
Application Programming Interface for Real-Time
Receding Horizon Control

Tamás Keviczky, Andrew Packard, Oreste R. Natale, Gary J. Balas

Abstract— An application programming interface (API) was
developed to support implementation of receding horizon
control (RHC) schemes within the Open Control Platform
(OCP) real-time software environment. The basic philosophy
and process timing architecture is presented, along with details
of a prototype implementation of a quadratic programming
based generic RHC scheme. The API framework relies on
a real-time software infrastructure and provides a high-level
interface to control engineers, which simplifies the embedded
control design and implementation process significantly. The
RHC API was successfully flight tested on a full-scale aircraft
in the DARPA-sponsored Software Enabled Control program
final demonstration experiment.

I. INTRODUCTION

The growing complexity of control applications requires a
software infrastructure that supports the developer in lever-
aging from inter-process communication, operating systems,
the implementation details of tasks scheduling, and low
level device control software in a seamless manner [1]. This
enables the developer to concentrate all his design efforts on
the overall system behavior. One of the ultimate goals of the
DARPA Software Enabled Control (SEC) program [2] was
the development of the Open Control Platform (OCP), which
is a software technology supporting real-time distributed
control application development and implementation [3].
The Receding Horizon Control Application Programming
Interface (RHC API) is a key module within the OCP
that was developed to simplify implementation of receding
horizon control schemes for control engineers in a real-time
software environment.

The paper is structured as follows. Section II gives a
general overview of the Open Control Platform, which en-
compasses the RHC API implementation. Details of the RHC
API framework are described in Section III. A brief summary
of the DARPA SEC flight test experiment and simulation
results are presented in Section IV.

II. OPEN CONTROL PLATFORM OVERVIEW

The Open Control Platform (OCP) provides an open,
middleware-enabled software framework and development
platform for control engineers and researchers to aid technol-
ogy demonstration in simulated or actual embedded system
platforms [4]. The middleware layer of the OCP provides the
software layer isolating the application from the underlying

T. Keviczky and G. J. Balas are with Department of Aerospace Engi-
neering and Mechanics, University of Minnesota, Minneapolis, MN 55455,
USA, {keviczky,balas}@aem.umn.edu

A. Packard is with Department of Mechanical Engineering, University of
California, Berkeley, CA 94720, USA, pack@me.berkeley.edu

O. R. Natale is with the Dipartimento di Ingegneria, Università degli Studi
del Sannio, 82100 Benevento, Italy, o.r.natale@unisannio.it

target platform. It provides services for controlling the exe-
cution and scheduling of components, inter-component com-
munication, and deployment of application components onto
a target system. The embedded system domain of particular
interest to the SEC program was that of uninhabited aerial
vehicles (UAVs), however the software architecture of the
OCP leaves the possibility of applications in other domains
open. The OCP provides the following main features:

• An open platform for enabling control research and
technology transition.

• Dynamic configuration of components and services.
• A mechanism enabling the transition between execution

and fault management modes while maintaining control
of the target systems.

• Coordinated control of multiple target systems.
• A software system infrastructure that is isolated from a

particular hardware platform or operating system.
A primary motivating factor in implementing a middleware-
based architecture is the promise of isolating the application
components from the underlying platforms. This allows for
a more cost-effective implementation of common software
components that could be used across different product lines
and re-hosted onto evolving embedded computing platforms.

The OCP middleware is written in C++. It includes an
RT CORBA component [5], which leverages the ACE and
TAO products developed by the distributed object comput-
ing (DOC) research team at Washington University. TAO
provides real-time performance extensions to CORBA.

The OCP classifies hard real-time tasks into different rate
groups that have to be predefined by the user and must be fac-
tors of the fastest rate. The OCP Frame Controller provides
a synchronous executive that starts all rate processing. The
fastest rate is started once each “minor frame” and slower
rates are triggered at appropriate multiples of the minor
frame. For the specific example of the DARPA SEC flight
demonstration, minor frames were specified to execute at a
rate of 20 Hz and a major frame of 2 Hz execution rate was
defined to comprise ten minor frames. These major frames
will be referred to as computational cycles in Section III-
B, which describes the timing architecture of the RHC
API implementation for the DARPA SEC testbed. The most
important services and components of the OCP are described
briefly in the following sections.

A. Middleware services

The OCP provides a set of services in addition to the
standard CORBA specification, which gives additional real-
time performance enhancements as well as higher level
services (e.g. event service and replication utilities). For in-
stance, the OCP’s resource management component provides
a mechanism for controlling resource in a mode-specific

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoIB20.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 1331

way. This is an essential element for supporting modes in
hybrid systems. The designer specifies quality of service
(QoS) information, which is an input into the resource
management component to control the run-time execution
of the OCP. This component is responsible for partitioning
the system resources based on the mode of execution and
is an extension of the Honeywell Labs real-time adaptive
resource management (RT-ARM) capability [6]. It adjusts
rates of execution based on utilization information from the
scheduling component and notifies application components
when rates have been adapted.

B. Controls API

As mentioned above, the OCP provides several advanced
mechanisms such as dynamic scheduling and resource man-
agement. To help hide the complexity from the controls
designer, the OCP includes a control designer abstraction
layer above the RT CORBA implementation. This API allows
the designer to focus on familiar tools and terminology
while enabling the use of RT CORBA extensions. This help
provides a consistent view of the system that is meaningful
to the control designer. In order to accomplish this task, the
Controls API has been generalized as a combination of a
high level description language and a simple programming
interface. The designer expresses the characteristics of the
system in familiar terms to form a high level description of
the system. This description is then processed to populate a
component registry which is used by the OCP.

C. A new concept in real-time control: the anytime task

Most control systems built today are resource-limited. This
is especially true for embedded control systems in mobile
platforms due to constraints of size, weight, space or power.
Great effort is expended in engineering solutions that provide
jitter-free periodic execution while meeting hard real-time
deadlines in systems with high CPU utilization.

Mission-critical command and control is a resource-
constrained yet multifunctional enterprise, requiring simulta-
neous consideration of a variety of activities such as closed-
loop control, measurement and estimation, planning, commu-
nication, and fault management. On the same computational
platform, a large number of tasks must execute.

Anytime or incremental algorithms are particularly well
suited for implementing tasks that must adapt their resource
usage and quality of service [7]. In an anytime algorithm,
the quality of the result produced degrades gracefully as the
computation time is reduced. In particular, such algorithms
may be interrupted anytime and will always have a valid
result available. If more computation time is provided, the
quality of the result will improve. Examples of applications
that could benefit from dynamic resource management range
from integrated vehicle health monitoring software to real-
time trajectory optimizers that can dynamically replan routes
and trajectories of a fleet of UAVs.

The anytime task scheduler makes CPU computing re-
sources available to tasks based on their criticality, com-
puting requirements, and a schedulability analysis. Control
tasks execute within their allotted time and are subject to
preemption if they attempt to consume more than their
allowed resources. The anytime scheduler provides tasks
with the information necessary to adapt their computation

to the resource available. The application tasks may need to
balance the competing demands of deadlines and accuracy,
given the resource made available to them. In principle,
anytime algorithms can make effective use of any amount of
processing time that is available. Anytime tasks are modeled
based on the following characteristics:

1) They are continually executing iterative algorithms that
are not periodic. Examples include algorithms that
continually refine their result (imprecise computation)
and that produce new outputs based on new inputs.

2) Computation times and deadlines for each iteration of
the algorithm are an order of magnitude larger than the
basic periodic rate.

3) The computation time for each iteration is variable
and data-dependent. Furthermore, it is possible for the
algorithm to adapt its computation time based on the
resource allocated.

It is important that anytime algorithms coexist with the
periodic tasks in the control system. In order to achieve
this coexistence, the anytime task scheduler executes as a
periodic task within the overall control system. This periodic
task is assumed to run at the system clock rate and can
be modeled accordingly for rate monotonic analysis. The
scheduler allocates a fixed fraction of the overall CPU time
for anytime tasks, and this allocation is then subdivided
based on individual anytime tasks. For other OCP features
and services, such as detailed information about resource
optimization and anytime task scheduling, the reader is
referred to [3], [8].

III. THE RHC API

Receding horizon control (RHC) relies on the concept
of solving optimal control problems repetitively for a finite
future time horizon based on current measurements. The
feedback nature of this approach emerges from the policy
that only the first value of the control solution is implemented
at a given instance, and a new optimization problem is
solved over a shifted horizon based on actual measurements
at the next time step. The underlying mathematical pro-
gramming problem involved in the optimization depends on
the choice of the performance index, the prediction model
and constraints. For certain problem classes, the optimal
RHC controller can be calculated explicitly in a piecewise
affine state-feedback form [9] without the need for online
optimization. However in general, the objective function and
constraints might be nonlinear or the complexity of the
equivalent gain-scheduled controller might warrant the use of
an online optimization solver. If computational requirements
necessitate and the software infrastructure enables such task
to be incorporated in the real-time digital control system,
online optimization based techniques offer a very powerful
way to deal with constraints and changes in the controlled
system. On the other hand, using these methodologies it
becomes much more challenging to design the control system
to meet real-time computational requirements.

In practice, control engineers invest significant effort in
coding the implementation of their RHC algorithm on a par-
ticular hardware platform. This process involves addressing
software engineering issues related to real-time execution
requirements and process scheduling. The main purpose of

1332

the RHC API is to provide a high level software interface
that builds upon the services of the OCP to simplify imple-
mentation of receding horizon control schemes in a real-time
embedded environment.

The fundamental concept of the RHC API is to create
an interface at the level of mathematical programs that are
involved in all online optimization based receding horizon
schemes. The user is responsible for formulating the receding
horizon problem at hand as a mathematical program of
specific characteristics, and the RHC API provides the link to
the appropriate optimization solver and real-time scheduler,
which could be thought of as a plug-in module of the soft-
ware. A different RHC formulation may result in a different
mathematical program. However, as long as a particular
formulation belongs to a certain problem class, it is the role
of the RHC API to automate the code generation below the
mathematical program level and interface with the required
solver to perform the optimization. Besides providing this
natural interface at the problem formulation level, the API
makes use of OCP services which support implementing
the receding horizon scheme in real-time, according to the
philosophy that will be described in Section III-B.

The prototype RHC API is implemented under the OCP
environment (Controls API) and uses its own problem formu-
lation (more specific abstraction layer than a general mathe-
matical program). It relies on LSSOL to solve the Quadratic
Program (QP) that results from the problem formulation
module, which takes generic RHC problem parameter inputs
from the user. This specific RHC API implementation is
described in the following section.

A. Generic RHC problem formulation

The RHC API version implemented as part of the DARPA
SEC flight test experiment formulates and solves a quadratic
optimization problem during each time frame. In this partic-
ular implementation, the interface to the user is provided
at a higher abstraction layer, in the form of a generic
RHC problem formulation based on linear prediction models,
linear constraints and a quadratic performance index [10].
Formulating the mathematical program (QP) and invoking
the optimization solver is performed automatically. The
standard generic RHC problem formulation considers the
following minimization problem

minv

∑H−1
k=0 xT

k Qxk + uT
k Ruk

+ [Cxk − Gdk]T M [Cxk − Gdk]
+ vT Fv + KT v + xT

HΦxH

(1)

subject to

ax,box ≤ xk ≤ bx,box k=1,...,H (2a)

ax ≤ Lxxk ≤ bx k=1,...,H (2b)

au,box ≤ uk ≤ bu,box k=0,...,H−1 (2c)

au ≤ Luuk ≤ bu k=0,...,H−1 (2d)

aGu
≤ LGu

[
x1:H

u0:H−1

]
≤ bGu

(2e)

aGv
≤ LGv

[
x1:H

v

]
≤ bGv

(2f)

Here, the linear dynamics of the system are specified by the
matrices A, B, and E such that

xk+1 = Axk + Bux + Edk for k = 0, . . . ,H − 1 (3)

where the signal d represents both estimated disturbance
and desired trajectories. The control input u sequence is
determined from the optimization variables v according to

u0:H−1 := [u0, . . . , uH−1]′ = Uv (4)

The columns of U form a basis for the control input subspace.
As a result, the control input signal can then be written as
linear combinations of the columns of U .

Constraints (2a)-(2d) are targeted towards typical oper-
ational constraints. The last two constraint types (2e)-(2f)
allow the user to specify general linear constraints involving
states, inputs and optimization variables. The formulation
allows the matrices involved in the problem to be parameter-
dependent. These matrices are evaluated each time the prob-
lem formulation is called based on a parameter vector δ.

The problem formulation subroutine maps the system
model and cost function matrices into the variables which pa-
rameterize the quadratic program, namely

(
Q̄, L̄, Z̄, ā, W̄ , b̄

)
.

The resulting problem can then be represented as a quadratic
program of the form

min
v

1
2
vT Q̄v + vT L̄ + Z̄ (5a)

subject to ā ≤ W̄v ≤ b̄ (5b)

Once formulated, the parameters
(
Q̄, L̄, Z̄, ā, W̄ , b̄

)
are

passed to the quadratic program solver, LSSOL.
The method of LSSOL [11] is a two-phase (primal)

quadratic programming method. The two phases of the
method are: finding an initial feasible point by minimizing
the sum of infeasibilities (the feasibility phase), and minimiz-
ing the quadratic objective function within the feasible region
(the optimality phase). The computations in both phases are
performed by the same subroutines. The two-phase nature
of the algorithm is reflected by changing the function being
minimized from the sum of infeasibilities to the quadratic
objective function. Once any iterate is feasible, all subsequent
iterates remain feasible.

LSSOL has been designed to be efficient when used to
solve a sequence of related problems. From this aspect, it is
well suited for solving receding horizon control problems
or to be applied in a sequential quadratic programming
method for nonlinearly constrained optimization (e.g. in
the NPSOL package [12]). If the constrained problem is
infeasible, LSSOL returns a flag and the RHC API uses a
subroutine to automatically reformulate a relaxed problem
with additional slack variables. Constraint softening is done
using user-specified weights which define the relative “cost”
of relaxing individual constraints [8].

Alternate instances of the generic problem formulation
relying on different matrices are referred to as modes. Each
set of data associated with a specific problem formulation has
a corresponding mode number. These numbers are collected
in a mode vector I that indicates which mode the entire
system is in at the moment.

The RHC API requires the user to specify the following
data (some in the form of mode parameter-dependent matri-
ces) before the software component can be built:

1333

• dimensions of quantities
• dynamics
• cost function
• constraints
• weights for constraint relaxation
• basis set for input
• warm-start function (described in Section III-B)

In general, an iterative process is required to solve a
quadratic program. The following section describes the RHC
API timing architecture and the term “iteration” will be
used to refer to the number of iterations in the optimality
phase and the feasibility phase together using LSSOL as the
optimization solver.

B. Conceptual timing architecture

The RHC API is implemented as three different tasks
within the OCP environment. These tasks are referred to
as Pre, Opt and Post. Their execution spans a single
major frame of the scheduler, which runs at 2 Hz for the
specific application example of the DARPA SEC flight test.
The minor frame rate was specified to be 20 Hz. These
three tasks implement different parts of the receding horizon
control scheme based on user supplied data. The RHC API
formulates, solves and computes the proper control action to
be taken according to the following policy.

At time step k, the RHC API component receives the
following data (exogenous inputs) from other OCP com-
ponents: state estimate (xest(k)), signal estimate (dest(k :
k + H − 1)), mode vector (I), parameter vector (δ). The
hard real-time task Pre runs at the beginning of each
major frame and is responsible for executing two primary
operations. It calls the user-supplied warm-start function and
formulates the RHC problem based on current measurements
and user-supplied data. The linearly constrained, quadratic
program is constructed using the state and signal estimates,
the reference signal, and the dynamics, constraint and cost
matrices according to current values of I and δ.

The warm-start function has to perform two calculations.
First, initialize the decision variable v, based on current
inputs and data from the previous frame. It also computes
a candidate baseline control action u0 using any method
that has a guaranteed completion time. Although problem-
dependent, the user is expected to provide worst-case execu-
tion times for both of these steps, so they can be scheduled
in hard real-time fashion.

The problem formulation is then passed to the anytime
task Opt, which is enabled to run after Pre is finished. It is
important to note that Pre is designed to have a small worst-
case execution time. Opt solves the constrained optimization
problem by calling the appropriate mathematical program
solver. If the problem is infeasible, a relaxed version is solved
after reformulation.

OPT

PRE tPOST

PRE PREOPT POST

450 ms 500 ms0 ms

t

t

Fig. 1. Scheduling of the Pre, Opt and Post tasks within the RHC API.

solution

User library

NPSOL SNOPT

NLP

. . . LSSOL

QP

. . .

OPT

δ

I

v * u *

: control outputu

v : optimization variables

: mode

: parameters

I

δ

v initial

I I

δ δ

POST

Generate

outputδ

I

PRE

Baseline

Fig. 2. Conceptual signal-flow architecture of the Pre, Opt and Post
tasks within the RHC API.

Task Name Task Type Description

Pre Hard Real-Time RHC problem formulation, candi-
date control action.

Opt Anytime Solves constrained optimization
problem, relaxation if necessary.

Post Hard Real-Time RHC problem solution processing,
desired control action.

TABLE I

DESCRIPTION OF RHC API TASKS.

One minor frame before the next 2 Hz major frame,
i.e. 450 ms after the start of the current major frame, Opt is
terminated by the scheduler and Post is called. Post is a
hard real-time task, which processes the most recent (either
intermediate or final) optimal iterate v∗ of the solver. The
corresponding control action u∗ is calculated and a decision
is made whether to use the baseline control action u0 or u∗.
The baseline solution can be considered for implementation
in case the solver could not complete a single iteration, or
the intermediate solution quality is not acceptable due to
infeasibility or high cost. Finally, Post outputs the desired
control action at the end of the major frame.

The timing of the three basic tasks of the RHC API is
depicted in Figure 1. Descriptions of the Pre, Opt and
Post tasks are summarized in Table I.

The main motivation behind this scheduling scheme is
to allow a variable amount of computational time for the
most computationally intensive calculations. The online op-
timization is performed iteration by iteration in an “anytime”
fashion, so it can make use of more computational time if
made available by the scheduler.

Figure 2 illustrates the signal-flow relationship between
the three RHC API tasks and the user libraries. The user
libraries include RHC problem formulation data (parameters,
prediction models and any other user-defined input data) as
a collection of possible modes. The libraries should also
provide the user-defined functionalities within the Pre and
Post processes, such as the warm-start function and the
control solution calculation.

C. Implementation details

The RHC API implementation for the DARPA SEC flight
experiment was designed with the specific needs of this
application example in mind. The quadratic program solver
LSSOL has been modified in order to allow recovery of inter-
mediate iterates following premature termination from other
processes. User-specified code segments were implemented

1334

using an object oriented software engineering approach to
flight code design [13]. Extra care had to be taken to
make sure that the user-specified code contains no dynamic
memory allocations, which is a strict requirement in real-time
software applications.

IV. DARPA SEC FIXED WING DEMONSTRATION
EXPERIMENT

The main objective of the University of Minnesota /
University of California Berkeley flight experiment was to
demonstrate the use of advanced receding horizon guidance
technologies, which are enabled by the real-time software
tools of the RHC API and the OCP middleware.

The testbed was a full-scale T-33 jet aircraft outfitted with
an autopilot and the avionics package of the X-45 UCAV
unmanned aircraft. The control inputs of ground speed, turn
rate and altitude were implement using an autopilot, which
performed the lower level control of the aircraft. The autopi-
lot was flight certified and safe to operate, which reduced the
verification requirements on the online optimization based
control law.

The basic experimental scenario of our team focused on
two control objectives. First, tracking of a time-stamped
position reference trajectory while respecting constraints on
the vehicle dynamics. Second, detection of a simulated fault,
which was artificially inserted into the system. The scenario
timeline was flexible and could be influenced by the ground
operator invoking pop-up threats that had to be avoided.
These events resulted eventually in a reference trajectory that
is depicted in Figure 3. In a second, more ambitious scenario,
the fault is not removed from the system after detection, and
the RHC controller is reconfigured to adapt to the faulty
vehicle dynamics. Constraints are also adjusted to restrict
the aircraft’s maneuvers.

Description of the fault detection filter design and test
results are omitted in this paper and can be found in [8], [14],
along with simulations that show successful reconfiguration
of the RHC controller after a fault. Flight test results of the
RHC controller are also reported in [15], [16].

A. Simulation and flight test results

The receding horizon guidance controller was tested in
simulation with different wind conditions and showed excel-
lent robustness. With the exception of a few time samples, the
optimization converged within two iterations throughout the
entire simulation, without being terminated by the scheduler.
The top two plots in Figure 3 show simulated tracking
performance in the north-east coordinate frame and in terms
of altitude indicating excellent tracking performance. The
reference trajectory resulted from no-fly-zone and pop-up
threat avoidance, as well as reaching a stationary target and
performing fault detection experiments.

The bottom two plots in Figure 3 illustrate results from
the flight test, which took place at Edwards Air Force
Base in the Mojave desert in June 2004. The main reason
for deviations from the reference trajectory and degraded
tracking performance during flight test was that automatic
speed control was not available on the test platform. Tracking
a time-stamped position reference trajectory requires tight
control of the aircraft’s velocity. However, during the flight
test airspeed was controlled using manual adjustments to

the throttle by the pilot. Post-flight data analysis showed an
average delay of 50-100 seconds in the velocity command
channel, which was not modeled in the RHC controller.
The implemented RHC controller was tested only up to 10-
20 samples (5-10 seconds) of unmodeled additional delay
compared to the prediction model and showed acceptable
degradation of performance.

Due to the extra delay in the speed command channel
and the resulting model mismatch, constraints became ac-
tive more frequently during the flight test. This increased
the computational time required by the online optimization
solver. LSSOL converged to a solution in three or four
iterations during a significant percentage of the total number
of computational cycles as opposed to simulation results (see
Table II).

Although even four LSSOL iterations could be completed
on the test platform without any frame overruns or pre-
emptive process termination by the scheduler, the effect of
limiting the maximum number of iterations was investigated
in simulations. The purpose of these tests was to verify the
RHC API implementation and study the loss of performance
as the computational time available for online optimization
becomes more restricted.

An artificial delay of 50 seconds was inserted in the simu-
lation setup, which was not modeled in the RHC predictions.
The objective was to mimic the flight test environment more
accurately and increase the likelihood of higher iteration
numbers in the optimization thread. The resulting perfor-
mance was similar to the one observed during flight tests
and is depicted in the top two plots in Figure 3. Distribution
of computational cycles by number of iterations is reported in
Table II. Since the percentage of major frames requiring four
LSSOL iterations was negligible, the controller performance
was essentially unaffected by limiting the maximum number
of iterations to three. However, a limit of two iterations per
cycle resulted in a significant, but not devastating loss of
performance as shown in the top two plots in Figure 3.
The performance degradation can be attributed mainly to
the poor quality speed control solution. The large artificial
delay in the speed command channel resulted in velocity
oscillations and frequent saturation of flight envelope limits
in terms of true airspeed. Since this led to constraints being
active most of the time, the number of iterations in the
feasibility phase of LSSOL increased. Due to the artificially
imposed iteration limit, after a feasible solution was found,
it could not be improved upon by further iterations in the
optimization phase. This led to poor quality speed control,
which resulted in the significant lateral oscillations shown in
the top left plot of Figure 3. As the aircraft was trying to
match the time-stamped position reference, it veered away
to “bleed off” time when travelling with higher than optimal
groundspeed. These results illustrate that the RHC API was
able to handle situations where the available computational
time was restricted by enforcing artificial limits on the
allowable number of LSSOL iterations.

ACKNOWLEDGEMENTS

This work was funded by the Defense Advanced Research
Projects Agency under the Software Enabled Control pro-
gram, Dr. John Bay Program Manager. The contract number

1335

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

x 10
4

East coord. relative to RHC engagement (ft)

N
o

rt
h

 c
o

o
rd

. r
el

at
iv

e
to

 R
H

C
 e

n
g

ag
em

en
t

(f
t) North−East trajectories (flight test)

Reference
Flight test

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

x 10
4

East coord. relative to RHC engagement (ft)

N
o

rt
h

 c
o

o
rd

. r
el

at
iv

e
to

 R
H

C
 e

n
g

ag
em

en
t

(f
t) North−East trajectories (simulation)

Reference
50 sec delay / iter.limit = 2
50 sec delay / no iter.limit
no delay / no iteration limit

0 200 400 600 800 1000 1200

1.4

1.45

1.5

1.55

1.6

1.65

1.7

x 10
4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lt
it

u
d

e
(f

t)

Altitude trajectories (flight test)

Reference
Flight test

0 200 400 600 800 1000 1200
1.3

1.35

1.4

1.45

1.5

1.55

1.6

x 10
4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lt
it

u
d

e
(f

t)

Altitude trajectories (simulation)

Reference
50 sec delay / iter.limit = 2
50 sec delay / no iter.limit
no delay / no iteration limit

Fig. 3. North, east and altitude tracking performance. The top two plots show simulation results with artificial delay on speed command and different
LSSOL iteration limits, the bottom two plots represent flight test data.

Test cases
Vcmd iter. Number of LSSOL iterations

delay limit 1 2 3 4

Nominal sim. 0 s none 0.04% 99.92% 0.04% 0.00%

Flight test N/A none 1.10% 59.63% 38.92% 0.35%

Simulation 50 s none 0.04% 65.81% 33.94% 0.21%

Simulation 50 s 3 0.04% 65.85% 34.11% 0.00%

Simulation 50 s 2 0.04% 99.96% 0.00% 0.00%

TABLE II

DISTRIBUTION OF COMPUTATIONAL CYCLES BY REQUIRED NUMBER OF

LSSOL ITERATIONS.

is USAF/AFMC F33615-99-C-1497, Dale Van Cleave is the
Technical Contract Monitor.

The authors would like to acknowledge Brian Mendel,
Tim Espey and Jared Rosson at the Boeing Company for
their help and support with the integration of the RHC API
into the Open Control Platform. The authors would also like
to acknowledge Kenneth Hsu, Sean Estill, Zachary Jarvis-
Wloszek and Raktim Bhattacharya for their work on different
versions of the RHC API implementation.

REFERENCES

[1] T. Samad and G. J. Balas, Software-Enabled Control: Information
Technology for Dynamical Systems. Wiley – IEEE Press, 2003.

[2] J. S. Bay and B. S. Heck, “Special section: Software-enabled control,”
IEEE Control Systems Magazine, vol. 23, no. 1, Feb. 2003.

[3] J. Paunicka, B. Mendel, and D. Corman, “The OCP – an open
middleware solution for embedded systems,” in Proc. of the American
Control Conf., Arlington, VA, 2001, pp. 3345–3350.

[4] J. L. Paunicka, B. R. Mendel, and D. E. Corman, Software-Enabled
Control. Wiley – IEEE Press, 2003, ch. Open Control Platform: a
software platform supporting advances in UAV control technology, pp.
38–62.

[5] Object Management Group, “Realtime CORBA joint revised submis-
sion,” OMG Document orbos, Tech. Rep. 99-02-12, Mar. 1999.

[6] D. Rosu, K. Schwan, S. Yalmanchili, and R. Jha, “On adaptive
resource allocation for complex real-time applications,” in Proc. IEEE
Real-Time Systems Symposium, Dec. 1997.

[7] M. Agrawal, D. Coffer, and T. Samad, “Real-time adaptive resource
management for advanced avionics,” IEEE Control Systems Magazine,
vol. 23, no. 1, pp. 76–88, Feb. 2003.

[8] T. Keviczky, R. Ingvalson, H. Rotstein, A. Packard, O. R. Natale,
and G. J. Balas, “An integrated multi-layer approach to software
enabled control: Mission planning to vehicle control,” Dept. of
Aerospace Eng. and Mechanics. Univ. of Minnesota, Minneapolis.
Dept. of Mechanical Eng. Univ. of California, Berkeley, Tech. Rep.,
Nov. 2004. [Online]. Available: http:// www.aem.umn.edu / people /
faculty / balas / darpa sec / SEC.Publications.html

[9] F. Borrelli, Constrained Optimal Control of Linear and Hybrid
Systems, ser. Lecture Notes in Control and Information Sciences.
Springer, 2003, vol. 290.

[10] S. M. Estill, “Real-time receding horizon control: Application pro-
grammer interface employing LSSOL,” Dept. of Mechanical Eng.
Univ. of California, Berkeley, Tech. Rep., Dec. 2003.

[11] P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H.
Wright, User’s Guide for LSSOL (Version 1.0): a FORTRAN package
for constrained linear least-squares and convex quadratic program-
ming, Systems Optimization Laboratory, Department of Operations
Research, Stanford University, 1986.

[12] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s
Guide for NPSOL 5.0: a FORTRAN package for nonlinear program-
ming, University of California, San Diego. Stanford University. Bell
Laboratories., 1998.

[13] O. R. Natale, “Models and tools for advanced real-time control
systems,” Ph.D. dissertation, Department of Engineering, Università
degli Studi del Sannio in Benevento, Benevento, Italy, 2004.

[14] H. P. Rotstein, R. Ingvalson, T. Keviczky, and G. J. Balas, “Input-
dependent threshold function for an actuator fault detection filter,” in
16th IFAC World Congress, Prague, Czech Republic, July 2005.

[15] T. Keviczky and G. J. Balas, “Flight test of a receding horizon
controller for autonomous UAV guidance,” in Proc. of the American
Control Conf., Portland, Oregon, June 2005.

[16] ——, “Software-enabled receding horizon control for autonomous
UAV guidance,” AIAA Journal of Guidance, Control, and Dynamics,
2005, to appear.

1336

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

