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Abstract— In this paper, we present a collection of results
on the observability of quantum mechanical systems, in the
case the output is the result of a discrete nonselective measure-
ment. By defining an effective observable, we extend previous
results, on the Lie algebraic characterization of observable
systems, to general measurements. Further results include the
characterization of a ‘best probe’ (i.e. a minimally disturbing
probe) in indirect measurement and a study of the relation
between disturbance and observability in this case. We also
discuss how the observability properties of a quantum system
relate to the problem of state reconstruction. Extensions of
the formalism to the case of selective measurements are also
given.

I. INTRODUCTION

The structural properties of controllability and observ-

ability have been studied in depth for deterministic control

systems of the form

ẋ = f(t, x, u), (1)

with output

y = y(x). (2)

In (1) (2), x is the state of the system varying on a given

manifold M , u is the control, f a smooth vector field and

y a smooth map M → RI which models how observations

on the system depend on the state. For quantum systems,

the study of controllability has received greater attention

(see e.g. [1], [2], [3], [4]). A study of the observability for

quantum systems is complicated by the fact that, in general,

the output has a probabilistic nature and the associated

probability distribution depends on the current state. More-

over, different types of measurements can be considered

according to the specific experimental situation at hand. In

the standard text-book selective Von Neumann-Luders mea-

surement (see e.g. [5]), the measured quantity is represented

by a Hermitian operator S and the result of the measurement

is given by an eigenvalue of S with probability depending

on the current state. However several different scenarios

and mathematical models of quantum measurements can be

considered in different situations (see e.g. [6]). Therefore

different definitions of observability may be appropriate

and of physical interest in different cases. Nevertheless,

there are several reasons to study observability for quantum

mechanical control systems. From the viewpoint of the

fundamental development of the theory, observability is one
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of the main concepts to be extended to quantum systems.

It is related to the notion of input-output equivalence and

therefore to the general question of modeling time varying

Hamiltonians1. The problem of determining the state from

the observation of a quorum of observables is an important

one in quantum mechanics [9]. Techniques to find a set

of observables which would determine the state without

ambiguity have been extensively studied in quantum physics

(see e.g. [10], [11]). Observability of quantum systems is

also particularly important in view of the recent interest

in implementing feedback at the quantum level (see e.g.

[12], [13], [14], [15], [16]). A feedback controller uses the

knowledge on the current state to update the value of the

control, i.e. it is of the form u = u(t, x). The knowledge

of the state is obtained through the output and therefore an

a priori knowledge of the extent to which information on

the state can be obtained from the output is essential in the

design of state feedback control scheme.

In a recent paper [17], a study was presented on the

observability properties of quantum systems subject to

nonselective measurement i.e. a measurement where either

the result is not read or it is given by the expectation

value of a given observable. The latter case is of interest

in several experimental scenarios such as nuclear magnetic

resonance where the output signal is averaged over a large

number of quantum systems. In these cases, the definition

and treatment of observability is simplified by the fact that

one does not have to consider probabilities explicitly and

natural definitions of observability can be given. In this

paper we expand upon the treatment of [17] for general

measurements. A unified treatment for the various types

of measurements is presented using notions of generalized

measurement theory [6].

We shall be interested in the dynamics of finite di-

mensional quantum systems whose state is described by a

density matrix ρ. We shall consider measurements occurring

at discrete instants of time. In between two measurements,

the evolution of ρ is governed by Liouville’s equation (see

e.g. [5])

iρ̇ = [H(u(t)), ρ], (3)

where the Hamiltonian H explicitly depends on a control

u = u(t). In general, for nonselective measurement the

1Two models are input output equivalent if they produce the same output
function for any input. Two input-output equivalent models cannot be
distinguished by applying control inputs and observing the output and
therefore modeling via input-output experiments may only be made up
to equivalence classes of input-output equivalent models. This question is
explored for networks of particles with spin in [7], [8]
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result can be assumed to be a linear function of the current

state ρ. This is the case when one performs a Von Neumann-

Luders measurement of the expectation value of a given

observable S in which case the output y associated to a

system (3) is given by

y = Tr(Sρ). (4)

Another example is the indirect measurement discussed in

detail in Section III. We shall treat the nonselective case

in greater detail and then present some extensions to the

selective case in Section VI.

The effect of nonselective measurements on the state ρ of

the system can be described in general using the formalism

of operations [6], [18]. In particular, if M is a measurable

set of possible outcomes, upon measurement the state ρ is

modified as ρ → F(ρ), where

F(ρ) :=
∫
M

Φm(ρ) dm or F(ρ) :=
∑

m∈M
Φm(ρ), (5)

according to whether M is a continuous or discrete set

respectively. The super-operators Φm are called operations
and, according to Kraus representation theorem [18], can

be expressed as

Φm(ρ) :=
∑

k

Ωmkρ Ω∗
mk, (6)

for a countable set of operators Ωmk.

This paper presents the results of a study on the ob-

servability of quantum systems under general nonselective

measurement (we refer to [19] for an extensive discussion

including the proofs). After introducing the basic definitions

and results concerning the observability of quantum systems

by means of effective observables (Section II), in Section

III we present some results for the special case of indirect
measurement. These include an expression for the effective

observable and the derivation of the optimal measurement

in terms of minimal disturbance on the state. In Section IV

we show that there is not a conflict between observability

and low disturbance of the system. In Section V the design

of quantum state reconstruction is discussed and related

to observability. Section VI presents an extension of the

formalism to the case of selective measurement.

II. OBSERVABILITY UNDER GENERAL NONSELECTIVE

MEASUREMENT

If the output y of system (3) is a linear function of the

current state, as we assume here, it is always possible to

express y as

y(t) = Tr
(
Seffρ(t)

)
, (7)

for some Hermitian matrix Seff , which represents an effec-
tive observable. Without loss of generality, we can assume

that Seff has zero trace since a trace different from zero

would only introduce a constant shift in the value of the

output which does not play any role in our treatment.

Alternatively, we could quotient all the subspaces (the

observability spaces defined in (9) below) by span {i1}.

Denote by ρk(t, u, ρ̄) the solution of (3) with initial

condition ρ̄, control u at time t after k− 1 measurements,

where, at every measurement, the state is modified as in (5)-

(6). Then, two states ρ̄1 and ρ̄2 are called indistinguishable
in k steps (or after k measurements) if, for every control u
and time t

T r
(
Seffρk(t, u, ρ̄1)

)
= Tr

(
Seffρk(t, u, ρ̄2)

)
. (8)

A system is called observable in k steps if indistinguisha-

bility in k steps of ρ̄1 and ρ̄2 implies ρ̄1 = ρ̄2. A system is

called observable if it is observable in k steps for some k.

As in the study of controllability (cf. [1], [4], [2]) the

dynamical Lie algebra associated to the quantum system (3)

plays a prominent role. The dynamical Lie algebra L is de-

fined as the Lie algebra generated by spanu∈U{−iH(u)},

where U is the set of possible values for the control u. In or-

der to express the conditions for observability in an arbitrary

number of steps, under general nonselective measurement,

we associate to the super-operator F a dual super-operator

F∗ acting on observables S and defined from the require-

ment that, for every S and ρ, Tr(F∗(S)ρ) = Tr(SF(ρ)).
Then, we define generalized observability spaces Vk, k =
0, 1, ..., recursively as

V0 := span{iSeff}, V1 :=
⊕∞

j=0 adj
LV0,

Vk :=
⊕∞

j=0 adj
LF∗(Vk−1),

(9)

where adj
LV is defined as spanned by all the repeated Lie

brackets [R1, [R2, . . . , [Rj , iA] . . .]], and the Lie bracket is

taken j times, R1, . . . , Rj ∈ L and iA ∈ V . With these

definitions, the main results of [17] can be summarized as

follows.

Theorem 1: System (3) with output y in (7) is observable

in k steps if and only if

Vk = su(n). (10)

More in general, write ρ = ρ1 + ρ2 where ρ1 is the

component of ρ in iVk
2 and ρ2 is the component along

iV⊥
k where V⊥

k is the orthogonal complement of Vk in u(n).
Then, we have the following decomposition of the dynamics

ρ̇1 = −i[H(u), ρ1], ρ̇2 = −i[H(u), ρ2], (11)

and we have

y(t) := Tr
(
Seffρ(t)

)
= Tr

(
Seffρ1(t)

)
. (12)

Initial states are indistinguishable in k steps if and only if

they differ by an element in iV⊥
k .

In several interesting scenarios, the measurement scheme

has a ‘repetition property’ which can be defined by im-

posing that the operators Ωmk in (6) satisfy ΩmkΩrl =
δmrδklΩmk, ∀m, r ∈ M and ∀ k, l. In these cases

Φm(Φm(ρ)) = Φm(ρ) ∀ρ, F2 = F , and F∗2 = F∗.

2vector space of Hermitian matrices obtained by multiplying by i the
skew-Hermitian matrices in Vk
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Physically this means that a second measurement does not

modify the state more than the first one. In these cases, it

is easy to show that Vk−1 ⊆ Vk so that states that are

indistinguishable in k steps are also indistinguishable in

k− 1 steps 3 Moreover, because of the assumption of finite

dimensionality, there exists a k such that Vk = Vk̄ for all

k̄ > k. An example is the standard Von Neumann-Luders

measurement of the observable S. In this case Seff = S.

Expressing S as

S =
∑

j

λjΠj , (15)

where the λj’s are the eigenvalues of S and Πj are the

orthogonal projections onto the corresponding eigenspaces

which play the role of Ωmk’s. F is given by

F(ρ) :=
∑

j

Πjρ Πj . (16)

In order to use the results of Theorem 1 we need to find

an expression for F and Seff which describe the particular

measurement considered. In the following section we treat

in detail the case of indirect measurement.

III. OBSERVABILITY UNDER INDIRECT NONSELECTIVE

MEASUREMENT

In indirect measurement, the system evolves as in (3)

until it is in a state ρS and it is put in contact with a

probe system whose initial state we denote by ρP . The

total system of system and probe at the beginning of the

measurement process is in the state

ρTOT := ρS ⊗ ρP . (17)

During the measurement process, of duration τ , the total

system evolves according to an Hamiltonian

HTOT := H(u) ⊗ 1 + g(t)A ⊗ B + 1 ⊗ HP . (18)

The term HP describes the dynamics of the probe system

alone. The term g(t)A ⊗ B gives the interaction between

probe and system, where g(t) is nonzero only during the

interval [0, τ ]; 1 is the identity operator. It is usually

assumed that, when the interaction is active, it represents

the dominant term in the Hamiltonian HTOT . Therefore

we shall first assume

HTOT := g(t)A ⊗ B. (19)

3The proof uses an expression of Seff in terms of effects Fm defined
in Section VI. When the output is an expectation value, then

Seff =
∑

m∈M
mFm. (13)

Moreover using the expression for the effects

Fm =
∑

k

Ω∗
mkΩmk, (14)

and the repetition property, one has F∗(Seff ) = Seff and therefore
V1 = F∗(V0). V0 ⊆ V1 and by induction one obtains Vk−1 ⊆ Vk .

At the end of the interval [0, τ ], an observable S is measured

on the probe system, or equivalently an observable 1⊗S is

measured on the total system. In the following proposition

we calculate an expression for Seff .

Proposition 3.1: With the above definitions and nota-

tions, for indirect measurement

Seff =
∞∑

k=0

AkTr
((

adk
−iBρP

)
S

)Gk

k!
, (20)

where

G :=
∫ τ

0

g(t)dt. (21)

We notice some features of the expression of Seff (20).

Remark 3.2: Assume we retain only the terms up to first

order in G. This is reasonable if the interaction is very quick

and of small magnitude. Then we have

Seff ≈ TrP (ρP S)1 + TrP ([−iB, ρP ]S)GA, (22)

so that, if Tr([−iB, ρP ]S) �= 0 there is a one to one

correspondence, in first approximation, between the values

of the output and the value of the observable A, and

therefore we can say that we are measuring A indirectly.

Remark 3.3: In the special case where S and B are

canonically conjugate observables on the probe, i.e.

[B,S] = iγ1 with γ ∈ RI , the above correspondence

between mean values of Seff and A is exact. This is the

case treated in [6]. For more details see [19].

Remark 3.4: In some cases, it is not appropriate to

neglect the term containing H(u) in (18). In these cases,

it is not possible, in general, to obtain a simple expression

of Seff as in (20). However Remark 3.2 above still holds

true, assuming the g(t) is a simple square function in [0, τ ]
so that G = τ , and u is constant in [0, τ ] (see [19]).

Remark 3.5: The expression of Seff does not depend on

the probe being finite dimensional.

In (20), there is a dependence of Seff on the initial

state of the probe. As a consequence, it could be possible

to modify the observability property for the system by

suitably choosing ρP . However, the disturbance induced on

the system depends on ρP as well, and it is interesting to

investigate whether there is a conflict between observability

and low disturbance of the system. We provide here an

analysis of the disturbance on the state while performing

an indirect non selective measurement and show how to

find the initial state of the probe which gives the (worst

case) minimal disturbance. Using this result, we shall show

that there is in general no conflict between observability

and minimal disturbance.

We consider, as a measure of the disturbance on the state

ρS , the trace norm

d := ‖F(ρS) − ρS(0)‖ =
[
Tr

(F(ρS) − ρS

)2 ] 1
2 , (23)

expressing the distance between the initial state ρS and

the final one, F(ρS). If we fix all the parameters of the

measurement process, the disturbance d will in general be
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a convex function of ρS . Since ρS varies on a convex

and compact set, the set of all the density matrices, the

maximum will in general be achieved on the boundary

i.e. it will be a pure state. We shall now show how it is

possible to find this worst case pure state in the small time

approximation in the case where all the terms in (18) are

possibly different from zero (and u is constant). After that,

we will derive the corresponding distance d, depending on

ρP . Then, it will be immediate to find the initial state of

the probe which gives the minimum for d. In the above

situation, neglecting higher order terms in τ , d2 can be

written as

d2 = −τ2 Tr
(
[H(u) + TrP (BρP )A, ρS(0)]

)2
. (24)

If we set X := H(u) + TrP (BρP )A, we have

d2 = 2τ2Tr(X2ρ2
S − XρSXρS), (25)

where we write ρS for ρS(0) as there is no possibility of

confusion. As an orthonormal basis for the Hilbert space of

the system, we choose the eigenvectors of the Hermitian

operator X , |φk〉, k = 1, . . . , n, and xk are the real

eigenvalues of X . Since the worst case ρS is a pure state,

we can write ρS = |ψ〉〈ψ| for some |ψ〉 =
∑

k rk|φk〉
where the n coefficients rk completely specify ρS . They

can be assumed real by suitably redefining the eigenvectors

|φk〉. We have the further constraint
∑

k r2
k = 1 since

TrρS = 1. To determine the worst case ρS , we rewrite

(25) as a function of the rk coefficients

d2 = 2τ2
(∑

k>j

(xk − xj)2(rkrj)2
)
. (26)

We can maximize d2 with respect to the n parameters rk

using the Lagrange method. The system that we obtain

always admits a solution since the function d2 is continuous

over the compact set of pure density matrices. In the next

section we will explicitly compute ρS in a particular case.

We summarize our discussion in the following theorem.

Theorem 2: The worst case disturbance in a small time

approximation is given by d2 in (26), where (r1, . . . , rn) are

obtained using the Lagrange method. Therefore given u, A
and B in the definition of X , the initial state of the probe

which minimizes the worst case error has to be chosen so

as to minimize this d2.

IV. OBSERVABILITY AND MINIMAL DISTURBANCE

As a concrete example of observability under an indi-

rect measurement, we consider the simple case of two-

dimensional system and probe. The system is a qubit with

external control u affecting a two-components magnetic

field, for example

H(u) = Ex(u)σx + Ey(u)σy. (27)

We assume a piecewise constant control u ∈ {u1, u2} that

flips the magnetic field directions x and y, that is Ex(u1) =
E, Ey(u1) = 0 and Ex(u2) = 0, Ey(u2) = E. We use a

second qubit as probe and we let it interact with the system

for a short time τ in which the free evolution (27) can be

neglected. To get information about the initial state ρS we

measure S = σz on the probe. Assuming a simple Ising

model of interaction, A = σy and B = σx, the effective

observable Seff can be explicitly computed [19]:

Seff = TrP (σzρP ) cos 2G1 + TrP (σyρP ) sin(2G)σy.
(28)

Remark 4.1: The observability properties of our system

strongly depend on the initial state of the probe ρP . Suppose

that Tr(σyρP ) = 0, then Seff = 0 and the observability

spaces Vk contain only the null vector. Then the system is

not observable and the states are all indistinguishable ∀ k.

On the other hand, suppose Tr(σyρP ) �= 0. In such a case

Seff = Tr(σyρP ) sin 2Gσy and Vk = su(2) for all k, and

the system is observable in k steps ∀ k.

We now determine the minimal disturbing probe de-

scribed in Theorem 2. We assumed that during the time

interval τ the control does not change, and its actual value

is relevant in order to find the minimal disturbing probe. In

our example, the Lagrange method gives⎧⎨
⎩

r1

(
(x2 − x1)2r2

2 + λ
)

= 0
r2

(
(x2 − x1)2r2

1 + λ
)

= 0
r2
1 + r2

2 = 1.
(29)

where x1, x2 are the eigenvectors of X and they depend

on u. Solving (29) we find the worst case ρS :

ρS =
1
2

(|φ1〉〈φ1| + |φ2〉〈φ2| ± |φ1〉〈φ2| ± |φ2〉〈φ1|) (30)

leading to d2 = (x2−x1)2/4. For u = u1, x2−x1 = 2[E2+
(TrP (σxρP ))2], for u = u2, x2−x1 = 2(E+TrP (σxρP )).
Then, the minimally disturbing probe must satisfy{

TrP (σxρP ) = 0 for u = u1,

TrP (σxρP ) = max{−E,−1} for u = u2.
(31)

In both cases there is not a conflict between observability

and minimal disturbance (see Remark 4.1).

V. OBSERVABILITY AND STATE RECONSTRUCTION

We present in this section a system theoretic treatment of

the problem of state determination for the system (3) with

output (4). In systems and control theory, for a continuous

time system such as (3), under observability conditions, the

(initial) state is determined from a continuous reading of

the output. From a physics point of view, a continuous

monitoring of the output will introduce a back action on

the state of the quantum system and therefore it will render

invalid the model (3). However, this scheme is of interest for

quantum systems in situations like the following. Assume

we want to determine the unknown (initial) state and we

have many copies of the same system. We perform a

nonselective measurement on each copy at slightly different

times so as to simulate a continuous measurement. The data

so obtained can then be used by the observer to reconstruct

the state of the system (without measurement back-action).
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With this motivation in mind, a method for reconstructing

the initial state can be obtained by adapting to our case

techniques for time varying linear systems [20]. Observ-

ability (in one step) is a necessary and sufficient condition

for reconstructing the initial state from a reading of the

output. In fact, if the system is not observable, then it is

not possible to discern between two indistinguishable initial

states. Viceversa, assume the system is observable. Then, we

have that [17]

{X∗iSX|X ∈ eL} = su(n). (32)

This means that we can choose a control u, so that, for

the corresponding solution Xu of Schrödinger operator

equation

Ẋ = −iH(u)X, X(0) = I, (33)

the n2 − 1 elements of the matrix X∗
uSXu (namely the

real functions composing the matrix modulo the fact that

this matrix is Hermitian) are linearly independent. eL is

the Lie group of all the matrices Xm for which there

exists a control steering X in (33) from the identity to

Xm. We can select n2 − 1 matrices X1, ..., Xn2−1 so

that X∗
1SX1,...,X∗

n2−1SXn2−1 are linearly independent and

then concatenate the controls steering the matrix X in (33)

to X1, X2X
∗
1 , X3X

∗
2 ,...,Xn2−1X

∗
n2−2. Now assume that,

in the control interval [0, T ], the (significant) real entries

of X∗
uSXu are linearly independent and define the linear

operator W which maps n × n Hermitian matrices with

zero trace into n×n Hermitian matrices with zero trace as

follows

Wu(ρ̂0) :=
∫ T

0

X∗
u(t)SXu(t)Tr

(
X∗

u(t)SXu(t)ρ̂0

)
dt.

(34)

The operator Wu has the following property.

Proposition 5.1: If the n2 − 1 real functions composing

X∗
uSXu are linearly independent then Wu has rank n2 − 1

and therefore it has an inverse W−1
u .

Now, from formula (4), we obtain

y(t) = Tr
(
X∗

uSXu(ρ0 − 1
n

In×n)
)
. (35)

Therefore, using the definition of Wu (34), we have the

following formula for the reconstruction of the initial state

ρ0,

ρ0 =
1
n

In×n + W−1
u

(∫ T

0

X∗
u(t)SXu(t)dt

)
. (36)

Formula (36) represents a system theoretic alternative to

methods for quantum state tomography. We summarize the

discussion in the following theorem.

Theorem 3: Consider system (3) with output (4). If the

system is observable (in one step), then there exists a control

such that formula (36) gives the initial state.

An alternative to the ’static’ state reconstruction formula

(36) is the design of an asymptotic observer namely a

dynamical system which uses only a reading of the output

and whose state asymptotically converges to the actual state

of the system. A proposal for such an asymptotic observer

which is inspired the treatment for linear time varying

systems in [21] is presented in [19].

VI. SOME EXTENSIONS TO SELECTIVE MEASUREMENT

In this section, we discuss how the theory described

above for nonselective measurement extends to selective

measurement. There is no difficulty in doing this in the

most general case namely in the context of the generalized

measurement theory of operations and effects [6]. Accord-

ing to this theory, given a measurement scheme, to every

result m is associated a positive operator Fm, called an

effect. If ρ is the current state of the system, the probability

of obtaining the result m (or of an event m to occur) is

P (m) = Tr(Fmρ). (37)

After a result m (or, more generally an event m) has

occurred, the state is modified according to

ρ → P (m)−1Φm(ρ), (38)

where the positive super-operators Φm are the same opera-
tions as in (6) and Tr(Φm(ρ)) = P (m) = Tr(Fmρ). Two

initial states ρ̄1 and ρ̄2 are said to be indistinguishable in k
steps, in selective measurement, if they give every possible

result with the same probability at the k−th measurement,

for every choice of the control u. In formulas (cf. (8))

Tr(Fmρk(t, u, ρ̄1)) = Tr
(
Fmρk(t, u, ρ̄2)

) ∀m ∈ M,
(39)

where M is the set of possible results (events). Let Pk(m)
be the probability of having the result m at the k−th

measurement and let P (m1, ...,mk) be the joint probability

of having result m1 at the first step, m2 at the second

step and so on. Also, indicate by Pk(mk|m1, . . . mk−1)
the conditional probability of having mk at the k−th

measurement, given m1,. . . mk as ordered results of the

previous measurements. By use of the formula

Pk(m) =
∑

m1...mk−1

Pk(m|m1, ...,mk−1)P (m1, ...,mk−1),

(40)

and repeated use of Bayes’ formula we can write Pk(m)
starting from an initial condition ρ0 as

Pk(m) =
∑

m1...mk−1

Tr
(
FmXk(Φmk−1(Xk−1(Φmk−2

. . . (Φm1(X1ρ0X
∗
1 )) . . .))X∗

k−1))X
∗
k

)
(41)

where Xj , j = 1, . . . , k is the evolution solution of the

Schrödinger operator equation (33) in the interval between

the (j − 1)-th measurement and the j−th measurement.

Using (41) and using the linearity of the operators Φm,

we can rewrite Pk(m) as

Pk(m) = Tr
(
FmXkF(Xk−1...F(X1ρ0X

∗
1 )...X∗

k−1)X
∗
k

)
.

(42)
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From this point on the theory goes as in [17] and the result

is an extension of Theorem 1. In particular, one defines the

‘selective’ observability spaces (cf. (9))

Vsel
0 := spanm∈M{iFm}, Vsel

1 :=
⊕∞

j=0 adj
L(Vsel

0 ),

Vsel
k :=

⊕∞
j=0 adj

LF∗(Vsel
k−1),

(43)

and Theorem 1 extends by replacing nonselective observ-

ability with selective observability and the spaces V with

the spaces Vsel 4.

The remarks following Theorem 1 on the implications of

the repetition property also extend with only minor formal

modifications. In the particular case of the standard Von

Neumann-Luders measurement, the observable S is written

in terms of the projectors Πλ and the eigenvalues λ as

S =
∑

λ∈M
λΠλ, (44)

and the above theory holds with Πλ playing the role of the

effects Fm.

Remark 6.1: The observability space Vsel
0 does, in gen-

eral, include the observability space V0 and therefore the

same is true for the observability spaces Vsel
k and Vk. This

implies that nonselective observability implies selective

observability, as it is intuitive but not viceversa. A specific

example (a spin 1/2 particle for which the z component

of the spin is measured with a Von Neumann-Lüders

measurement) is described in [19].

VII. CONCLUSIONS

This paper has presented a collection of results on the

observability of quantum systems with emphasis on the case

of nonselective measurement. In particular

1. Using the formalism of generalized measurement and of

effects and operations we have extended the basic defin-

itions and criteria of observability to the case of general

measurement by introducing an effective observable.

2. We have derived a general expression for the effective

observable for a Von Neumann indirect measurement.

3. In the case of indirect measurement, we have derived an

expression for the state of the probe which would introduce

the minimum disturbance in the state to be measured. We

have showed that the requirement of a minimal disturbing

probe does not in general compromise the observability

properties of the resulting system and therefore the amount

of information obtained on the state by the measurement of

the output.

4. We have presented two system theoretic methods to

reconstruct the state by a measurement of the expectation

value of an appropriate observable. One of them is through

an integral formula and uses readings over a finite interval

of time. The other is through an asymptotic observer whose

state converges to the state of the measured system.

4Condition (14) of Theorem 1 needs to be slightly modified as the
effects Fm do not necessarily have zero trace, by replacing Vk with
Vk/span{i1} or by making all the effects traceless

5. We have extended the basic definitions and observability

criteria to selective measurements.

We believe that the system theoretic approach to quantum

state determination is worth being further investigated.

Extensions of our definitions and results to continuous

measurements, optimization of the methods for state deter-

mination in specific settings, applications of observer design

in closed loop quantum systems are only few possible

subjects for future research.
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