extension to spatially-varying
functional coefficients is discussed in Section VII. A problem
with multiple parameters is also discussed in [16].

While this paper assumes availability of full state feed-
back, [16] presents designs that employ only boundary
sensing.

Consider the following plant

ut(x, t) = uxx(x, t) + λu(x, t) , (1)

u(0, t) = 0 , (2)

where λ is an unknown constant parameter that can have
any real value. High values of λ lead to instability for either
boundary conditions u(1, t) = 0 or ux(1, t) = 0. We use a
Neumann boundary controller designed in [26] in the form1

ux(1) = − λ̂

2
u(1) − λ̂

∫ 1

0

ξ

I2

(√
λ̂(1 − ξ2)

)
1 − ξ2

u(ξ)dξ , (3)

which employs the measurements of u(x) for x ∈ [0, 1] and
an estimate λ̂ of λ. Consider an invertible change of variable

w(x) = u(x) −
∫ x

0

k(x, ξ, λ̂)u(ξ) dξ , (4)

k(x, ξ, λ̂) = −λ̂ξ

I1

(√
λ̂(x2 − ξ2)

)
√

λ̂(x2 − ξ2)
. (5)

1In the sequel, to reduce notational overload, the dependence on time will
be suppressed whenever possible.

The transformation (4) maps (1)–(3) into [29]

wt = wxx + ˙̂
λ

∫ x

0

ξ

2
w(ξ) dξ + λ̃w , (6)

w(0) = 0 , (7)

wx(1) = 0 , (8)

where λ̃ = λ − λ̂ is the parameter estimation error.
We will show that the update law

˙̂
λ = γ

‖w‖2

1 + ‖w‖2
, 0 < γ < 1 (9)

achieves regulation of u(x, t) to zero for all x ∈ [0, 1], for
arbitrarily large initial data u(x, 0) and for an arbitrarily poor
initial estimate λ̂(0).

Theorem 1: Suppose that the system (1)–(3), (9) has
a well defined classical solution for all t ≥ 0. Then,
for any initial condition u0 ∈ H1 and any λ̂(0) ∈ R,
the solutions u(x, t) and λ̂(t) are uniformly bounded and
limt→∞ u(x, t) = 0 for all x ∈ [0, 1]. Moreover, the follow-
ing performance bounds hold in the closed-loop nonlinear
system:

u(x, t)2 ≤ 32
(
1 + 3λ2 + λ̃(0)2 + γ log

(
1 + ‖w(0)‖2

))
×

[
‖wx(0)‖2 + 3

√
γ

(
1 + ‖w(0)‖2

)
e

1
γ λ̃(0)2

×
(

log
(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)3/2

]
(10)

for all x ∈ [0, 1], t ≥ 0, and∫ ∞

0

u(x, t)2dt ≤

48
(
1 + 3λ2 + λ̃(0)2 + γ log

(
1 + ‖w(0)‖2

))
× (

1 + ‖w(0)‖2
)
e

1
γ λ̃(0)2

×
(

log
(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)

(11)

for all x ∈ [0, 1].
Remark 1: While the bound (10) obviously quantifies the

“peak transient” performance, the bound (11) quantifies the
rate of convergence to zero.

Remark 2: The non-negative form of the adaptive law (9)
is coincidental for this particular benchmark plant and it is
further discussed in Section V.

Remark 3: It is also important to note that the update law
(9) contains normalization. Normalization is uncommon in
Lyapunov designs and is the result of including the logarithm
in the Lyapunov function [24]. Normalization is necessary
because the control law (3) is of certainty equivalence type—
unlike the Lyapunov adaptive controllers in [17] which
employ non-normalized adaptation and strengthened nonlin-
ear controllers that compensate for time-varying effects of
adaptation. An additional measure of preventing overly fast
adaptation in (9) is the restriction on the adaptation gain
(γ < 1).
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III. PROOF OF THEOREM 1

Consider a Lyapunov function candidate

V =
1
2

log
(
1 + ‖w‖2

)
+

1
2γ

λ̃2 . (12)

The time derivative along the solutions of (6)–(9) can be
shown to be

V̇ = − ‖wx‖2

1 + ‖w‖2
+

˙̂
λ

2

∫ 1

0
w(x)

(∫ x

0
ξw(ξ)dξ

)
dx

1 + ‖w‖2
(13)

(the calculation involves one step of integration by parts).
Using the Cauchy-Schwartz inequality twice we obtain the
following sequence of inequalities:∣∣∣∣

∫ 1

0

w(x)
(∫ x

0

ξw(ξ)dξ

)
dx

∣∣∣∣
≤

∫ 1

0

|w(x)|
(∫ x

0

ξ|w(ξ)|dξ

)
dx

≤
∫ 1

0

|w(x)|
(∫ x

0

ξ2dξ

)1/2 (∫ x

0

w(ξ)2dξ

)1/2

dx

≤ ‖w‖
∫ 1

0

|w(x)| 1√
3
x3/2dx

≤ ‖w‖√
3
‖w‖

(∫ 1

0

x3dx

)1/2

≤ 1
2
√

3
‖w‖2 . (14)

Using Poincare’s inequality, one gets∣∣∣∣
∫ 1

0

w(x)
(∫ x

0

ξw(ξ)dξ

)
dx

∣∣∣∣ ≤ 2√
3
‖wx‖2 . (15)

Substituting this inequality and (9) into (13), we get

V̇ ≤ −
(

1 − γ√
3

) ‖wx‖2

1 + ‖w‖2
. (16)

This implies that V (t) remains bounded for all time when-
ever 0 < γ ≤ √

3. From the definition of V it follows that
‖w‖ and λ̂ remain bounded for all time. However, we need
to show that w(x, t) is bounded for all time and for all x.
To do this, consider

1
2

d

dt
‖wx‖2 =

∫ 1

0

wxwxt dx = −
∫ 1

0

wxxwt dx

= −
∫ 1

0

w2
xx dx − λ̃

∫ 1

0

wxxwdx

−
˙̂
λ

2

∫ 1

0

wxx

∫ x

0

ξw(ξ) dξ

= −‖wxx‖2 + λ̃

∫ 1

0

w2
xdx

+
˙̂
λ

2

∫ 1

0

xwwxdx

= −‖wxx‖2 + λ̃‖wx‖2

+
˙̂
λ

4
(
w(1)2 − ‖w‖2

)
. (17)

Integration by parts was used several times to obtain the
above equalities. Using Agmon’s inequality (noting that
w(0) = 0), then Young’s inequality, and finally Poincare’s
inequality (noting that wx(1) = 0), one gets that

w(1)2 − ‖w‖2 ≤ ‖wx‖2 ≤ 4‖wxx‖2 . (18)

Substituting (18) into (17), it follows that

1
2

d

dt
‖wx‖2 ≤ −(1 − γ)‖wxx‖2 + λ̃‖wx‖2

≤ λ̃‖wx‖2 . (19)

Integrating the last inequality, we obtain

‖wx(t)‖2 ≤ ‖wx(0)‖2

+2 sup
0≤τ≤t

|λ̃(τ)|
∫ t

0

‖wx(τ)‖2dτ . (20)

To obtain this bound, on one hand we have from (12) and
(16) that

λ̃(t)2 ≤ λ̃(0)2 + γ log
(
1 + ‖w(0)‖2

)
. (21)

On the other hand,∫ t

0

‖wx(τ)‖2dτ

≤ sup
0≤τ≤t

(
1 + ‖w(τ)‖2

) ∫ t

0

‖wx(τ)‖2

1 + ‖w(τ)‖2
dτ . (22)

From (12) and (16) it follows that

1 + ‖w(τ)‖2 ≤ (
1 + ‖w(0)‖2

)
e

1
γ λ̃(0)2 . (23)

Integrating (16) we get∫ t

0

‖wx(τ)‖2

1 + ‖w(τ)‖2
dτ

≤ 1

2
(
1 − γ√

3

) (
log

(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)

. (24)

Substituting (23) and (24) into (22), and then, along with
(21), into (20), we get

‖wx(t)‖2 ≤ ‖wx(0)‖2

+
√

γ

1 − γ√
3

(
1 + ‖w(0)‖2

)
e

1
γ λ̃(0)2

×
(

log
(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)3/2

. (25)

By combining Agmon’s and Poincare’s inequalities (and
using the fact that w(0) = 0), we get maxx∈[0,1] |w(x)|2 ≤
4‖wx‖2, thus w(x, t) is uniformly bounded.

Next, we prove regulation of w(x, t) to zero. Using (6)–(8)
and (14) we obtain

1
2

∣∣∣∣ d

dt
‖w‖2

∣∣∣∣ ≤ ‖wx‖2 +
(
|λ̃| + γ

4
√

3

)
‖w‖2 . (26)

Since ‖w‖ and ‖wx‖ have been proven bounded, it follows
that d

dt‖w‖2 is bounded, and thus ‖w(t)‖ is uniformly con-
tinuous. By combining (22)–(24) with Poincare’s inequality
we also get that ‖w(t)‖2 is integrable in time over the
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infinite time interval. By Barbalat’s lemma it follows that
‖w(t)‖ → 0 as t → ∞.

To show regulation also in the maximum norm,
we note that, from Agmon’s inequality, |w(x, t)|2 ≤
2‖w(t)‖‖wx(t)‖. Since ‖wx‖ is bounded and ‖w(t)‖ has
been shown convergent to zero, the regulation in maximum
norm follows.

Having proved the boundedness and regulation of w, we
now set out to establish the same for u. We start by noting
that [26]

u(x) = w(x) +
∫ x

0

l(x, ξ, λ̂)w(ξ)dξ , (27)

where

l(x, ξ, λ̂) = −λ̂ξ

J1

(√
λ̂(x2 − ξ2)

)
√

λ̂(x2 − ξ2)
. (28)

It is straightforward to show that

‖ux‖2 ≤ 2
(
1 + λ̂2 + 4M

)
‖wx‖2 , (29)

where

M =
∫ 1

0

(∫ 1

0

∣∣∣lx(x, ξ, λ̂)
∣∣∣ dξ

)2

dx (30)

and

lx(x, ξ, λ̂) = λ̂xξ

J2

(√
λ̂(x2 − ξ2)

)
x2 − ξ2

. (31)

By mimicking the calculation in [26, Equation (101)], we
get

∫ 1

0

∣∣∣lx(x, ξ, λ̂)
∣∣∣ dξ ≤ |λ̂|x + 1, which implies

M ≤
∫ 1

0

(
|λ̂|x + 1

)2

dx =
1
3
λ̂2 + |λ̂|+1 ≤ λ̂2 + 3

2
. (32)

Thus, it follows that

‖ux‖2 ≤ 2
(
4 + 3λ̂2

)
‖wx‖2

≤ 8
(
1 + 3λ2 + λ̃2

)
‖wx‖2 . (33)

Noting that u(x, t)2 ≤ 4‖ux‖2 for all (x, t) ∈ [0, 1]× [0,∞),
by combining (33), (21), and (25), and using the fact that

1
1− γ√

3
< 3 for γ < 1, we get (10), which proves uniform

boundedness of u.
To prove regulation of u(x, t) to zero for all x ∈ [0, 1],

we start by noting that

‖u‖2 ≤ 2(1 + L)‖w‖2 (34)

where
L = max

0≤ξ≤x≤1
l(x, ξ, λ̂)2 (35)

is finite whenever λ̂ is finite (which we have proved using
Lyapunov analysis). Since ‖w‖ is regulated to zero, so is
‖u‖. By Agmon’s inequality u(x, t)2 ≤ 2‖u‖‖ux‖, where
‖ux‖ is bounded by (33), (21), and (25). This completes the
proof of regulation of u.

The bound (11) is obtained in a similar manner to (10),
by combining (33) with (21)–(24).

IV. WELL POSEDNESS

Since the purpose of our paper is stabilization, we focus
our effort on proving boundedness and regulation. As evident
from Section III, this is not a routine task due to the nonlinear
character of the closed-loop system

wt = wxx +
γ

2
‖w‖2

1 + ‖w‖2

∫ x

0

ξw(ξ) dξ + λ̃w (36)

w(0) = wx(1) = 0 , (37)

˙̃
λ = −γ

‖w‖2

1 + ‖w‖2
. (38)

The analysis of existence and uniqueness of solutions is even
more involved. One of the steps in proving global existence
and uniqueness of classical solutions is to prove boundedness
of wt(t, x) and wxx(t, x), which proceeds as follows. It is
first observed from the first line of (19) that ‖wxx‖ is square
integrable over infinite time. The same property holds for
‖wt‖. It is then shown that

1
2

d

dt
‖wt‖2 + ‖wtx‖2 =

λ̃‖wt‖2 +
¨̂
λ

2

∫ 1

0

wt(x)
∫ x

0

ξw(ξ)dξdx

+ ˙̂
λ

∫ 1

0

wt(x)
(∫ x

0

ξ

2
wt(ξ)dξ − w(x)

)
dx (39)

and

1
2

d

dt
‖wtx‖2 + ‖wtxx‖2 =

λ̃‖wtx‖2 +
¨̂
λ

2

∫ 1

0

xwtx(x)w(x)dx

+ ˙̂
λ

∫ 1

0

wtx(x)
(x

2
wt(x) − wx(x)

)
dx , (40)

where
¨̂
λ =

γ

(1 + ‖w‖2)2
d

dt
‖w‖2 (41)

is bounded because of (26). From the boundedness of
‖w‖, ‖wx‖, ˙̂

λ,
¨̂
λ and the square integrability in time of

‖w‖, ‖wt‖, by integrating (39) it follows that ‖wt‖ is
bounded and ‖wtx‖ is square integrable. Then, by integrating
(40) and using the square integrability of ‖wx‖ and the other
functions mentioned above, it follows that ‖wtx‖ is bounded
and ‖wtxx‖ is square integrable. By Agmon’s inequality,
we get that wt(t, x) is uniformly bounded for all values
of its arguments, and the same holds for wxx(t, x). Those
properties are also valid in the original variable u(t, x) using
the smoothly invertible variable change (4)–(5).

Existence and uniqueness of appropriately defined weak
solutions can be studied in the same way as in [19, Section
4]. One writes the system in the form of two integral
equations, using the “heat equation” Green function for the
PDE for w, and then applies the Banach fixed point theorem.
The main difference in using that idea here would be that
the Green function used in [19] was for Neumann boundary
conditions at both ends, whereas in our case one boundary
condition is Dirichlet and the other is Neumann, which would
necessitate a slightly different Green function.
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V. PARAMETRIC ROBUSTNESS

Let us suppose that the adaptation is turned off, i.e., γ = 0,

i.e., ˙̂
λ ≡ 0. Then the closed loop system is

wt = wxx +
(
λ − λ̂

)
w (42)

with boundary conditions w(0) = 0, wx(1) = 0, where λ̂ is
constant. It can be shown that λ̂ > λ − π2

4 is exponentially
stabilizing, whereas λ̂ < λ− π2

4 is destabilizing. Thus, if an
upper bound on λ is known—denote it by λ̄—then (3) is a
stabilizing linear controller whenever λ̂ ≥ λ̄.

This robustness property explains why ˙̂
λ (9) is nonnega-

tive: overestimating λ̂ cannot be harmful within the controller
structure (3).2 A caveat is that, in the presence of noise, λ̂
will drift. In the update law (9) the estimate has nowhere
to drift but up3. In implementation one would add leakage,
deadzone, or projection [8] to prevent drift.

The frozen-parameter robustness is an unusual feature of
(3). It is different than the “infinite gain margin” of inverse
optimal controllers, which allow an arbitrary increase of a
gain in front of the control law. Optimal controllers are not
robust to changes in the plant parameter λ, whereas (3) is.

Viewing (3) as “high-gain” would be incorrect because it
resorts to high gain only when λ generates a high number
of unstable eigenvalues in the plant.

The form of gain that controller (3) is capable of em-
ploying should not be confused with adaptive high gain [22]
where a multiplicative gain is tuned for a controller

ux(1) = G{Cu} (43)

where G is the gain and C is an operator such that
ux(1) 	→ Cu is relative degree one. For the present system,
C independent of the unknown λ cannot be found, therefore,
tuning of a multiplicative gain G could not be successful.

VI. AN ALTERNATIVE APPROACH

The use of a log in the Lyapunov function (12) was
inspired by Praly’s Lyapunov design in [24]. We do not
follow it exactly because our PDEs are linear. It is however
of interest to see what it results in, as it may have potential
beyond our class of problems.

Let us start by denoting

A =

∫ 1

0
w(x)

(∫ x

0
ξw(ξ)dξ

)
dx

1 + ‖w‖2
(44)

B = 2
A

1 + ‖w‖2
(45)

H = −A2 +
1

1 + ‖w‖2

∫ 1

0

((∫ x

0

ξw(ξ)dξ

)2

+w(x)

(∫ x

0

ξ

(∫ ξ

0

w(η)dη

)
dξ

))
dx . (46)

2While the update law (9) can take the estimate λ̂ only “up,” the growth
of the estimate stops as ‖w(t)‖ goes to zero. Since V (t) is nonincreasing
and bounded from below (by zero), it has a limit. Hence λ̃(t)2 has a limit.
So does λ̂(t) and it is higher than λ − π2

4
. The size of λ̂(∞) depends on

the size of the initial condition u0.
3This issue is no less critical with update laws that are sign-indefinite,

however, with (9) it is obvious.

This method employs two estimates working in tandem, λ̂
and θ̂. A long Lyapunov based derivation, briefly justified
after the statement of the theorem below, yields

˙̂
λ = γ

βγ

βγ(1 − γH) − 1

×
( 3

2‖w‖2 + 2A‖wx‖2

1 + ‖w‖2

−
((

1 +
1
γ2

)
− 1

βγ2

)
βγB

(
λ̂ − θ̂ − γA

)
−σ

(
λ̂ − θ̂ − γA

))
(47)

˙̂
θ = γ

(
2‖w‖2

1 + ‖w‖2
− βγB

(
λ̂ − θ̂ − γA

))
. (48)

We have written the two update laws in a way to highlight
the similarities. The gains need to satisfy

γ < 3 (49)

β >
1

γ(1 − γ
3 )

(50)

σ > 0 . (51)

The conditions (49) and (50) are related to the fact that |H| ≤
1
3 .4 These conditions ensure that the denominator in the first
line of (47) remains positive.

Besides its complexity, a disadvantage of the update law
(47) is that it employs ‖wx‖, i.e., it requires the measurement
of the spatial derivative ux(x, t).

Theorem 2: Suppose that the system (1)–(3), (47), (48)
has a well defined classical solution for all t ≥ 0. Then,
for any initial condition u0 ∈ L2 and any λ̂(0), θ̂(0) ∈ R,
the spatial L2 norm ‖u(t)‖ remains bounded and the spatial
H1 norm ‖ux(t)‖ is square integrable over an infinite time
interval. Moreover, the estimates λ̂(t), θ̂(t) are bounded.

The proof of this result employs a Lyapunov function

V =
βγ2

2
βγ + 1
βγ − 1

+ log
(
1 + ‖w‖2

)
− 1

2γ

(
λ̂ − θ̂

)2

+
1
2γ

(
λ − θ̂

)2

+
β

2

(
λ̂ − θ̂ − γA

)2

. (52)

It is possible to prove that

V ≥ log
(
1 + ‖w‖2

)
+

1
2γ

((
λ̂ − θ̂

)2

+
βγ − 1

2

(
λ − θ̂

)2
)

, (53)

i.e., V is positive definite around the equilibrium w(x) ≡
0, λ̂ = θ̂ = λ. Then, a very long calculation yields

V̇ = −2
‖wx‖2

1 + ‖w‖2
. (54)

The properties stated in Theorem 2 readily follow.

4A fairly obvious bound is |H| ≤ 3 but a careful calculation in the vein
of (14) can establish a tighter bound |H| ≤ 1

3
.
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VII. EXTENSION TO SPATIALLY DEPENDENT

COEFFICIENTS

In the present paper we have considered only parameters
without spatial variation. In a future paper [28] we will
present an extension to spatially-varying problems [1], [2],
[7], [23], [30]. For example, the design for the benchmark

ut = uxx + λu (55)

can be generalized to the plant

ut = uxx + λ(x)u (56)

where λ(x) is continuous. We design the adaptive controller

u(1) =
∫ 1

0

k̂(1, ξ)u(ξ)dξ (57)

λ̂t(t, x) = γ
u(t, x)

(
w(t, x) − ∫ 1

x
k̂(ξ, x)w(t, ξ)dξ

)
1 + ‖w(t)‖2

(58)

where λ̂(t, x) is the online functional estimate of λ(x), the
state transformation is given by

w(x) = u(x) −
∫ 1

0

k̂(x, ξ)u(ξ)dξ ,

and the kernel
k̂(x, ξ) = k̂n(x, ξ)

is obtained recursively from

k̂0(x, ξ) = −1
2

∫ x+ξ
2

x−ξ
2

λ̂ (ζ) dζ (59)

k̂i+1(x, ξ) = k̂i(x, ξ)

+
∫ x+ξ

2

x−ξ
2

∫ x−ξ
2

0

λ̂ (ζ − σ) k̂i (ζ + σ, ζ − σ)

×dσdζ (60)

for each new update of λ̂(t, x). Stability is guaranteed for
sufficiently small γ and sufficiently high n. The recursion
(60) is convergent [18]. Several methods for its symbolic or
numerical computation were proposed and illustrated in [26],
noting that the computational effort is at least an order of
magnitude lower than solving a Riccati equation.
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