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Abstract— We address the problem of the computation of the
spectral radius of a family of matrices. We briefly describe the
extension of the concept of polytope to the complex space and
outline the main geometric properties of such an object. Then
we consider the norms determined by the complex polytopes
and illustrate a possible algorithm for the approximation of
the joint spectral radius of a family of matrices which is
based on these complex polytope norms. As an example for our
technique we consider the set of two matrices recently analyzed
by Blondel, Nesterov and Theys to disprove the finiteness
conjecture.

I. INTRODUCTION

We consider a bounded family F = {A(i)}i∈I of complex
n×n-matrices, where I is a set of indices, possibly infinite.
For such a family F , the following definitions are given
in the literature. Let ‖ · ‖ be a given norm on the vector
space Cn and let the same symbol ‖ · ‖ denote also the
corresponding induced n × n-matrix norm. Then, for each
k = 0,1, . . ., consider the set Σk(F ) of all possible products
of length k whose factors are elements of F , that is

Σk(F ) = {A(i1) . . .A(ik) | i1, . . . , ik ∈ I },
with the convention that Σ0(F ) = {I}, I the identity matrix.
For each k ≥ 0 set

ρ̂k(F ) = sup
P∈Σk(F )

‖P‖ (1)

and define the joint spectral radius of F as

ρ̂(F ) = limsup
k→∞

ρ̂k(F )1/k (2)

(see [18]). Note that the numbers ρ̂k(F ) depend on the
particular norm ‖ ·‖ used in (1) whereas, by the equivalence
of all the norms in finite dimensional spaces, it turns out that
ρ̂(F ) is independent of it.

Analogously, let ρ(·) denote the spectral radius of an n×n-
matrix and then, for each k = 0,1, . . ., consider

ρ̄k(F ) = sup
P∈Σk(F )

ρ(P)

and define the generalized spectral radius of F as

ρ̄(F ) = limsup
k→∞

ρ̄k(F )1/k

(see [5]).
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Recently it has been shown that

ρ̂(F ) = ρ̄(F )

(see [4], [6], [20] and [19]). This means that the joint and
the generalized spectral radius of F are the same number,
which we shall simply call the spectral radius of the family
of matrices F and denote by ρ(F ). Such result generalizes
the well-known Gelfand theorem for a single matrix.

We introduce now a further characterization of the joint
spectral radius. Given a norm ‖ · ‖ on the vector space Cn

and the corresponding induced n×n-matrix norm, we shall
still use the same notation to define

‖F‖ = ρ̂1(F ) = sup
i∈I

‖A(i)‖.

The following result can be found, for example, in [18]
and [6].

Theorem 1.1: The spectral radius of a bounded family F
of complex n×n-matrices is characterized by the equality

ρ(F ) = inf
‖·‖∈N

‖F‖, (3)

where N denotes the set of all possible induced n×n-matrix
norms.

Given a family F , an important question to answer is
whether or not the inf in (3) is actually attained by some
induced matrix norm. To this purpose, we give the following
definition.

Definition 1.1: We shall say that a norm ‖ · ‖∗ satisfying
the condition

‖F‖∗ = ρ(F ) (4)

is extremal for the family F .
A family of matrices which admits an extremal norm is

said non-defective (see, for example, [9]).
The actual computation of ρ(F ) is an important problem

in several applications (see e.g. [10], [12], [16], [17], [1])
The problem, however, appears quite difficult in general (see
e.g. [21]). Based on the inequalities (see [5])

ρ̄k(F ) ≤ ρ(F )k ≤ ρ̂k(F ) for all k ≥ 0,

an algorithm for efficiently computing lower bounds and
upper bounds to ρ(F ) is proposed in [7].

In the the recent paper [8] we have given a contribute
in the direction of the computation of ρ(F ) considering
special classes of families. In particular, we have determined
sufficient conditions on the family which are sufficient to
guarantee the existence of a complex polytope extremal norm,
that is a norm whose unit ball is a balanced complex polytope
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with a finite essential system of vertices (we shall clarify
these concepts in the next section). Such a finiteness property
is very useful in view of the construction of algorithms aimed
at the actual computation (or approximation) of ρ(F ).

The paper is organized as follows. In Section II we
introduce a special kind of norms, the so-called polytope
norms, which play a fundamental role in our theoretical
results and in the algorithm we devise for computing the
joint spectral radius. In Section III we give a polytope
extremality result which has been recently proved in [8];
such result establishes a set of assumptions which guarantees
the existence and the computability of an extremal complex
polytope norm for a family of matrices. Based on this result,
in Section IV we propose an algorithm for the computation
of the joint spectral radius through the construction of a
polytope norm. As an example, in Section V, we apply this
algorithm to a family of two matrices recently analyzed in
[3] to disprove the finiteness conjecture. As a result we are
able to refine the result proved in [3].

II. POLYTOPE NORMS

In this section we define the complex polytopes as gener-
alizations of real polytopes (see, e.g. [23]) to the complex
case.

Let X be a set in Cn. It is well-known that absco(X ) is
the set of all the finite absolutely convex linear combinations
of vectors of X , i.e. x ∈ absco(X ) if and only if there exist
x1, . . . ,xk ∈ X with k ≥ 1 such that

x =
k

∑
i=1

λi xi with λi ∈ C and
k

∑
i=1

|λi| ≤ 1.

In particular, if X = {xi}1≤i≤m is a finite set of vectors,

absco(X ) =
{

x ∈ Cn
∣∣∣ x =

m

∑
i=1

λi xi with
m

∑
i=1

|λi| ≤ 1
}
. (5)

The forthcoming definition extends the usual definition of
symmetric polytope in the real space Rn.

Definition 2.1: We shall say that a bounded set P ⊂ Cn

is a balanced complex polytope (b.c.p.) if there exists a finite
set of vectors X = {xi}1≤i≤m such that span(X ) = Cn and

P = absco(X ). (6)

Moreover, if absco(X ′) � absco(X ) for all X ′ � X , then
X will be called an essential system of vertices for P ,
whereas any vector uxi with u ∈ C, |u| = 1, will be called a
vertex of P .

From a geometrical point of view, a b.c.p. P is not a
classical polytope. In fact, if we identify the complex space
Cn with the real space R2n, we see that P is not bounded
by hyperplanes. In general, even the intersection P

⋂
Rn is

not a classical polytope. However, if the b.c.p. P admits an
essential system of real vertices, then P

⋂
Rn is a classical

polytope.
Now we extend the concept of polytope norm to the

complex case in a straightforward way.
Lemma 2.1: Any b.c.p. P is the unit ball of a norm ‖·‖P

on Cn.

Proof: Since span(X ) = Cn, the set P is absorbing.
Therefore, since it is absolutely convex and bounded, the
Minkowski functional associated to P , defined for all z∈Cn

by
‖z‖P = inf{ρ > 0 | z ∈ ρP}, (7)

is indeed a norm on Cn (see [14]).
Definition 2.2: We shall call complex polytope norm any

norm ‖ · ‖P whose unit ball is a b.c.p. P .
The corresponding vector norm is characterized by the

following Lemma.
Lemma 2.2: Let P be a b.c.p. and let ‖ · ‖P be the

corresponding complex polytope norm. Then, for any z∈Cn,
it holds that

‖z‖P = min
{ m

∑
i=1

|λi|
∣∣∣ z =

m

∑
i=1

λi xi

}
, (8)

where X = {xi}1≤i≤m is an essential system of vertices for
P .

Proof: The equality in (8) is got just by rewriting (7)
taking Definition 2.1 into account.

The next theorem shows that the set of the complex
polytope norms is dense in the set of all norms defined on
Cn and that, consequently, the corresponding set of induced
matrix complex polytope norms is dense in the set of all
induced n×n-matrix norms (see [13]).

Theorem 2.1: Let ‖ · ‖ be a norm on Cn. Then for any
ε > 0 there exists a b.c.p. Pε whose corresponding complex
polytope norm ‖ · ‖ε satisfies the inequalities

‖x‖ ≤ ‖x‖ε ≤ (1+ ε)‖x‖ for all x ∈ Cn.

Moreover, denoting by ‖ ·‖ and ‖ ·‖ε also the corresponding
induced matrix norms, it holds that

(1+ ε)−1‖A‖ ≤ ‖A‖ε ≤ (1+ ε)‖A‖ for all A ∈ Cn×n.

III. POLYTOPE EXTREMALITY RESULTS

Complex polytope norms play a particular role. In fact,
Theorem 2.1 implies the following refinement of Theo-
rem 1.1.

Theorem 3.1: The spectral radius of a bounded family F
of complex n×n-matrices is characterized by the equality

ρ(F ) = inf
‖·‖∈Npol

‖F‖,

where Npol denotes the set of all possible induced n× n-
matrix complex polytope norms.

A first fundamental question concerns the construction of
an extremal norm for a non-defective family. Now we give
a very useful result in this direction.

We start with the following definition.
Definition 3.1 (s.m.p.): If F is a bounded family of com-

plex n×n-matrices, any matrix P̄ ∈ Σk(F ) satisfying

ρ(F ) = ρ̄k(F )1/k = ρ(P̄)1/k (9)

for some k ≥ 1 will be called a spectrum-maximizing product
(in short, an s.m.p.) for F . An s.m.p. is said minimal if it is
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not a power of another s.m.p. of F . Any eigenvector x 	= 0
of P̄ related to an eigenvalue λ with |λ | = ρ(P̄) is said to
be a leading eigenvector of F .

Let us consider a family F ∗ with ρ(F ∗) ≥ 1. Then, for
any vector x ∈ Cn, we define the set

T [F ∗,x] = {x}∪{Px | P ∈ Σ(F ∗)},
i.e. the trajectory obtained by applying all the products P of
matrices of F ∗ to the vector x.

The following theorem illustrates the possible use of the
trajectory in the determination of an extremal norm.

Theorem 3.2: Let F ∗ be a bounded family of complex
n×n-matrices s.t.

(i) ρ(F ∗) ≥ 1

and, for a given vector x ∈ Cn, let the trajectory T [F ∗,x]
satisfy the following conditions:

(ii) span
(
T [F ∗,x]

)
= Cn;

(iii) T [F ∗,x] is a bounded subset of Cn.

Then we have that:

• F ∗ is non-defective and ρ(F ∗) = 1;

• the set S [F ∗,x] = absco
(
T [F ∗,x]

)
is the unit ball of

an extremal norm ‖ · ‖ for F ∗ (that is ‖F ∗‖ = 1).

Proof: By (ii) and (iii) the absolutely convex set

S = S [F ∗,x] = absco
(
T [F ∗,x]

)
is bounded and absorbing. This means that we can define a
vector norm

‖z‖S = inf{ρ > 0 | z ∈ ρS }.
Now, by definition of S ,

A(i) S ⊆ S ∀ A(i) ∈ F ∗,

which means that the family F ∗ maps the set S into itself.
Therefore

‖F ∗‖S ≤ 1 =⇒ ρ(F ∗) = 1.

When ρ(F ∗) = 1 the trajectory might play an important role
in the construction of an extremal norm and, hence, in the
computation of the spectral radius.

We remark that the typical way to fulfil assumption (i)
is that of scaling the original family F = {A(i)}i∈I by the
scalar ρ = ρ(Qk)1/k, for some Qk ∈ Σk(F ), that is setting

F ∗ =
{

ρ−1 A(i)
}

i∈I
.

The next question is whether a non-defective family admits
an extremal complex polytope norm or not.

Assume that the hypotheses of Theorem 3.2 hold. The
possibility of actually determining an extremal polytope
norm, if any, is based on the search for a suitable initial
vector x to which it corresponds a trajectory s.t. the set
S [F ,x] is a balanced complex polytope. Such choice is
suggested by the forthcoming Theorem 3.3.

The following conjecture is partially related to the Ex-
tremality Conjecture in [15].

Conjecture 3.1 (CPE Conjecture): Assume that a finite
family of complex n× n-matrices F = {A(i)}1≤i≤m is non-
defective and has at least an s.m.p. P̄. Then there exists an
extremal complex polytope norm for F .

We have proved (see [8]) a weaker version of the above
conjecture, namely the Small CPE Theorem, by adding some
hypotheses on the family F .

In order to state the result we need to give the following
definitions.

Definition 3.2: Let F ∗ be a family of complex n × n-
matrices and F̂ = (1/ρ(F ∗))F ∗ the corresponding normal-
ized family. A set X ⊂Cn is said to be F ∗-cyclic if for any
pair (x,y) ∈ X ×X , there exist α,β ∈ C with |α| · |β | = 1,
and two (finite) normalized products P̂, Q̂ ∈ Σ(F̂ ) such that

y = α P̂x and x = β Q̂y.

Definition 3.3: A non-defective bounded family F ∗ of
complex n× n-matrices is said to be asymptotically simple
if the set E of its leading eigenvectors (see Definition 3.1)
is finite (modulo scalar nonzero factors) and F ∗-cyclic.

Theorem 3.3 (Small CPE Theorem): Assume that a finite
family F ∗ of complex n×n-matrices fulfils the assumptions
of Theorem 3.2. Furthermore assume that

(iv) F ∗ is asymptotically simple;
(v) x is a leading eigenvector of F ∗.

Then the set
∂S [F ∗,x]

⋂
T [F ∗,x] (10)

is finite modulo scalar factors of unitary modulus. As
a consequence, there exist a finite number of products
P̂(1), . . . , P̂(s) ∈ Σ(F ∗) such that

S [F ∗,x] = absco
(
{x, P̂(1)x, . . . , P̂(s)x}

)
, (11)

so that S [F ∗,x] is a b.c.p.
Then we have proved the following refinement of Theo-
rem 3.3.

Theorem 3.4: Let the hypotheses of Theorem 3.3 hold and
let F ∗ have a unique minimal s.m.p. (see Definition 3.1).
Then all the leading eigenvectors of F ∗ (in the set Ξ =
E

⋂
∂S [F ∗,x]) are vertices of the b.c.p. S [F ∗,x].

IV. ALGORITHM AND COMPUTATIONAL ASPECTS

We present an algorithm based on the previous results.
Algorithm 4.1:

(0) Let F = {A(i)}i∈I ; choose a candidate s.m.p. Qk ∈
Σk(F ) (for some k).

(1) Set ρ = ρ(Qk)1/k and define the scaled family

F ∗ = {ρ−1 A(i)}i∈I with ρ(F ∗) ≥ 1.

(2) Compute the leading eigenvector v1 of Qk and set x1 =
v1.

(3) Set s = 1 and define V (1) = X (1) = {x1} and set P(1) =
absco

(
X (1)

)
.
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(4) Compute the set of vectors

V (s+1) = F ∗
(
X (s)

)
.

(5) If V (s+1) ⊆ P(s) then

Set S [F ∗,x] = P(s);
Stop.

(6) Set P(s+1) = absco
(
V (s+1) ⋃

X (s)
)

and compute an

essential system of vertices X (s+1) of P(s+1).
(7) Set s = s+1 and Goto (4).

If the procedure halts (for finite s), S [F ∗,x] is a polytope.

Furthermore, if span
(
X (s)

)
= Cn, then S [F ∗,x] generates

an extremal complex polytope norm.
This kind of algorithm has been successfully applied for

analyzing the asymptotic stability of linear difference equa-
tions with variable coefficients arising from the discretization
of differential equations (see e.g. [10], [12]) and seems to
have a good potential in view of a large class of applications.

Now we briefly investigate how to compute the complex
polytope norm of a vector and of a matrix. Given a b.c.p. P
and an essential system of vertices X = {xi}1≤i≤m, define
the vertex matrix

V =
[
x1 . . .xm

]
.

The equality in (8) yields with λ = [λ1 . . .λm]T ,

‖z‖P = min
V λ=z

‖λ‖1. (12)

Note that, if m = n, then (12) reduces to ‖z‖P = ‖V−1z‖1.
Then consider the case m > n. In order to compute ‖z‖P ,

assume without any restriction that the first n columns of
the vertex matrix V are linearly independent and define the
matrices

V1 =
[
x1 . . .xn

]
and V2 =

[
xn+1 . . .xm

]
.

Then, if λ ∈ Cm, define also the (m−n)-vector

µ = [λn+1 . . .λm]T ,

so that any solution of the equation V λ = z may be written
in the form

λ =
[

V−1
1 (z−V2µ)

µ

]
.

In conclusion, we obtain

‖z‖P = min
µ∈Cm−n

∥∥∥∥
[

V−1
1 (z−V2µ)

µ

]∥∥∥∥
1
, (13)

that is the computation of ‖z‖P requires the solution of a
minimization problem in Cm−n.

Concerning the computation of the induced matrix norms
‖A‖P , we have to deal (in parallel) with several optimization
problems of the previous form.

First of all, observe that, by Definition 2.1, we immediately
have

‖A‖P = max
z∈∂P

‖Az‖P = max
1≤i≤m

‖Axi‖P . (14)

Thus formula (13) yields

‖A‖P = max
1≤i≤m

min
µ∈Cm−n

∥∥∥∥
[

V−1
1 (Axi −V2µ)

µ

]∥∥∥∥
1
. (15)

In conclusion, by defining the (m−n)×m-matrix

M =
[
µ(1) . . .µ(m)

]
,

where, for each i = 1, . . . ,m, µ(i) minimizes the right-hand
side in (15), we get the equality

‖A‖P =
∥∥∥∥
[

V−1
1 (AV −V2M)

M

]∥∥∥∥
1
. (16)

If the considered family is made of real matrices and the
vertices of the polytope are real, we have to deal with the
computation of real polytope norms. This turns out to be
equivalent to a special linear programming problem (see [2]).

Efficient algorithms for the computation of a general
complex polytope norm are presently being investigated.

V. APPLICATION TO A MODEL PROBLEM

Our starting point is the following result from [3], which
gives an elementary counterexample to the well-known
finiteness conjecture (see [15]) .

Theorem 5.1: There are uncountably many values of the
parameter b ∈ [0,1] such that the family F = {A,B}, with

A =
[

1 1
0 1

]
, B = b

[
1 0
1 1

]

does not satisfy the finiteness conjecture.
An explicit counterexample (that is a specific value of b)

is unknown.
Theorem 5.1 can actually be refined by determining subin-

tervals of [0,1] such that an s.m.p. exists. This can be
obtained by applying Algorithm 4.1.

When b≥ 4
5 we observe (by a computational investigation)

that P = AB is a candidate s.m.p. for the family. In order to
prove this rigorously we determine the leading eigen-pair of
P, that is

λ =
1
4

β 2 b (17)

v1 =
[

1
2

β 1

]T

, (18)

where β = 1+
√

5.
Then we scale the family F by ρ(P)1/2 = |λ |1/2 so as to

obtain

F ∗ = {A∗,B∗} =

{
A

ρ(P)
1
2

,
B

ρ(P)
1
2

}
,

that fulfils assumption (i) of Theorem 3.2.
Next we apply Algorithm 4.1 with x1 = v1. It can be shown

by simple although rather technical algebraic manipulations
that the algorithm ends successfully after 3 steps. Here are
the steps in more detail.
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S1. We set X (1) = {v1}; by applying F ∗ to X (1) we obtain
V (2) = {v2,v3}, where

v2 = B∗ v1 =
√

b

[
1

β
2

]T

,

v3 = A∗ v1 =
1√
b

[
β
2

2
β

]T

.

We set P(2) = absco
(
V (2) ∪X (1)

)
and get

X (2) = {v1,v2,v3}.
S2. We apply F ∗ to X (2) and obtain V (3) = {v4,v5,v6,v7},

where

v4 = A∗ v2 = v1,

v5 = B∗ v2 = b

[
2
β

β
2

]T

,

v6 = A∗ v3 =
1
b

[
4+β 2

β 2

4
β 2

]T

,

v7 = B∗ v3 =
[

1
4+β 2

β 2

]T

.

We set P(3) = absco
(
V (3) ∪X (2)

)
and, since v7 ∈

P(2) and v5,v6 	∈ P(2), we get

X (3) = {v1,v2,v3,v5,v6}.
S3. We apply F ∗ to X (3) and obtain V (4) =

{v8,v9,v10,v11}, where

v8 = A∗ v5 =
√

b

[
4+β 2

β 2 1

]T

,

v9 = B∗ v5 = b3/2
[

4
β 2

4+β 2

β 2

]T

,

v10 = A∗ v6 =
1

b3/2

[
16+2β 2

β 3

8
β 3

]T

,

v11 = B∗ v6 =
1√
b

[
8+2β 2

β 3

4
β
− 16

β 4

]T

.

It turns out that V (4) ⊂P(3). Hence the algorithm halts.
Since span

(
P(3)

)
= R2, we can conclude that

P = P(3) = absco({v1,v2,v3,v5,v6})
is a (real) polytope inducing an extremal norm for F ∗.
By Theorem 3.2, we have ρ(F ∗) = 1 and, consequently,

ρ(F ) =
1+

√
5

2

√
b. (19)

The above procedure works for all b ∈ [ 4
5 ,1]. Figures 1

and 2 illustrate the case b = 9
10 .

Actually, for proving that (19) holds for b∈ [ 4
5 ,1], it would

be sufficient to positively check the boundary values b = 4
5

and b = 1. In fact, in [3] it is proved that the set of b-values
such that a product P is an s.m.p. is a closed interval.

−2 −1 0 1 2

−2

−1

0

1

2
v5 v2

v1

v3
v6P

b = 0.9

Fig. 1. Extremal polytope norm.

0 1 20

1

2

v7

v8

v9

v10

v11

v5
v2

v1 = v4

v3

v6

b = 0.9

Fig. 2. The vectors computed by the algorithm.

When b = 4
5 the vector v7 lies on the boundary of P

(see Figure 3); this choice of b coincides with the fact that
a so-called limit spectrum maximizing product appears, that
is a matrix Q∗ ∈ Σ(F ∗) which is not an s.m.p. although
being such that ρ(Q∗) = 1. In this case the limit spectrum
maximizing product is Q∗ = lim

k→∞
A∗ (B∗ A∗)k, i.e.

Q∗ =

[
1/2 β/4

1/β 1/2

]
,

the eigenvalues of which are 0 and 1. As soon as b < 4
5 the

vector v7 lies outside the polytope P , so that the algorithm
would not halt at all since ρ(F ∗) > 1. Similarly, using the
candidate s.m.p. A2 B, we applied Algorithm 4.1 to show that

ρ(F ) =
(
(2+

√
3)b

)1/3
for b ∈ [0.5734..,0.7444..].

More generally, Algorithm 4.1 allows us to find closed
subintervals of [0,1] where the finiteness conjecture holds
and also to find the corresponding s.m.p..
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0 1 20

1

2

0 1 20

1

2

v7

critical

v8

v9

v11

v5

v2

v1 = v4

v3

b = 0.8

v7

external

v8
v9

v11

v5

v2

v1 = v4

v3

b = 0.75

Fig. 3. The boundary case b = 4/5 and the case b = 3/4.

VI. CONCLUSIONS AND FUTURE WORK

The main feature of our approach lies in the fact that we
try to compute the joint spectral radius by constructing a
polytope extremal norm, that is a norm that can be computed
in a finite number of steps. However, the success is not
guaranteed for all problems of this type. In fact, it is clear
that, for each particular problem, a suitable guess has to be
found for a spectrum-maximizing product and, moreover, a
suitable choice of the initial vector has to be done in order
to (possibly) construct a polytope extremal norm.

An important class of problems we plan to investigate by
our algorithm is that of the robustness of a stable system
with respect to a given class of uncertainties. Given a discrete
time system x(t +1) = A0 x(t) which is asymptotically stable
(which means that ρ(A0) < 1), we consider the perturbed
system

x(t +1) =

(
A0 +

p

∑
i=1

δi(t)Ai

)
x(t), t ∈ N.

The matrices {Ai}p
i=1 are given and the perturbations {δi(t)}

are unknown. For a robustness analysis we define the family

Fα =

{
A0 +

p

∑
i=1

δi Ai

∣∣∣∣ ‖δ‖ ≤ α

}
,

where δ = (δ1 δ2 . . . δp)
T, and focus our attention on

x(t +1) ∈ {Ax(t) | A ∈ Fα} .

The goal of the analysis is that to determine the largest
uncertainty level α∗ such that for α < α∗ the system remains
stable, that is α∗ = inf{α ≥ 0 | ρ (Fα) ≥ 1} (see e.g. [22]).

We plan to develop a code implementing our algorithm in
an efficient way and to apply it to this kind of examples and
to real-life problems arising in many fields of control theory.
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