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Abstract— We consider discrete-time homogeneous control
systems that undergo arbitrary switching. We propose an
optimization-based, constructive method (which can be numer-
ically realized) to generate a homogeneous control Lyapunov
function and a homogeneous feedback law that stabilizes the
origin for all possible switching scenarios. The established
stability is robust with respect to small perturbations. We show
that for linear systems the resulting Lyapunov function turns
out to be convex. We also present a converse Lyapunov result
where we state the equivalence of controllability to the origin
and existence of a control Lyapunov function.

I. INTRODUCTION

A dynamical system whose righthand side (of the differential

or difference equation representing the system) can switch

between the elements of a set of parametrized family of

functions is called a switched system. The function (of

time) with respect to which the switching occurs is called

the switching signal. Switched systems have been actively

investigated for various reasons, see [3], [6], [10]. The main

reason, however, probably is that they can successfully

represent many real-life and engineering systems which

cannot be accurately modelled with more classical methods.

As it is usually the case in other subfields of control, the

research on switched systems can be classified as stability

analysis and control synthesis. The former focuses on

problems like: find the conditions that, when satisfied by

the system, would guarantee stability under any switching

signal, see e.g. [1]; or classify switching signals for which

the stability is guaranteed, see e.g. [13]. The work on

control synthesis deals with finding a switching signal

and/or a control input stabilizing the system, see e.g. [2].

In this work we are mainly interested in control synthesis.

To be specific, we propose a recursive method to construct

a feedback law (function of the state only) that robustly

regulates the system despite the switching signal.

We generate our results for discrete-time homogeneous

systems. Although the class of homogeneous systems is a

small subclass of nonlinear systems, it includes systems with

practical importance such as chained systems [12], systems

in power form [7], and more importantly, linear systems,

which are still not fully explored under switching. Switched

homogeneous systems have not yet been able to attract

many researchers. One of the few works on the subject is [4].
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The algorithm we propose to generate a feedback law

also yields a continuous control Lyapunov function as a

byproduct. Using that function and the results in [5] we

show that the origin of the closed loop obtained via the

generated feedback law is robustly asymptotically stable

under any switching signal. The method is a natural extension

of the recursive algorithm proposed in [11] and numerically

realizable (for systems of low order at least). We show that

the algorithm results in a convex control Lyapunov function

for switched linear systems which then leads us to state an

existence result. For the sake of completeness, we provide a

converse Lyapunov result for switched homogeneous systems

which states the equivalence of asymptotic and exponential

controllability and existences of homogeneous and not nec-

essarily homogeneous control Lyapunov functions.

II. NOTATION AND ASSUMPTIONS

We will consider the discrete-time (control) system

x+ = Γq(x, u) (1)

where x ∈ R
n is the state, u ∈ R

m is the (control) input,
q ∈ {1, 2, . . . , q̄} =: Q, q̄ being a positive integer, is the

index that switches the righthand side by selecting different
transition maps from a parametrized family {Γq : q ∈ Q},
and x+ is the state at the next time instant. We will call

a locally bounded map κ : R
n → R

m feedback. Given a
feedback κ, the system x+ = Γq(x, κ(x)) will be called
the closed loop. The solution of a closed loop at time
k ∈ N, starting at the initial condition x, evolved under

the influence of an index sequence q := {q0, q1, . . .}, with
qi ∈ Q, is denoted by ψ(k, x, q). (Notation N denotes

the set of nonnegative integers.) Note that ψ(0, x, q) = x

regardless of q. System (1) is said to be linear if for each
q ∈ Q, Γq(x, u) = Aqx + Bqu, where Aq ∈ R

n×n and

Bq ∈ R
n×m. Notation N stands for the set N ∪ {∞} and E

denotes [−∞, ∞], so called the extended real line.

A function α : R≥0 → R≥0 is of class K∞ if it is

strictly increasing, continuous, zero at zero, and unbounded.

(Notation S≥s̄ represents the set {s ∈ S : s ≥ s̄}.) A
function β : R≥0 × R≥0 → R≥0 is of class KL if for each
fixed t, β(·, t) is nondecreasing and lims↘0 β(s, t) = 0;
and for each fixed s, β(s, ·) is nonincreasing and
limt→∞ β(s, t) = 0. When we write β ∈ KL, we will mean
that β is a class-KL function. Likewise for α ∈ K∞.

A (state) dilation ∆ is such that for each λ > 0 (and it is
undefined for λ nonpositive), ∆λ = diag(λr1 , λr2 , . . . , λrn)
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with fixed ri > 0. Likewise, δ denotes an input dilation, i.e.
δλu = diag(λp1 , λp2 , . . . , λpm).

Definition 1 A transition map Γ : R
n × R

m → R
n is said

to be homogeneous with respect to the dilation pair (∆, δ)
if Γ(∆λx, δλu) = ∆λΓ(x, u) for all x, u, and λ.

Definition 2 A function σ : R
n → R≥0 is said to be

homogeneous with respect to the dilation ∆ with degree

d > 0 if σ(∆λx) = λdσ(x) for all x and λ.

Henceforth we will proceed under the following standing

assumptions on system (1). A1 There exists a dilation pair
(∆, δ) such that for each q ∈ Q the transition map Γq is

homogeneous with respect to (∆, δ). A2 For each q ∈ Q
the transition map Γq is continuous on R

n × R
m. A3 For

each pair R > r ≥ 0 there exists U > 0 such that for all
|x| ≤ r, q ∈ Q, and |u| ≥ U we have |Γq(x, u)| ≥ R.

Remark 1 Assumption A3 is not crucial for most of the
results to follow but rather put to guarantee the locally
boundedness property of the stabilizing feedback which will
come out as a minimizer to an optimization problem in which
we do not penalize the input u. If system (1) is linear then
A3 is equivalent to that Bq is full column rank for all q.

Remark 2 Whenever the system under consideration is lin-
ear, Assumptions A1-A2 comes for free since linear systems
are homogeneous with respect to the standard dilations
(∆λ = λIn, δλ = λIm) and continuous. (Ii ∈ R

i×i is the
identity matrix.)

III. CONSTRUCTING A FEEDBACK

Definition 3 System (1) is said to be strongly asymptotically
controllable to the origin if there exists a feedback κ and
β ∈ KL such that for all x and q, the solution of the closed
loop x+ = Γq(x, κ(x)) satisfies

|ψ(k, x, q)| ≤ β(|x|, k) ∀k ∈ N . (2)

Remark 3 Note that under homogeneity, strong asymptotic
controllability to the origin, which is a global definition, is
equivalent to its local version in which (2) would hold for x

that are in some neighborhood of the origin.

Definition 4 A continuous function V : R
n → R≥0 is said

to be a strong control Lyapunov function for x+ = Γq(x, u)
if there exist α1, α2, α3 ∈ K∞ such that for all x we have

α1(|x|) ≤ V (x) ≤ α2(|x|) (3)

min
u

max
q

V (Γq(x, u)) − V (x) ≤ −α3(|x|) . (4)

The next three definitions can be found in [8].

Definition 5 A function g : R
p → E is proper if g(η) < ∞

for at least one η ∈ R
p and g(η) > −∞ for all η ∈ R

p.

Definition 6 A function g : R
p → E is lower semicontinu-

ous at η̄ if

lim
ν↘0

{
inf

|η−η̄|≤ν
g(η)

}
= g(η̄) .

It is lower semicontinuous on R
p if this holds for all η̄ ∈ R

p.

Definition 7 A function J : R
n ×R

m → E is level-bounded
in u locally uniformly in x if for each x ∈ R

n and c ∈ R

there exists a neighborhood X of x such that the set {(x, u) :
x ∈ X , J(x, u) ≤ c} is bounded on R

n × R
m.

The following result resides in [8, Thm. 1.17].

Lemma 1 For J : R
n × R

m → E that is proper, lower
semicontinuous, and level-bounded in u locally uniformly in
x let

W (x) := inf
u

J(x, u) .

Then W is proper and lower semicontinuous on R
n and

for each x ∈ R
n if W (x) < ∞ then there exists u ∈ R

m

satisfying J(x, u) = W (x). Moreover, W is continuous at x

if J(·, u) is continuous at x for some u satisfying J(x, u) =
W (x) < ∞.

Let us first pick some continuous positive definite function

σ : R
n → R≥0 that is homogeneous with respect to ∆ (of

A1) with degree d. Then let VN : R
n → R≥0 for N ∈ N be

obtained through the recursive relation

VN+1(x) := σ(x) + inf
u

max
q

VN (Γq(x, u)) (5)

with V0(x) := σ(x). Also, whenever it is finite-valued, we
will let V∞(x) := limN→∞ VN (x).

Theorem 1 Let system (1) be strongly asymptotically con-
trollable to the origin. Then there exists L ≥ 1 such that for
all N ∈ N, VN is continuous and satisfies for all x and λ

σ(x) ≤ VN (x) ≤ Lσ(x) , (6)

VN (∆λx) = λdVN (x) , (7)

VN+1(x) = σ(x) + min
u

max
q

VN (Γq(x, u)) . (8)

Proof. Let us begin with proving (7). Without loss of
generality we take d = 1 in this proof. Suppose for some
N ∈ N we have VN (∆λx) = λVN (x) for all x and λ. Then

we can write by homogeneity of Γq and σ

VN+1(∆λx) = σ(∆λx) + inf
u

max
q

VN (Γq(∆λx, u))

= λσ(x) + inf
u

max
q

VN (∆λΓq(x, δλ−1u))

= λσ(x) + inf
u

max
q

λVN (Γq(x, u))

= λ

{
σ(x) + inf

u
max

q
VN (Γq(x, u))

}
= λVN+1(x) .

Note that V0(x) = σ(x) which satisfies (7) since σ is

homogeneous. Hence we have (7) for all N ∈ N by

induction. To show the N = ∞ case observe that

V∞(∆λx) = lim
N→∞

VN (∆λx)

= lim
N→∞

λVN (x)

= λ
(

lim
N→∞

VN (x)
)

= λV∞(x) .
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Now we prove (6). That σ(x) ≤ VN (x) comes by definition.
Since system is strongly asymptotically controllable to the

origin there exist a feedback κ and β̃ ∈ KL such that the
closed loop solution satisfies for all x and q

|ψ(k, x, q)| ≤ β̃(|x|, k) ∀k ∈ N .

Since σ is continuous, positive definite, and homogeneous,

there exist α1, α2 ∈ K∞ such that α1(|x|) ≤ σ(x) ≤
α2(|x|) for all x. Hence we can write

σ(ψ(k, x, q)) ≤ β(σ(x), k) ∀k ∈ N (9)

where β(s, t) := α2(β̃(α−1
1 (s), t)) is of class-KL. Note that

by (5) we have VN+1(x) ≤ σ(x) + maxq VN (Γq(x, κ(x))).
Now let k̄ ∈ N≥1 be such that β(1, k̄) ≤ 2−1. Then we

observe by (9) that σ(ψ(k̄, x, q)) ≤ 2−1 for all x ∈ {z :

σ(z) ≤ 1} =: Bσ and q. Let us define L := 2
∑k̄

k=0 β(1, k).
Hence we have Vk̄(x) ≤ 2−1L for all x ∈ Bσ . Let qk̄

denote an index sequence {q0, q1, . . . , qk̄−1}. Let us be
given x ∈ Bσ . Then for i ∈ N≥1 we can write from

optimality arguments and homogeneity of VN that

V(i+1)k̄(x) ≤ max
q

k̄

{ k̄−1∑
k=0

σ(ψ(k, x, qk̄)) +

Vik̄(ψ(k̄, x, qk̄))

}
≤ 2−1L + max

q
k̄

Vik̄(ψ(k̄, x, qk̄))

= 2−1L + max
q

k̄

2−1Vik̄(∆2ψ(k̄, x, qk̄))

= 2−1L + 2−1 max
q

k̄

Vik̄(∆2ψ(k̄, x, qk̄)) .

Note that ∆2ψ(k̄, x, qk̄) ∈ Bσ regardless of qk̄. Therefore,

recalling that Vk̄(x) ≤ 2−1L, we can induce

Vik̄(x) ≤ L

i∑
k=1

2−k ≤ L

∞∑
k=1

2−k = L

for all i ∈ N≥1 and x ∈ Bσ . Since VN+1(x) ≥ VN (x) we can
write for all N ∈ N that VN (x) ≤ L provided that x ∈ Bσ .

Let η ∈ R
n be given. If η = 0 then VN (η) = 0 and (6)

holds. Suppose σ(η) > 0. Then observe that ∆σ(η)−1η ∈ Bσ .

Therefore we can write

VN (η) = σ(η)VN (∆σ(η)−1η)

≤ Lσ(η) .

Thus we have (6).

We now prove continuity and (8). Suppose VN−1 is contin-

uous for some N ∈ N≥1. We define JN : R
n × R

m as

JN (x, u) := σ(x) + max
q

VN−1(Γq(x, u)) .

Note that JN is continuous (hence lower semicontinuous)

due to the continuity of σ, VN−1, and Γq(x, u) and the
fact that maximum of continuous functions is continuous.

It is proper by definition and level-bounded in u locally

uniformly in x due to Assumption A3. Hence we can

invoke Lemma 1 and obtain the continuity of VN since

VN (x) = infu JN (x, u). Also, again by Lemma 1, a
minimizer exists and we have VN (x) = minu JN (x, u).
Note that V0 is continuous since it is σ. As a result, by

induction, VN is continuous and (8) holds for all N ∈ N.

At this point we pause shortly to claim that VN converges to

V∞ uniformly on Bσ . Suppose not. Then there would exist

ε > 0 such that for each N ∈ N there would exist x ∈ Bσ

such that V∞(x)−VN (x) > ε. Let us pick p = �2L2ε−1	 and
let x ∈ Bσ then be such that V∞(x) − Vp(x) > ε. Then, by

definition, for all index sequences qp := {q0, q1, . . . , qp−1}
we can write

Vp(x) ≥ σ(ψ0) + σ(ψ1) + . . . + σ(ψp) (10)

where ψ0 = x and ψk+1 = Γqk
(ψk, κp−k(ψk)) for k ∈

{0, 1, . . . , p − 1} and where

κi(η) := argmin
u

max
q

Vi(Γq(η, u)) (11)

for i ∈ {1, 2, . . . , p}. Let q be an infinite index sequence
such that

V∞(x) =
∞∑

k=0

σ(ψ(k, x, q))

where ψ(·, x, q) is the solution to closed loop formed by
κ∞. Feedback κ∞ is defined by (11) for i = ∞. Let qp

be the first p elements of q. Recall that (10) holds for any

index sequence hence for the qp we pick. The terms in the

sum (10) are all nonnegative. Hence there must exist some

k̃ ∈ {1, 2, . . . , p} such that σ(ψk̃) ≤ Lp−1 ≤ ε(2L)−1

from (6), x ∈ Bσ , and p = �2L2ε−1	. Then from (10), (6),
and how we picked qp we can write

Vp(x) ≥ σ(ψ0) + . . . + σ(ψk̃−1) + V∞(ψk̃) − V∞(ψk̃)

= V∞(x) − V∞(ψk̃)

≥ V∞(x) − Lσ(ψk̃)

≥ V∞(x) − 2−1ε

which is a contradiction. Hence our claim holds.

As a result of this uniform convergence, V∞ is continuous on

Bσ since uniform limit of continuous functions is continuous

(see, for instance, [9, Thm. 24.3]). The continuity of V∞ on

R
n then comes by homogeneity of V∞.

Finally we prove (8) for N = ∞. Let us define
J∞(x, u) := σ(x) + maxq V∞(Γq(x, u)) which is
continuous, proper, and level-bounded in u locally

uniformly in x by the same arguments we had on JN .

Lemma 1 tells us that for each x a minimizer u exists such

that V∞(x) = J∞(x, u). Hence the result by (5). �

The following corollary is of practical importance. It says

that if N is large enough, then VN generated by the recursive

relation (5) can be used as a strong control Lyapunov

function for system (1).
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Corollary 1 Suppose system (1) is strongly asymptotically
controllable to the origin. Then for each µ < 1 there exists
Nµ ∈ N such that for all N ≥ Nµ and x we have

min
u

max
q

VN (Γq(x, u)) − VN (x) ≤ −µσ(x) . (12)

Proof. Recall that in the proof of Theorem 1 we have shown
that VN converges uniformly to V∞ on Bσ . Also recall that

VN+1(x) ≥ VN (x) for all N ∈ N and x. Let us be given

µ < 1. Then there exists Nµ ∈ N such that for all x ∈ Bσ

and N ≥ Nµ we have V∞(x) − VN (x) ≤ 1 − µ and hence

VN+1(x) − VN (x) ≤ V∞(x) − VN (x) ≤ 1 − µ .

Let us define Cσ := {z ∈ R
n : σ(z) = 1}. Note that Cσ ⊂

Bσ . Then from (8), for all N ≥ Nµ and x ∈ Cσ

min
u

max
q

VN (Γq(x, u)) − VN (x)

≤ min
u

max
q

VN (Γq(x, u)) − VN+1(x) + 1 − µ

≤ −1 + 1 − µ = −µ .

Homogeneity (7) then brings us the result. �

For N ∈ N, let us define feedback κN as

κN(x) := argmin
u

max
q

VN (Γq(x, u)) . (13)

Note that κN satisfies for all x and λ

max
q

VN (Γq(x, κN(x))) = max
q

VN (Γq(x, δλκN(∆λ−1x)))

which implies κN(∆λx) = δλκN(x) provided that the mini-
mizer in (13) is unique for all x. Note however that, without

loss of generality, we can assume κN(∆λx) = δλκN(x) even
if the minimizer is not unique for we can always choose a

homogeneous κN from the set of minimizers.

A. On robustness

For robustness analysis let us consider difference inclusions.

Let F be a set-valued map from R
n to the subsets of R

n

and let ψ(·, x) denote a solution of the difference inclusion
x+ ∈ F (x) starting from an initial condition x. Let S(x)
denote the set of solutions starting from x. Let B be the unit
closed ball in R

n. The addition of two sets in R
n, W and

Y , is defined as

W + Y := {w + y ∈ R
n : w ∈ W, y ∈ Y} .

For a continuous function 
 : R
n → R≥0 a perturbed

inclusion is defined as

x+ ∈ F�(x) := F (x + 
(x)B) + 
(x)B

and a solution starting from x is denoted by ψ�(·, x) which
is an element of the set S�(x).

Definition 8 The origin is robustly strongly asymptotically
stable for x+ ∈ F (x) if there exists 
 : R

n → R≥0

continuous and positive definite and β� ∈ KL such that for
all x ∈ R

n, all solutions ψ� ∈ S�(x) satisfy

|ψ�(k, x)| ≤ β�(|x|, k) ∀k ∈ N .

Definition 9 A continuous function V : R
n → R≥0 is said

to be a strong Lyapunov function for x+ ∈ F (x) if there
exist α1, α2, α3 ∈ K∞ such that for all x we have

α1(|x|) ≤ V (x) ≤ α2(|x|)

max
f∈F (x)

V (f) − V (x) ≤ −α3(|x|) .

The following result is borrowed from [5].

Lemma 2 Let F be a set-valued map from R
n to subsets

of R
n and for each x ∈ R

n let F (x) be nonempty. Then
for the difference inclusion x+ ∈ F (x), if there exists a
strong Lyapunov function then the origin is robustly strongly
asymptotically stable.

Definition 10 A feedback κ is said to be robustly stabilizing
for system (1) if the origin is robustly strongly asymptotically
stable for x+ ∈ F (x), where

F (x) :=
⋃

q∈Q

Γq(x, κ(x)) .

Theorem 2 Suppose system (1) is strongly asymptotically
controllable to the origin. Then there exists p ∈ N such that
for all N ∈ N≥p, κN is robustly stabilizing for system (1).

Proof. Let µ = 2−1 and Nµ then be given by Corollary 1.

Take p = Nµ. Let N ∈ N≥p. Since σ is continuous, positive

definite, and homogeneous there exist α1, α2 ∈ K∞ such

that α1(|x|) ≤ σ(x) ≤ α2(|x|) for all x. By (6) therefore we
can write for all x

α1(|x|) ≤ VN (x) ≤ α3(|x|) (14)

where α3(s) := Lα2(s) is a class-K∞ function. Let us define

FN (x) :=
⋃

q∈Q

Γq(x, κN(x)) .

From (12) and (13) we then have

max
f∈FN (x)

VN (f) − VN (x)

= max
q

VN (Γq(x, κN(x))) − VN (x)

≤ −2−1σ(x)

≤ −α4(|x|) (15)

where α4(s) := 2−1α1(s) is a class-K∞ function. We know

by Theorem 1 that VN is continuous. By (14) and (15)

therefore VN is a strong Lyapunov function for x
+ ∈ FN (x).

Result follows from Definition 10 and Lemma 2. �

B. Linear systems and convexity

Next result says that if σ is chosen quadratic and the system

is linear, VN of (5) turns out to be convex for all N .

Corollary 2 Suppose system (1) is linear and strongly
asymptotically controllable to the origin. Let σ(x) = xT Qx

for some positive definite Q ∈ R
n×n. Then VN is convex

and satisfies VN (λx) = λ2VN (x) for all λ, x, and N ∈ N.

Proof. Observe that σ(λx) = λ2σ(x). Then that VN (λx) =
λ2VN (x) directly comes from Theorem 1 and the linearity
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of the system. Let us prove convexity. Suppose for some

N ∈ N, VN is convex. Let x, y ∈ R
n, µ ∈ [0, 1], and

µ̄ = 1 − µ. Now we claim that

min
u

max
q

VN (Aq(µx + µ̄y) + Bqu) ≤

µmin
u

max
q

VN (Aqx + Bqu) + µ̄ min
u

max
q

VN (Aqy + Bqu).

Suppose not. Then there would exist v, w ∈ R
m such that

min
u

max
q

VN (Aq(µx + µ̄y) + Bqu)

> µmax
q

VN (Aqx + Bqv) + µ̄max
q

VN (Aqy + Bqw)

≥ max
q

{µVN (Aqx + Bqv) + µ̄VN (Aqy + Bqw)}

≥ max
q

VN (µ(Aqx + Bqv) + µ̄(Aqy + Bqw))

= max
q

VN (Aq(µx + µ̄y) + Bq(µv + µ̄w))

≥ min
u

max
q

VN (Aq(µx + µ̄y) + Bqu)

which poses a contradiction. Hence our claim holds. Note

that σ is convex since Q > 0. Therefore, from (5), the
definition of convexity, and the fact that the sum of convex

functions is convex, we can at once obtain the convexity of

VN+1. Since V0 is σ, which is convex, the result follows

for all N ∈ N by induction. Note that system is strongly

asymptotically controllable to the origin, which implies, by

Theorem 1, that V∞ exists. Recall that the limit of convex

functions is convex. Thus V∞ is also convex. �

Next result is a trivial consequence of Corollaries 1-2.

Theorem 3 Suppose system (1) is linear and strongly
asymptotically controllable to the origin. Then there exists a
convex strong control Lyapunov function that is homogeneous
of degree two with respect to the standard dilation.

Remark 4 Note that if V is a convex strong control Lya-
punov function for a switched linear system x+ = Aqx +
Bqu, then it is also a strong control Lyapunov function for
the switched linear system x+ = Âqx + B̂qu provided that
each member of the family {(Âq, B̂q)} lies within the convex
hull generated by the members of the family {(Aq, Bq)}.

IV. A CONVERSE LYAPUNOV RESULT

Definition 11 System (1) is said to be strongly exponentially
controllable to the origin with respect to σ : R

n → R≥0 if
there exists a feedback κ, M ≥ 1, and ρ > 0 such that for all
x and q the solution of the closed loop x+ = Γq(x, κ(x))
satisfies

σ(ψ(k, x, q)) ≤ M exp(−ρk)σ(x) ∀k ∈ N .

Theorem 4 The following are equivalent.

(i) System (1) is strongly asymptotically controllable to
the origin.

(ii) System (1) is strongly exponentially controllable to the
origin with respect to σ.

(iii) There exists a strong control Lyapunov function for
x+ = Γq(x, u).

(iv) For each r > 0 there exists a strong control Lyapunov
function for x+ = Γq(x, u) that is homogeneous with
degree r.

Proof. We have (i) ⇒ (iv) by Corollary 1. Obvious are

(ii)⇒ (i) and (iv)⇒ (iii). Hence it suffices to show (iii)⇒ (i)
and (iv) ⇒ (ii). Let us begin with the former. Let V be a

strong control Lyapunov function for x+ = Γq(x, u) and
α1, α2, α3 ∈ K∞ come from Definition 4. Then from (3)

and (4) we can write

min
u

max
q

V (Γq(x, u)) ≤ V (x) − α3(α
−1
2 (V (x))) . (16)

Let us define γ : R≥0 → R≥0 as γ(s) := s − α3(α
−1
2 (s)).

Note that γ(s) < s for all s > 0. Having defined γ let us

define βV ∈ KL as such

βV (s, t) := γk(s) ∀t ∈ [k, k + 1) (17)

where k ∈ N and γk+1(s) = γ(γk(s)) with γ0(s) = s. Let

us also define feedback κ as

κ(x) := argmin
u

max
q

V (Γq(x, u)) . (18)

Then for all x and q we have by (16), (17), and (18)

V (ψ(k, x, q)) ≤ βV (V (x), k) ∀k ∈ N

where ψ is the closed-loop solution to x+ = Γq(x, κ(x)).
Therefore we can write by (3)

|ψ(k, x, q)| ≤ β(|x|, k) ∀k ∈ N

where β(s, t) := α−1
1 (βV (α2(s), t)) is a class-KL function.

Hence (iii) ⇒ (i) is shown.

Now suppose we have (iv). Then there exists a homogeneous

strong control Lyapunov function V h that has the same
degree of homogeneity with σ, that is r = d. Without loss of

generality let the degree d be unity. Function V h satisfies (3)
and (4) for some α1, α2, α3 ∈ K∞ and we can obtain (16).

Let function γ be defined as above and let µ ∈ (γ(1), 1).
Then by (16) for all x ∈ {z ∈ R

n : V h(z) = 1} =: CV we

have

min
u

max
q

V h(Γq(x, u)) ≤ µ .

Let us be given some x with V h(x) > 0. Let λ := V h(x).
Note that ∆λ−1x ∈ CV . Then we can write

min
u

max
q

V h(Γq(x, u))

= min
u

max
q

V h(Γq(∆λ∆λ−1x, δλδλ−1u))

= min
u

max
q

V h(∆λΓq(∆λ−1x, δλ−1u))

= min
u

max
q

λV h(Γq(∆λ−1x, u))

≤ µλ = µV h(x) .

As a consequence the solution of the closed-loop x+ =
Γq(x, κh(x)) satisfies, where

κh(x) := argmin
u

max
q

V h(Γq(x, u)) ,
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for all x and q

V h(ψ(k, x, q)) ≤ µkV h(x) ∀k ∈ N . (19)

Since both σ and V h are continuous, positive definite, and
homogeneous with same degree of homogeneity, there exist

positive constants 1, 2 such that for all x

1σ(x) ≤ V h(x) ≤ 2σ(x) . (20)

Combining (19) and (20) yields

σ(ψ(k, x, q)) ≤ −1
1 2µ

kσ(x)

= M exp(−ρk)σ(x) ∀k ∈ N

where M := −1
1 2 and ρ := − ln(µ). Hence we have (ii)

and the result follows. �

V. A NUMERICAL EXAMPLE

For a numerical demonstration, we picked a second order

system x+ = Γq(x, u) with q ∈ {1, 2} where

{Γq(x, u)} =
{[

x1 + u
x2 + |x1|u

]
,

[
x1 + 1.25u
x2 + 1.5625|x1|u

]}
.

Note that Γq is homogeneous with respect to (∆, δ) where
∆λ = diag(λ, λ2) and δλ = λ. We recursively computed

VN for N = {0, 1, . . . , 10} via (5) where we took σ(x) =
(x4

1+x2
2)

1/2. Fig. 1 shows the sublevel sets {z : VN (z) = 1}
where N = 0 for the outermost curve and the the curves
shrink toward the center subsequently with increasing N . In

Fig. 2 we show the simulation results of the closed loop

x+ = Γq(x, κ10(x)) (where κ10 is computed via (13)) for

three different initial conditions under arbitrary switching

sequences.
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Fig. 1. Sublevel sets {z : VN (z) = 1} for N = 0, 1, . . . , 10.

VI. CONCLUSION

For discrete-time homogeneous control systems that undergo

arbitrary switching, we presented a constructive method to

generate a control Lyapunov function and a robustly stabiliz-

ing feedback law. We showed that the generated Lyapunov

function is convex for switched linear systems. We also
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Fig. 2. Simulation results for various initial conditions under arbitrary
switching sequences. On left are the phase plots ψ(k, x, q). On right are
the norms |ψ(k, x, q)| versus time.

presented a converse Lyapunov result where we state the

equivalence of controllability to the origin and existence of

a control Lyapunov function. We demonstrated our results on

a second order switched nonlinear system via simulations.
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