
Feedforward control of nonlinear systems using fictitious inputs

J. Deutscher†, F. Antritter and K. Schmidt

Abstract— This paper presents the differential parameteriza-
tion of nonlinear systems using a parameterizing output with
differentially dependent elements, that results from introducing
fictitious inputs in the original system description. The proposed
differential parameterization is used to design feedforward
controllers for output tracking. The results of the paper are
illustrated by a non-flat helicopter model and a three-phase
ac/dc voltage-source converter with unstable tracking dynamics.

I. INTRODUCTION

The flatness based approach to the analysis and control
of nonlinear systems is an important design strategy for
nonlinear control systems. In [1] the flatness based approach
is presented in a differential algebraic setting and the differ-
ential geometric setting can be found in [2]. Nonlinear flat
systems

ẋ = f(x, u) (1)

with a smooth vector function f and p smooth inputs u are
characterized by the existence of a flat output

yf = Φ(x, u, u̇, . . . , u(α)) (2)

with dim(yf ) = p such that the system variables x and u
can be expressed by the output (2) and a finite number of its
time derivatives according to

x = ψx(yf , ẏf , . . . , y
(β)
f ) (3)

u = ψu(yf , ẏf , . . . , y
(β+1)
f ) (4)

Since the elements of the flat output are differentially in-
dependent, reference trajectories can be assigned to each
element of the flat output independently. Thus, one can assign
arbitrary but sufficiently smooth reference trajectories in the
coordinates of the flat output to solve a given trajectory
planning problem. The corresponding feedforward controller
assuring that the plant tracks the desired trajectory is simply
obtained by inserting the reference trajectory in (4).

The aim of this paper is to determine a differential param-
eterization for systems that are not flat or where a flat output
is not known. In this case the differential parameterization
(3)–(4) cannot be determined. However, a parameterization
of system (1) can always be computed, where the param-
eterizing output contains differentially dependent elements.
This is achieved by introducing fictitious inputs uf in (1) to
obtain an artificial flat system, which admits a differential
parameterization (3)–(4). In order to use this result for the
original system (1), the condition uf ≡ 0 has to be satisfied.
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Consequently, the differential parameterization for the artifi-
cial system also applies to the original system (1) with the
additional constraint uf ≡ 0. However, due to this constraint
elements of the parameterizing output for the original system
become differentially dependent. As a consequence, only a
part of the elements of the parameterizing output can be
assigned freely, whereas the remaining part is obtained by
solving differential equations.

After introducing this differential parameterization in Sec-
tion II, the problem of computing feedforward controllers
for output tracking is considered in Section III. The non-flat
model of a helicopter and the nonlinear model of a three-
phase ac/dc converter with unstable tracking dynamics is
used in Section IV to demonstrate the results of the paper.

II. DIFFERENTIAL PARAMETERIZATION OF NONLINEAR

SYSTEMS USING FICTITIOUS INPUTS

A. Derivation of the differential parameterization

Consider the following nth order nonlinear system

ẋ = f(x, u) (5)

with a smooth vector function f and p smooth inputs u.
Assume that

rank
∂f(x, u)

∂u
= p (6)

holds locally such that the inputs are independent. In order
to obtain a differential parameterization for system (5) an
artificial flat system is considered by augmenting system (5)
with pf fictitious inputs uf yielding

ẋ = f(x, u) + Gf (x)uf (7)

In (7) the (n,pf ) matrix Gf (x) has to be chosen such that
the inputs u and uf are independent, i.e.

rank
[

∂f(x,u)
∂u Gf (x)

]
= p + pf ≤ n (8)

has to be satisfied locally.

Remark 1: In most cases it suffices to choose Gf (x)
constant, i.e. Gf (x) = Gf .

According to the definition of flatness in the introduction,
one has to find a flat output

yf = Φ(x, u, uf , u̇, u̇f , . . . , u(α), u
(αf )
f ) (9)

for the extended system (7) with dimension dim(yf ) =
mf = p + pf such that

x = ψx(yf , ẏf , . . . , y
(β)
f ) (10)

u = ψu(yf , ẏf , . . . , y
(β+1)
f ) (11)

uf = ψuf
(yf , ẏf , . . . , y

(β+1)
f ) (12)
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Since the dimension of yf in (9) is increased by the number
of fictitious inputs uf , it is compared to system (5) in
general easier to find a flat output for system (7).

Remark 2: Note, that by introducing n − p fictitious
inputs a flat system (7) can always be obtained, since then
yf = x qualifies as a flat output according to (9)–(12).

In order to relate the differential parameterization (9)–(12)
to the original system (5) uf ≡ 0 has to be satisfied. As
a consequence the components of yf become differentially
dependent in view of

0 = ψuf
(yf , ẏf , . . . , y

(β+1)
f ) (13)

(see (12)).

Remark 3: It should be noted in light of (13), that yf in
(9) is not a flat output for system (5). Therefore yf is called
a parameterizing output for system (5).

Remark 4: The introduction of fictitious inputs does not
change the properties of system (5), since the additional
inputs (which lead to a controllable system if system (5) is
not controllable) are set to zero according to (13).

B. Reduction of the parameterizing output

In most cases the differential parameterization (10)–(11)
and (13) is not minimal in the sense that elements of the
parameterizing output yf can be eliminated in the differen-
tial parameterization. Since a reduction of the number of
elements of the parameterizing output also decreases the
number of differential equations (13), it is desirable to reduce
its dimension as much as possible. To this end consider the
following partition of the elements yfi, i = 1(1)mf , of the
parameterizing output

ζ =
(
ζ1, . . . , ζmf−l

)
=

(
yf1, . . . , yf(mf−l)

)
(14)

ξ = (ξ1, . . . , ξl) =
(
yf(mf−l+1), . . . , yfmf

)
(15)

where 0 < l ≤ pf . Assume that the pf differential equations
(13) can be written in the form

ϕ1(ξ, ζ, ζ̇, . . . , ζ(β+1)) = 0 (16)

ϕ2(ξ, ζ, ξ̇, ζ̇, . . . , ξ(β+1), ζ(β+1)) = 0 (17)

with dim(ϕ1) = l and dim(ϕ2) = pf − l. If (16) is solvable
for ξ, i.e.

ξ = ϕ−1
1 (ζ, ζ̇, . . . , ζ(β+1)) (18)

then by substituting (18) in the differential parameterization
(10)–(11) one obtains

x = ψ̄x(ζ, ζ̇, . . . , ζ(γ)) (19)

u = ψ̄u(ζ, ζ̇, . . . , ζ(γ+1)) (20)

The remaining differential equations (17) can be expressed
as

ϕ̄2(ζ, ζ̇, . . . , ζ(γ+1)) = 0 (21)

if (18) is substituted in (17). Relation (21) denotes the
remaining conditions on ζ in form of pf − l differential
equations such that a new parameterization (19)–(21) is
obtained. Thus, the dimension of the parameterizing output
ζ has been reduced to pf − l.

Remark 5: If pf elements ξ of the parameterizing output
yf can be eliminated from the differential (10)–(11) and (13),
i.e. (13) is solvable for ξ giving

ξ = ψ−1
uf

(ζ, ζ̇ , . . . , ζ(β+1)) (22)

then system (5) is obviously flat with flat output yf = ζ.

III. FEEDFORWARD CONTROL

A. Output tracking problem

In this section the problem of tracking a given sufficiently
smooth reference trajectory

yd(t), t ∈ [0, T ] (23)

for p system outputs

y = h(x) (24)

is solved using the differential parameterization (10)–(11)
and (13). Since yf parametrizes the inputs u (see (11)) the
first step in solving the posed tracking problem is to compute
the reference trajectory yf,d for the parameterizing output yf

from the given yd. The computation of yf,d depends on the
fact, whether the outputs y are elements of the parameterizing
output or not.

B. Computation of the reference trajectory yf,d, where the
outputs y are elements of yf

In this case there exists a partition of the parameterizing
output yf in the form

y = [yf1 . . . yfp]T (25)

ȳf = [yf(p+1) . . . yfmf
]T (26)

where ȳf denotes the remaining mf − p elements of the
parameterizing output. Since (13) constitutes pf conditions
on the parameterizing output yf , mf − pf = p elements of
the mf -dimensional parameterizing output can be assigned
freely. Consequently, it is possible to assign arbitrary but
sufficiently smooth reference trajectories yd for the output
y, since y is part of the parameterizing output and has p
elements. In order to obtain the complete reference trajectory
yf,d for the parameterizing output, the reference trajectory
for the remaining elements ȳf has to be computed. This
trajectory is obtained as a solution ȳf,d of the differential
equation

ψuf
(yd, . . . , y

(β+1)
d , ȳf,d, . . . , ȳ

(β+1)
f,d ) = 0 (27)

that follows from substituting (25) and (26) in (13).
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C. Computation of the reference trajectory yf,d, where the
outputs y are not elements of yf

In order to obtain the reference trajectory yf,d from the
assignment yd in (23) the differential parameterization

y = ψy(yf , ẏf , . . . , y
(β)
f ) (28)

of (24) is determined by inserting (10) in (24). Thus, by (28)
the reference trajectory yf,d has to be a solution of

ψy(yf,d, ẏf,d, . . . , y
(β)
f,d) = yd (29)

Since the parameterizing output yf also has to satisfy (13),
the reference trajectory yf,d can be computed by solving the
set of mf differential equations

ψy(yf,d, ẏf,d, . . . , y
(β)
f,d) = yd (30)

ψuf
(yf,d, ẏf,d, . . . , y

(β+1)
f,d ) = 0 (31)

Remark 6: A prerequisite for the proposed approach is
that the reference trajectory yd is chosen such that (30)–(31)
admit a sufficiently smooth solution yf,d.

D. Tracking dynamics

The differential equations (27) and (30)–(31) respectively
represent the tracking dynamics, which have to be solved
in order to generate the reference trajectory yf,d for the
feedforward controller. Since the tracking dynamics are given
by the internal dynamics (i.e. the driven zero dynamics) of
the system with respect to y (see [3]), a prerequisite for a
bounded solution of (27) and (30)–(31) respectively is that
the system has a locally stable zero dynamics. However, if
the zero dynamics of the system is unstable, then the solu-
tions ȳf,d and yf,d respectively of the differential equations
are in general not bounded. In order to compute bounded
trajectories the approach in [4] is applied. For a nonlinear
system in Byrnes Isidori normal form this algorithm can
be used to construct bounded trajectories in the presence
of nonminimum phase (hyperbolic) zero dynamics (i.e. the
Jacobian matrix of the zero dynamics has no eigenvalues on
the imaginary axis). In the following it is shown that this
algorithm can also be applied to the tracking dynamics (27)
and (30)–(31), which were derived without transforming the
system (5) with output (24) to Byrnes Isidori normal form.
To this end assume that (27) can be solved for the highest
time derivatives of ȳf,d giving

ȳ
(β+1)
f,d = ψ−1

uf
(yd, . . . , y

(β+1)
d , ȳf,d, . . . , ȳ

(β)
f,d ) (32)

By introducing the states

η = [ȳf,d ˙̄yf,d . . . ȳ
(β)
f,d ]T (33)

the state space representation

η̇ = q(η, yβ+1
d ) (34)

for (32) is obtained, which is driven by the output reference
trajectory yd and by its time derivatives represented by

yβ+1
d = [yd ẏd . . . y

(β+1)
d ]T (35)

Without loss of generality it can be assumed that system
(34) has the equilibrium point η0 = 0 for yβ+1

d = 0, i.e.

q(0, 0) = 0 holds. For the tracking dynamics formulated
as in (34) the algorithm in [4] can be used to generate
bounded η-trajectories for given trajectories yd (in this con-
text bounded means bounded with respect to the || · ||1+∞ :=
|| · ||1 + || · ||∞ norm). If the function q(η, yβ+1

d ) in (34)
satisfies certain Lipschitz conditions and ||yβ+1

d (·)||1+∞ is
sufficiently small, then the unique and bounded solution of
(34) with the boundary condition

η(±∞) = 0 (36)

can be constructed by solving a sequence of boundary value
problems for the differential equation

η̇k+1 = Aηk+1 + q(ηk, yβ+1
d ) − Aηk︸ ︷︷ ︸

q̃(ηk,yβ+1
d )

(37)

with boundary conditions

ηk+1(±∞) = 0 (38)

starting from η0 ≡ 0. In (37) the matrix A denotes the
Jacobian matrix of the tracking dynamics at η0 = 0 for
yβ+1

d = 0. The term q̃(ηk, yβ+1
d ) in (37), which can be

viewed as a perturbation to the linearized system, takes the
nonlinear dynamics of (34) into account. The matrix A can
(possibly after a linear transformation) be assumed to be in
block diagonal form

A =

⎡
⎣ A− 0

0 A+

⎤
⎦ (39)

with Reλi(A−) < 0 (∀i) and Re λj(A+) > 0 (∀j). This
corresponds to a partition

ηk+1 = [ηk+1,s ηk+1,a]T (40)

where the dynamics of the stable and the antistable part
of the tracking dynamics (34) are decoupled in the first
approximation. Thus, the boundary condition (38) can be
reformulated as

ηk+1,s(−∞) = 0 (41)

ηk+1,a(∞) = 0 (42)

such that the stable subsystem can be integrated forward in
time and the antistable subsystem backward in time using the
Green’s function. In [4] it has been shown that the solutions
ηk of (37) and (38) converge to the bounded solution of
(34) and (36) as k → ∞. The situation, when the tracking
dynamics are given by (30) and (31) can be treated similarly.
In this case the states in (33) are defined by

η = [yf,d ẏf,d . . . y
(β)
f,d ]T (43)

E. Computation of the feedforward controller

If the initial conditions of the differential equations (27)
and (30)–(31) respectively are chosen such that

x(0) = ψx(yf,d(0), ẏf,d(0), . . . , y(β)
f,d(0)) (44)

is satisfied (see (10)), the feedforward controller assuring
exact tracking of the reference trajectory yd is given by

ud = ψu(yf,d, ẏf,d, . . . , y
(β+1)
f,d ) (45)
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This feedforward controller results from inserting the refer-
ence trajectory yf,d in (11).

If condition (44) is not satisfied, then only asymptotic
tracking of yd is possible. This can be achieved by using
a linear time-varying tracking controller, that is designed on
the basis of the linearization of system (5) about the reference
trajectory. Note, that the related linearization of system (5)
is easily attainable, since the reference trajectory xd in the
state space can be obtained by inserting yf,d in (10), i.e.

xd = ψx(yf,d, ẏf,d, . . . , y
(β)
f,d ) (46)

IV. EXAMPLES

A. Non-flat helicopter model

In the sequel the application of the proposed approach
is illustrated by means of a model describing the one
dimensional forward motion of a helicopter. This system is
described by⎡

⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2

−g tanx3

x4

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
− 1

M cos x3

0
L

⎤
⎥⎥⎥⎦u (47)

Where x1 denotes the forward position of the helicopter, x3

denotes the attitude angular position of the main rotor and
u is the control input. In [5] this model has been shown
to be non-flat. To obtain a flat system a fictitious input is
introduced to system (47) with input vector

Gf = [0 1 0 0]T (48)

Thus the extended system

ẋ = f(x) + G�
f (x)u�

f (49)

is obtained, where u�
f = [u uf ]T and

G�
f (x) =

⎡
⎢⎢⎢⎣

0 0
− 1

M cos x3
1

0 0
L 0

⎤
⎥⎥⎥⎦ (50)

obviously satisfies condition (8). A flat output of the extended
system (49) is given by yf = [yf1 yf2]T = [x1 x3]T with
the differential parameterization

[x1 x2 x3 x4]T = ψx(yf , ẏf ) = [yf1 ẏf1 yf2 ẏf2]T (51)

u = ψu(ÿf ) =
ÿf2

L
(52)

uf = ψu(yf , ÿf ) = ÿf1 + g tan yf2 +
1

ML cos yf2
ÿf2

(53)

Setting uf = 0 yields the tracking dynamics

0 = ÿf1 + g tan yf2 +
ÿf2

ML cos yf2
(54)

as introduced in Section III-D. Equation (54) can be solved
for ÿf1

ÿf1 = ψÿf1(yf2, ÿf2) = −g tan yf2 − ÿf2

ML cos yf2
(55)

This equation can be integrated with respect to time, yielding

ẏf1(t) =
∫ t

0

−g tan yf2(τ) − ÿf2(τ)
ML cos yf2(τ)

dτ + ẏf1(0)

(56)

yf1(t) =
∫ t

0

∫ σ

0

−g tan yf2(τ) − ÿf2(τ)
ML cos yf2(τ)

dτdσ

+ ẏf1(0)t + yf1(0) (57)

The result (56)–(57) can be substituted into (51) showing
that (47) is a Liouvillian system (see [6], [7]) since

x = ψx(yf2, ẏf2,

∫ t

0

ψÿf1(τ)dτ,

∫ t

0

∫ σ

0

ψÿf1(τ)dτdσ)

(58)
This can be seen as a special case of the simplification
elaborated in Section II-B. In this case (16) (see also (54))
is of the form

ϕ1(ξ(β+1), ζ, ζ̇, . . . , ζ(β+1)) = 0 (59)

and is solvable for ξ(β+1). For the control of the helicopter
it is more convenient to assign a reference trajectory yf1,d

for the forward position yf1. Solving (54) for ÿf2 yields the
tracking dynamics

ÿf2 = −ML cosyf2ÿf1,d − gML sinyf2 (60)

Remark 7: From the system model (47) it is obvious that
yf1 = x1 has relative degree r = 2 (see [8]). Thus the order
of the tracking dynamics (60) coincides with the dimension
n − r = 2 of the zero dynamics of the output yf1 = x1.

In [5] rest-to-rest maneuvers have been investigated and
it has been shown that for such maneuvers with initial con-
ditions yf1(0) = yf1,i, ẏf1(0) = yf2(0) = ẏf2(0) = 0 and
final conditions yf1(T ) = yf1,f , ẏf1(0) = 0 also yf2 and ẏf2

approach again the equilibrium point yf2 = ẏf2 = 0 of (60),
when ÿf1,d = 0. The simulation results for such a maneuver
with a forward position change from 100 m to 150 m are
shown in Figure (1). The parameters have been taken as
M = 4313 kg, g = 9.81 m

sec2 and L = 1.0456 · 10−4 rad
N·sec2

(see [5]). To ensure a smooth start and end of the trajectory
a ninth order polynomial has been assigned for yf1,d having
four time derivatives at t = 0 and t = T respectively equal
to zero.

B. AC-DC-converter

In this example a three-phase ac/dc voltage-source con-
verter taken from [9] is considered. The system behavior
can be modeled in the form⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣−R

L x1 − ωx2 + Em

L

ωx1 − R
L x2

− 1
C iL

⎤
⎦+

⎡
⎣− 1

2Lx3 0
0 − 1

2Lx3
3

4C x1
3

4C x2

⎤
⎦[

u1

u2

]
(61)

with the outputs
y = [x2 x3]T (62)

The state variables x1 and x2 are currents and x3 is a voltage
in a two-phase stationary reference frame d-q model. In view
of

D(x) =

[
Lg1h1(x) Lg2h1(x)
Lg1h2(x) Lg2h2(x)

]
=

[
0 − 1

2Lx3

3
4C x1

3
4C x2

]
(63)
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(see [8]) system (61)–(62) has vector relative degree {1, 1}
for x1x3 �= 0.

In the following a feedforward controller for tracking
output trajectories is computed by using the results of Section
III. To this end a fictitious input uf is introduced in (61) with
input vector

Gf = [1 0 0]T (64)

It is easy to check that Gf satifies condition (8), as the input
matrix

G�
f (x) =

⎡
⎢⎣−

1
2Lx3 0 1
0 − 1

2Lx3 0
3

4C x1
3

4C x2 0

⎤
⎥⎦

of the fictitious system defined by

ẋ = f(x) + G�
f (x)u�

f (65)

with u�
f = [u1 u2 uf ]T has the property

rank G�
f (x) = p + pf = mf = 3 (66)

for x1x3 �= 0. A possible flat output yf of dimension mf = 3
for system (65) is given by

yf = [yf1 yf2 yf3]T = [x1 x2 x3]T (67)

since (65) is solvable for u�
f in view of (66). The parame-

terization of the system inputs in terms of the flat output yf

reads

u1 =
6Lyf2ẏf2−6ωLyf1yf2+6Ry2

f2+4Cyf3ẏf3+4iLyf3

3yf1yf3

(68)

u2 = 2ωLyf1−2Lẏf2−2Ryf2
yf3

(69)

uf = 3Lẏf2yf2+3Ry2
f2+3Ry2

f1+2Cẏf3yf3

3Lyf1

+ 3Lẏf1yf1+2iLyf3−3Emyf1
3Lyf1

(70)

The equations (68) and (69) represent the feedforward con-
troller for tracking a given reference trajectory yf,d. Since
the system has two inputs only two elements of yf can
be assigned freely, that are given by y (see (62) and (67)).
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−0.1

0

0.1

0.2

t [sec]
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a
d
]

yf1

yf2

Fig. 1. Forward position yf1 and attitude angular position yf2 for the
rest-to-rest maneuver

The third one has to be determined by solving the tracking
dynamics. By setting equation (70) identically to zero the
tracking dynamics (27) is obtained. Solving the result for
ẏf1 yields for yf1 �= 0 the state space representation

η̇ = q(η, y1
d) = − −3Emη+3Rη2+2iLy2,d+2Cy2,dẏ2,d

3Lη

− 3Ly1,dẏ1,d+3Ry2
1,d

3Lη (71)

of the internal dynamics with η = yf1 and

y1
d = [y1,d ẏ1,d y2,d ẏ2,d]T (72)

Remark 8: Since (61)–(62) has vector relative degree
{1, 1} for x1x3 �= 0 (see (63)) and the order of the system
is 3, it has a first order internal dynamics (71) with respect
to the outputs y.

The derivation of (68)–(69) and (71) shows that the
proposed procedure needs only algebraic manipulations to
determine the feedforward controller and the tracking dy-
namics and is strictly systematic.

In the sequel a trajectory for a temporary change of the
dc output voltage x3 (i.e. y2,d) from 200 V to 140 V and
back is designed. To maintain a unity power factor x2 ≡ 0 A
(i.e. y1,d ≡ 0 A) should be assured during the whole
trajectory. The reference trajectory yd is assigned such that
y1

d(0) = y1
d(T ) = y1

d0 = [0 A 0 A/sec 200 V 0 V/sec]T (see
(72)). A transition phase of 5 sec for the dc voltage output
changes was used and the output voltage of 140 V is held
constant for 10 sec. Thus, the total duration of the trajectory
is T = 20 sec. The desired output trajectory yd is shown in
Figure 2. The parameter values for the system differential

0 5 10 15 20
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−0.5

0

0.5

1

t [sec]

[A
]

0 5 10 15 20

140

160

180

200

t [sec]

[V
]

y1,d

y2,d

Fig. 2. Output reference trajectory yd

equations (61) are Em = 80 V, Vr = 200 V, L = 5 mH,
R = 0.1 Ω, C = 2200 µF, ω = 120π rad/sec and RL =
200 Ω such that iL = Vr/RL = 1 A. Investigating the
tracking dynamics (71) for the initial value y1

d0 yields the
equilibrium points η0 = 1.67 A and η0 = 798.3 A, where
the only technically realisable value is η0 = 1.67 A (see [9]).
Computing the Jacobian matrix A of the tracking dynamics
at this equilibrium point results in

A = 9539.96 1/sec (73)
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Thus, the tracking dynamics are unstable and therefore
suitable trajectory planning is necessary to achieve a bounded
η-trajectory. By introducing the new coordinates

∆η = η − η0 (74)

∆y1
d = y1

d − y1
d0 (75)

the tracking dynamics (71) become

∆η̇ = q(η0 + ∆η, y1
d0 + ∆y1

d) = q̄(∆η, ∆y1
d) (76)

having the equilibrium point ∆η0 = 0 since q̄(0, 0) = 0.
With the Jacobian matrix (73), the iterations (37) can be
formulated as

∆η̇k+1 = A∆ηk+1 + q̄(∆ηk, ∆y1
d) − A∆ηk (77)

with boundary condition

∆ηk+1(+∞) = 0 (78)

Using the Green’s function

G(t) =

{
0 if t ≥ 0

−eAt if t < 0
(79)

for this boundary value problem the solution ∆ηk+1 can be
computed as

∆ηk+1(t) =
∫ +∞

−∞
G(t − τ)F (τ)dτ (80)

with
F (t) = q̄(∆ηk(t), ∆y1

d(t)) − A∆ηk(t) (81)

Performing the iterations, one ends up with the bounded
trajectory η for the tracking dynamics (71), shown in Figure
3.

Remark 9: As the Jacobian matrix of the tracking
dynamics (71) exhibits a large positive eigenvalue so called
preactuation (i.e. noncausal feedforward inputs before
t = 0 sec) can be neglected (see Figure 3).

0 5 10 15 20

0

0.5

1

1.5

t [sec]

[A]

η

Fig. 3. Reference trajectory η for the tracking dynamics

Thus, the complete reference trajectory yf,d = [η y1,d y2,d]T

has been determined such that the feedforward controller is
given by (68)–(69). The simulation results for the application
of the computed feedforward controller are shown in Figures
4 and 5
It should be mentioned that system (61) is static feedback
linearizable and therefore flat. A flat output of system (61)

is given by yf = [x2 3L(x2
1 +x2

2)+2Cx2
3]

T . However, since
the flat output does not coincide with the output y which
has to be controlled, the internal dynamics would have to be
condidered also when designing a flatness based feedforward
controller.
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Fig. 4. DC output voltage yf3
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Fig. 5. Currents yf1 and yf2

V. CONCLUSIONS

In this contribution a parameterization of nonlinear sys-
tems with an output, that contains differentially dependent
elements is presented. Based on this parameterization a
feedforward controller for tracking a desired output trajectory
can be designed without transforming the system to Byrnes
Isidori normal form. The proposed approach is applicable to
systems with stable and unstable tracking dynamics. A more
detailed comparison with the approach in [8] for trajectory
design based on input-output linearization is done in [10].
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