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Abstract—On a two-level quantum system driven by an
external field, we consider the population transfer problem from
the first to the second level, minimizing the time of transfer,
with bounded field amplitude. On the Bloch sphere (i.e. after
a suitable Hopf projection), this problem can be attacked with
techniques of optimal syntheses on 2-D manifolds.
Let (−E, E) be the two energy levels, and |Ω(t)| ≤ M the

bound on the field amplitude. For each values of E and M , we
provide the explicit expression of the time optimal trajectory
steering the state one to the state two in terms of a parameter
that should be computed numerically.
For M << E, every time optimal trajectory is bang-bang

and in particular the corresponding control is periodic with
frequency of the order of the resonance frequency ωR = 2E.
On the other side, for M > E the time optimal trajectory

steering the state one to the state two is bang-bang with exactly
one switching. Fixed E we also prove that forM → ∞ the time
needed to reach the state two tends to zero.
Finally we compare these results with some known results of

Khaneja, Brockett and Glaser and with those obtained in the
Rotating Wave Approximation.
Keywords: Control of Quantum Systems, Optimal Syn-
thesis on the Bloch Sphere, Minimum Time

I. INTRODUCTION

In this paper we apply techniques of optimal synthesis on

2-D manifolds to the population transfer problem in a two-

level quantum system (e.g. a spin 1/2 particle) driven by an

external field (e.g. a magnetic field along a fixed axis). Two-

level systems are the simplest quantum mechanical models

interesting for applications (see for instance [3], [7]). The

dynamics is governed by the time dependent Schrödinger

equation (in a system of units such that h̄ = 1):

i
dψ(t)

dt
= H(t)ψ(t), (1)

where ψ(.) = (ψ1(.), ψ2(.))
T : [0, T ] → C

2 is such that∑2
j=1 |ψj(t)|2 = 1 (i.e. ψ(t) belongs to the sphere S3 ⊂

C
2), and:

H(t) =

( −E Ω(t)
Ω(t) E

)
, (2)

where E, is a real number (±E represent the energy levels
of the system). The control Ω(.), that we assume to be a
real function, different from zero only in a fixed interval,

represents the external pulsed field. In the following we call

drift term, the Hamiltonian with no external fields (i.e., the

term diag(−E,E)).
The aim is to induce a transition from the first level (i.e.,

|ψ1|2 = 1) to the second level (i.e., |ψ2|2 = 1), minimizing

the time of transfer, with bounded field amplitude:

|Ω(t)| ≤ M, for every t ∈ [0, T ],

where T is the time of the transition andM is a positive real

constant representing the maximum amplitude available.

Remark 1: This problem was studied also in [9], but with
quadratic cost

∫ T

0
Ω(t)2 dt and with no bound on the control.

In this case, optimal solutions can be expressed in terms of

Elliptic functions.

It is a standard fact to eliminate an irrelevant global factor

of phase by projecting the system on a two dimensional real

sphere S2 (called the Bloch Sphere) by means of an Hopf

map. In this way the Schrödinger equation (1), (2) becomes

the single input affine system (after setting u(t) = Ω(t)/M ):

ẏ = FS(y) + uGS(y), where: (3)

y = (y1, y2, y3) ∈ R
3,

∑3
j=1 y2

j = 1 (4)

|u| ≤ 1, (5)

FS(y) := k cos(α)(−y2, y1, 0)T , (6)

GS(y) := k sin(α)(0,−y3, y2)
T , (7)

with α = arctan(M/E) ∈ ]0, π/2[, while the constant k is
given by k = 2E/ cos(α) = 2

√
M2 + E2.

Normalizations. In the following, to simplify the nota-
tions, we normalize k = 1. This normalization corresponds
to a reparametrization of the time. More precisely, if T is the
minimum time to steer the state one to the state two for the

system with k = 1, the corresponding minimum time for the
original system is simply T

2
√

M2+E2
. We come back to the

original value of k only in Section III-C.
The vector fields FS(y) and GS(y) describe rotations
respectively around the axes y3 and y1. Now the state one is

represented by the point y3 = 1 (called the north pole) and
the state two by the point y3 = −1 (called the south pole).
The optimal control problem is then to connect the north pole

to the south pole in minimum time. As usual we assume the

control u(.) to be a measurable function satisfying (5) almost
everywhere. The corresponding trajectory is a Lipschitz

continuous function y(.) satisfying (3) almost everywhere.
The most important and powerful tool to study optimal

trajectories is the well known Pontryagin Maximum Principle

(in the following PMP, see for instance [2]). It is a first

order necessary condition for optimality and generalizes the

Weierstraß conditions of Calculus of Variations to problems

with non-holonomic constraints. For each optimal trajectory,

the PMP provides a lift to the cotangent bundle that is a

solution to a suitable pseudo–Hamiltonian system.
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Even if the PMP is powerful, giving a complete solution to

an optimization problem remains extremely difficult. First,

one is faced with the problem of integrating a Hamiltonian

system. Second, one should manage with “non Hamiltonian

solutions” of the PMP, the so called abnormal extremals.

Finally, even if one is able to find all the solutions of the

PMP it remains the problem of selecting, among them, the

optimal trajectories. For these reasons, usually, one can hope

to find a complete solution of an optimal control problem for

very special costs, dynamics and in low dimension only.

Two dimensional minimum time problems in control affine

form, (like the problem (3)–(7)) are nice cases for which the

analysis can be pushed much further, thanks to the theory

developed in [5] (see also the references therein). In this

paper we take advantage of that theory to restrict the set of

candidate optimal trajectories. The optimal trajectories are

then identified, by requiring that they respect certain crucial

symmetries of the system. More precisely, for M > E the
time optimal trajectories steering the state one to the state

two are bang-bang with exactly one switching, and we give

the exact expressions of the corresponding optimal controls.

In particular, fixed E we see that for M → ∞ the time

needed to reach the state two tends to zero.

On the other side, for M << E, every time optimal
trajectory is periodic (and in particular bang-bang) with

frequency of the order of the resonance frequency ωR = 2E,
and can be selected among a finite set of trajectories which

corresponds to solutions of suitable equations.

Remark 2: If we were describing either a spin 1/2 particle
driven by two magnetic fields (one along the x axis and one
along the y axis) or a two-level molecula driven by an external
field in the Rotating Wave Approximation (RWA for short,

see for instance [3]), then our Hamiltonian would contain

complex controls:

H(t) =

( −E Ω(t)
Ω∗(t) E

)
, (8)

where (∗) indicates the complex conjugation involution. In
this case the minimum time problem with bounded controls

(i.e., |Ω(t)| ≤ M ) is easier, since it is possible to eliminate the
drift term by a unitary change of coordinates and a change of

controls (interaction picture). This problem has been studied

in [6], [9]. The simplest time optimal trajectory, steering

the system from the state one to the state two, corresponds

to controls in resonance with the energy gap 2E, and with
maximal amplitude i.e.

Ω(t) = Mei(2E)t

The quantity ωR = 2E is called the resonance frequency.
In this case, the time TRWA of transfer is proportional to

the inverse of the laser amplitude. More precisely TRWA =
π/(2M), see for instance [6]. In Section III-C the minimum
time of transfer for the Hamiltonians (2) and (8) are compared.

In Section II, we recall some basic properties of optimal

trajectories for the system (3)–(7), that were already obtained

in [4]. In Section III we state our main results and in III-C we

compare these results with some known results of Khaneja,

Brockett and Glaser and with those obtained in the Rotating

Wave Approximation. In Section IV we give an idea of the

techniques we used.

II. KNOWN RESULTS

Recall that we have normalized k = 1. Note that, since
the system (3)–(7) is Lie bracket generated on a compact

manifold and the set of velocities is compact and convex

then, for each pair of points p and q belonging to S2, there

exists a time optimal trajectory joining p to q.
The minimum time problem for the control system (3),

(7), although with different purposes, has been partially

studied in [4]. In particular it was proved that every time

optimal trajectory is a finite concatenation of bang arcs (i.e.,

corresponding to control a.e. constantly equal to +1 or −1)
and singular arcs (i.e., corresponding to singularities of the

End point mapping, see for instance [5], that in our case

correspond to controls a.e. vanishing) with some special

structure. More precisely:

Definition 1: A control u : [a, b] → [−1, 1] is said to be
bang-bang if u(t) ∈ {−1, 1} a.e. in [a, b]. Moreover, if u(t) ∈
{−1, 1} and u(t) is constant for almost every t ∈ [a, b], then u
is called a bang control. If u(t) = 0 for almost every t ∈ [a, b],
then u is called a singular control.
A switching time of u is a time t ∈ [a, b] such that, for every

ε > 0, u is not bang on (t − ε, t + ε) ∩ [a, b]. A control with
a finite number of switchings is called regular bang-bang. A

trajectory of the control system (3)–(7) is a bang trajectory,

singular trajectory, bang-bang trajectory, regular bang-bang

trajectory respectively, if it corresponds to a bang control, sin-

gular control, bang-bang control, regular bang-bang control

respectively.

In the sequel, we use the following convention. The letter

B refers to a bang arc and the letter S refers to a singular
arc. A concatenation of bang and singular arcs is labeled by

the corresponding letter sequence, written in order from left

to right. Sometimes, we will use a subscript to indicate the

time duration of an arc, so that we use Bt to refer to a bang

arc defined on an interval of length t and, similarly, St for

a singular arc defined on an interval of length t.
Using the PMP and the Theory developed in [5], in [4]

(see also [1]) it was proved the following:

Proposition 1: Consider the control system (3)–(7). Then:
A. every time optimal trajectory is a finite concatena-

tion of bang and singular arc;

B. if a time optimal trajectory contains a bang arc Bt,

then t < 2π;
C. if a time optimal trajectory contains a singular arc,

then it is of the type BtSsBt′ , with s ≤ π
cos(α) ,

t, t′ ≥ 0. Moreover the support of singular arcs lies
on the set (called equator) y3 = 0.

D. if a time optimal trajectory is bang-bang, then the

time duration T̄ along an interior bang arc is the
same for all interior bang arcs and verifies π ≤ T̄ <
2π.

From C. it follows that the first and the last arc on optimal
trajectory connecting the north with the south pole are not
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v(t̄)

Fig. 1. Graph of v(.) when α = π/6

singular. The following proposition (see [4] for the proof)

gives more details on the optimal trajectories starting at the

north pole in the case α < π/4.
Proposition 2: Consider the control system (3)–(7), and
assume α < π/4. Then the optimal trajectories starting from
the north pole are of the form Bsi

Bv(si) · · ·Bv(si)Bsf
, where

si ∈ [0, π], sf ∈ [0, v(si)] and

v(si) = π + 2arctan

(
sin(si)

cos(si) + cot2(α)

)
. (9)

Note that the function v(.) is such that v(0) = v(π) = π and
moreover it is increasing on the interval [0, t̄] and decreasing
on [t̄, π] , where t̄ = arccos(− tan2(α)), moreover if α is
small the maximum of v(.) is v(t̄) = 2 arccos(− tan2(α)) ∼
π + 2α2 (see Figure 1).

III. MAIN RESULTS

A. The α ≥ π/4 Case

In the case α ≥ π/4, there are exactly four optimal
trajectories steering the state one to the state two. They are

easily described by the following:

Proposition 3: Consider the control system (3)–(7), and
assume α ≥ π/4. Then the optimal trajectories steering
the north pole to the south pole are bang-bang with only

one switching. More precisely they are the four trajectories

corresponding to the four controls

u(1) =

{
u = 1, t ∈ [0, sA]
u = −1, t ∈]sA, T ]

, u(2) =

{
1, t ∈ [0, sB ]
−1, t ∈]sB , T ]

u(3) =

{ −1, t ∈ [0, sA]
1, t ∈]sA, T ]

, u(4) =

{ −1, t ∈ [0, sB ]
1, t ∈]sB , T ]

where:

sA = π − arccos(cot2(α)), sB = π + arccos(cot2(α)),

and T = 2π.

One can easily check that the switchings described in Propo-

sition 3 occur on the equator (y3 = 0).

B. The α < π/4 Case

If α < π/4, the situation is more complicated. From
Proposition 2, we know that every optimal trajectory starting

at the north pole has the form Bsi
Bv(si) · · ·Bv(si)︸ ︷︷ ︸

n−1 times

Bsf

where the function v(si) is given by formula (9). (In the

following we do not specify if the first bang corresponds to

control +1 or −1, since, as a consequence of the symmetries
of the problem, if u(t) is an optimal control steering the
north pole to the south pole, −u(t) steers the north pole to
the south pole as well.)

It remains to identify one or more values of si, sf and the

corresponding number of switchings n for this trajectory to
reach the south pole.

Next, given s ∈ [0, π] such that s 
= t̄ =
arccos(− tan2(α)) we call s′(s) the unique solution to the
equation v(s) = v(s′(s)) with s′(s) 
= s and we define
s′(t̄) = t̄ (see also Figure 1). Considering the symmetries
of the problem, one can prove that if α < π/4, sf is equal

either to si or to s′(si). This fact is described by Lemma 1
below.

In the following we describe how to identify candidate

triples (si, sf , n) for which the corresponding trajectory
steers the north pole to the south pole in minimum time.

There are two kind of candidate optimal trajectories.

• sf = s′(si), called TYPE-1-candidate optimal trajecto-
ries

• sf = si called TYPE-2-candidate optimal trajectories

Define the following functions:

θ(s)=2 arccos

(
sin2

(
v(s)

2

)
cos(2α) − cos2

(
v(s)

2

))
(10)

β(s) = 2 arccos(sin(α) cos(α)(1 − cos(s))) (11)

Proposition 4: (TYPE-1-trajectories) Let α < π/4 and
s ∈ [0, π]. Fixed α, the following equation for the couple
(s, n):

F(s) :=
2π

θ(s)
= n, (12)

has either two or zero solutions. More precisely if (s, n)
is a solution to equation (12), then (s′(s), n) is the sec-
ond one, and the trajectories Bs Bv(s) · · ·Bv(s)︸ ︷︷ ︸

n−1

Bs′(s) and

Bs′(s) Bv(s) · · ·Bv(s)︸ ︷︷ ︸
n−1

Bs are TYPE-1-candidate optimal tra-

jectories.

Proposition 5: (TYPE-2-trajectories) Let α < π/4 and
s ∈ [0, π]. Fixed α, the following equation for the couple
(s, n):

G(s) :=
2β(s)

θ(s)
+ 1 = n, (13)

has exactly two solutions. More precisely these solutions

have the form (s1, n), (s2, n + 1) and the trajectories
Bs1

Bv(s1) · · ·Bv(s1)︸ ︷︷ ︸
n−1

Bs1
and Bs2

Bv(s2) · · ·Bv(s2)︸ ︷︷ ︸
n

Bs2
are

TYPE-2-candidate optimal trajectories.

In Figure 2 the graphs of the functions (13) and (12) are

drawn for a particular value of α, namely α = 0.13.
Propositions 4 and 5 select a set of (possibly coinciding) 4
or 8 candidate optimal trajectories (half of them starting with
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Fig. 2. Graph of the functions G and F with α = 0.13

control +1 and the other half with control −1) corresponding
to triples (si, sf , n) that can be easily computed numerically.

Then the optimal trajectories can be easily selected. Notice

that there are at least two optimal trajectories steering the

north to the south pole (one starting with control +1 and the
other with control −1).

In the particular case in which π/(2α) is an integer
number n̄ one can see that TYPE-1 candidate optimal
trajectories coincide with some of TYPE-2 candidate optimal

trajectories. They are of the type Bπ Bπ...Bπ︸ ︷︷ ︸
n̄−2

Bπ or of the

type Bs Bv(s)...Bv(s)︸ ︷︷ ︸
n̄−1

Bs for some s ∈]0, π[.

Otherwise if π/(2α) is not an integer number, define:

m := [
π

2α
], r :=

π

2α
− m ∈ [0, 1[

where [.] denotes the integer part. One can prove the follow-
ing:

Proposition 6: There exists r̄(m) ∈]0, 1[ such that:

• if r ∈ [0, r̄(m)] then equation (12) admits exactly two
solutions that are both optimal, while TYPE-2 candidate

optimal trajectories are not.

• if r ∈]r̄(m), 1[ then equation (12) does not admit any
solution.

The claims on existence of solutions of the previous

propositions come from the fact that F(0) = F(π) = π
2α

and the only minimum point of F occurs at

s̄ = π − arccos(tan2(α)).
It turns out that the image of F is a small interval whose
length is of order α3 and therefore equation (12) has a

solution only if α is close enough to π
2n
for some integer

number n.
On the other hand it is possible to estimate the derivative

of G with respect to s showing that it is negative in the
open interval ]0, π[. Therefore, since G(0) = π

2α
+ 1 and

G(π) = π
2α

− 1, equation (13) has always two solutions (if
π
2α
is an integer number then the trajectories corresponding

to the solutions si = 0 and si = π coincide).

Using the previous analysis one can easily prove the

following:

Proposition 7: If N is the number of switchings of an

0.2 0.4 0.6 0.8 1 1.2 1.4

2.5

5

7.5

10

12.5

15

Minimum time in the RWA

M

E = 1

Fig. 3. Estimate on the minimum time to reach the state two and
comparison with the time needed in the RWA

optimal trajectory joining the north to the south pole, then

π

2α
− 1 ≤ N <

π

2α
+ 1.

Using these inequalities and the fact that the function

2s +
( π

2α
− 1

)
v(s) is increasing on [0, π], one can give

a rough estimate of the time needed to reach the south pole:

Proposition 8: The total time T of an optimal trajectory
joining the north to the south pole satisfies the inequalities:

π2

2α
− 2π < T <

π2

2α
+ π.

C. Comparison with results in the RWA and with [8]

In this section we come back to the original value of k
i.e. k = 2E/ cos(α) = 2

√
M2 + E2, and we compare the

time necessary to steer the state one to the state two for our

model and the model (in the RWA) described in Remark 2.

For our model we have the following:

• for α ≥ π/4 then T = 2π/k = π/
√

M2 + E2;

• for α < π/4 then T is estimated by

1

k

(
π2

2α
− 2π

)
< T <

1

k

(
π2

2α
+ π

)
.

On the other hand, for the model in the RWA, we have

TRWA = π/(2M) (cfr. Remark 2). Fixed E = 1, in Figure
3 the times T and TRWA as function of M are compared.

Notice that although TRWA is bigger than the lower estimate

of T in some interval, we always have TRWA ≤ T . This is
due to the fact that the admissible velocities of our model

are a subset of the admissible velocities of the model in the

RWA.

Notice that, fixed E = 1, for M → 0 we have T ∼
π2/(4M), while for M → ∞, we have T ∼ π/M . In other
words:

• for M → 0 we have T ∼ (π/2)TRWA,

• for M → ∞ we have T ∼ 2TRWA.

Remark 3: For M << E (i.e. for α small) v(s) ∼
π/(2E). It follows that a time optimal trajectory connecting
the north to the south pole (in the interval between the first

and the last bang) is periodic with period P ∼ π/E i.e.
with a frequency of the order of the resonance frequency

ωR = 2E (see Figure 4). On the other side if M > E then
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Fig. 4. Comparison between the optimal strategy for our system and in
the RWA

the time optimal trajectory connecting the north with the

south pole is the concatenation of two pulses. Notice that

if M >> E, the time of transfer is of the order of π/M
and therefore tends to zero as M → ∞. It is interesting
to compare this result with a result of Khaneja, Brockett

and Glaser, for a two level system, but with no bound on

controls (see [8]). They estimate the infimum time to reach

every point of whole group SU(2) in π/E.
Indeed for our model it is possible to prove that, forM →

∞, not every point of the Bloch sphere can be reached from
the state one in an arbitrarily small time, but this is the case

for the state two, as we discussed above.

IV. SKETCH OF THE PROOFS

In this section we give an idea of the techniques we used to

prove our results. The key point is described by the following

Lemma which states a property of optimal trajectories as a

consequence of the symmetries of the problem. Recall that

we have normalized k = 1. Before stating the Lemma we
note that it is possible to extend Proposition 2 to the case

α ≥ π/4, assuming that si ∈ [0, arccos(− cot2(α))[ , and
in this case v(.) is an increasing function on its interval of
definition.

Lemma 1: Every optimal bang-bang trajectory, connect-
ing the north to the south pole, with more than one switching

is such that v(si) = v(sf ) where si is the first switching time

and sf is the time needed to steer the last switching point to

the south pole.

Proof of the lemma. Consider the problem of connecting
the south pole to the north pole in minimum time through

the system

ż = F ′
S(z) + uG′

S(z) (14)

where z ∈ S2 and F ′
S(z) = −FS(z), G′

S(z) = −GS(z).
The trajectories of system (14) coincide with those of the

system (3)–(7), but the velocity is reversed. Therefore the

optimal trajectories for the new problem coincide with the

optimal ones for the system (3)–(7) connecting the north pole

to the south pole, and the time between two switchings is

the same. Moreover, if we perform the change of coordinates

(z1, z2, z3) → (y1, y2, y3) = (−z1, z2,−z3), then the new
problem becomes exactly the starting problem, and so we

deduce that, if we have more than one switching, it must be

v(si) = v(sf ).

Proof of Proposition 3. First one can easily see that
the only possible trajectories steering the north to the

south pole, with only one switching are those described by

the proposition. So, since by Proposition 2 the total time

for trajectories with more than two switchings is larger

than 2π, it remains to compare our candidate with the
trajectories containing a singular arc and with those with

exactly two switchings. In the first case the trajectories

must be of the type BtSsBt′ and the only possibility is

t = t′ = π − arccos(cot2(α)), while the total time is
2π−2 arccos(cot2(α))+2 arccos(cot(α))/ cos(α) which is
larger than 2π.
One can observe that v(.) is an increasing function if α >
π/4 and therefore, if we apply Lemma 1, we obtain that for
an optimal trajectory with more than one switching it must

be si = sf . In particular the bang-bang trajectories with

exactly two switchings joining the north pole to the south

pole and with si = sf < π can be explicitly determined and

their corresponding total time is 2π + 2arcsin
(

1
2 sin(α)

)
.

Proof of Propositions 4 and 5. If α < π/4 then
v(0) = v(π) = π, moreover v(.) is increasing between 0 and
arccos(− tan2 α) and decreasing between arccos(− tan2 α)
and π (see Figure 1).
Therefore, given α < π/4 and s ∈ [0, π] with s 
=
arccos(− tan2 α), there exists one and only one time s′(s) ∈
[0, π] different from s, such that v(s) = v(s′(s)).
Notice that s and s′(s) satisfy the nice property

s + s′(s) = v(s). (15)

Indeed both s and s′(s) satisfy the following equation in
t ∈ [0, π]:

cot

(
1

2
v(s)

)
= − sin(t)

cos(t) + cot2(α)
⇒

⇒ cos

(
1

2
v(s) − t

)
= − cos

(
1

2
v(s)

)
cot2(α).

Therefore, since 1
2v(s) − t ∈ [−π, π] ∀s, t ∈ [0, π] and

s′(s) 
= s, it must be:

s′(s) − 1

2
v(s) =

1

2
v(s) − s ⇒ s + s′(s) = v(s).

So we deduce that there are two possible cases:

(♣) sf = s′(si)
(♠) sf = si

The description of candidate optimal trajectories is sim-

plified by the following Lemma, of which we skip the proof.

Lemma 2: Set:

Z(s) =
1

ρ

⎛
⎝ 0 cot

(
1
2v(s)

) − sin(α)
− cot

(
1
2v(s)

)
0 0

sin(α) 0 0

⎞
⎠
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where ρ =
√

cot2
(

1
2v(s)

)
+ sin2(α) . Then, if θ(s) is

defined as in (10), and X+ := FS + GS , X
− := FS −GS ,

we have eθ(s)Z(s) = ev(s)X−

ev(s)X+

.

Notice that the matrix Z(s) ∈ so(3) is normalized in such
a way that the map t �→ etZ(s) ∈ SO(3) represents a

rotation around the axes R(s) =
(
0, sin(α), cot( 1

2v(s))
)T

with angular velocity equal to one.

Let us study the two possible cases described above:

(♣) Suppose that the optimal trajectory starts with u = −1
(the case u = 1 is symmetric) and has an even number n of
switchings. Then it must be

S = esf X−

ev(si)X
+

. . . . . . ev(si)X
+︸ ︷︷ ︸

n−1 times

esiX
−

N (16)

where N and S denote respectively the north and the south
pole, and we have that

esiX
−

S = ev(si)X
−

ev(si)X
+

. . . . . . ev(si)X
+

esiX
−

N =

= e
1
2
nθ(si)Z(si)esiX

−

N

from which we deduce that si must satisfy

1

2
nθ(si) = π + 2pπ for some integer p.

It is easy to see that a value of si which satisfies previous

equation with p > 0 doesn’t give rise to an optimal trajec-
tory (since, roughly speaking, the corresponding number of

switchings is larger than the number of switchings needed

to cover the whole sphere). Therefore in previous equation

it must be p = 0.
If n is odd the relation (16) becomes

S = esf X+

ev(si)X
−

. . . . . . ev(si)X
+︸ ︷︷ ︸

n−1 times

esiX
−

N (17)

and, moreover, by symmetry:

N = esf X−

ev(si)X
+

. . . . . . ev(si)X
−

esiX
+

S.

Then, combining with (17) and using the relation (15), we

find:

N = e−siX
−

ev(si)X
−

. . . . . . ev(si)X
+︸ ︷︷ ︸

2n times

esiX
−

N =

= e−siX
−

enθ(si)Z(si)esiX
−

N.

Since esiX
−

N is orthogonal to the rotation axis R(si)
corresponding to Z(si), previous identity is satisfied if and
only if nθ(si) = 2mπ with m positive integer. As in the
previous case, for an optimal trajectory, it must be m = 1,
and therefore the proof of Proposition 4 is complete.

(♠) For simplicity call si = sf = s. Assume, as before,
that the optimal trajectory starts with u = −1 . If this
trajectory has n = 2q + 1 switchings then it must be

S = esX+

eqθ(s)Z(s)esX−

N.

In particular the points e−sX+

S and esX−

N must belong

to a plane invariant with respect to rotations generated by

Z(s) and therefore the difference esX−

N − e−sX+

S must
be orthogonal to the rotation axis R(s).
Actually it is easy to see that this is true for every value

s ∈ [0, π], since both e−sX+

S and esX−

N are orthogonal
to R(s). Moreover, since the circle passing through esX−

N
and e−sX+

S corresponding to the rotations around R(s)
has radius 1, it is easy to compute the angle β(s) between
these points. In particular the distance between esX−

N
and e−sX+

S coincides with 2 sin(β(s)
2 ) , and so one can

easily get the expression β(s) = 2 arccos(sin(α) cos(α)(1−
cos(s))). Then Proposition 5 is proved when n is odd.
Suppose now that the optimal trajectory has n = 2q + 2
switchings, then we can assume without loss of generality

that S = esX−

ev(s)X+

eqθ(s)Z(s)esX−

N . First of all it
is possible to see that e−v(s)X+

e−sX−

S is orthogonal to
R(s). So it remains to compute the angle β̃(s) between the
point esX−

N and the point e−v(s)X+

e−sX−

S on the plane
orthogonal to R(s). As before the distance between these

points coincides with 2 sin( β̃(s)
2 ).

Instead of computing directly β̃(s) we compute the differ-
ence between the angles β̃(s) and the angle β(s). We know
that

2 sin(
β̃(s) − β(s)

2
) = |e−v(s)X+

e−sX−

S − e−sX+

S| =

= |e−sX−

S − ev(s)X+

e−sX+

S| = |e−sX−

S − es′(s)X+

S|.
Using the fact that s and s′(s) satisfy the relation v(s) =
v(s′(s)) one can easily find that

|e−sX−

S − es′(s)X+

S| = 2

√
1 − cos2(α) sin2

(
1

2
v(s)

)
.

Therefore β̃(s) = β(s) − 2 arccos
(
cos(α) sin

(
1
2v(s)

))
.

This leads to β(s) − β̃(s) = θ(s)/2 and the proposition is
proved also in the case n is even.
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