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Abstract— In this paper, inspired by exact notions of bi-
simulation equivalence for discrete-event and continuous-time
systems, we establish approximate bi-simulation equivalence
for linear systems with internal but bounded disturbances.
This is achieved by developing a theory of approximation
for transition systems with observation metrics, which require
that the distance between system observations is and remains
arbitrarily close in the presence of nondeterministic evolution.
Our notion of approximate bisimulation naturally reduces to
exact bisimulation when the distance between the observations
is zero. Approximate bisimulation relations are then charac-
terized by a class of Lyapunov-like functions which are called
bisimulation functions. For the class of linear systems with con-
strained disturbances, we obtain computable characterizations
of bisimulation functions in terms of linear matrix inequalities,
set inclusions, and optimal values of static games. We illustrate
our framework in the context of safety verification.

I. INTRODUCTION

Complexity reduction and compositional reasoning in the

verification of discrete systems have resulted in established

notions of system refinement and equivalence, such as lan-

guage inclusion, simulation and bisimulation relations [3].

Much more recently, simulation and bisimulation relations

have been extended to continuous and hybrid state-spaces

resulting in new equivalence notions for nondeterministic

continuous and hybrid systems [10], [14], [16], [19].

These abstraction concepts are exact for both discrete

and continuous systems, requiring external behavior of two

systems to be identical. When interacting with the physical

world, typically captured by continuous variables or dynam-

ical systems with imprecise observations, exact refinement

and equivalence notions are quite restrictive and not robust.

Approximate versions of simulation and bisimulation rela-

tions seem much more appropriate in this context. This idea

has recently been explored for quantitative [4], stochastic [5],

[18] and metric transition systems [8], [9].

In [9], we developed a framework for (discrete and con-

tinuous) system approximation for general metric transition

systems. Approximate simulation and bisimulation relations

are defined based on a metric on the set of observation.

Rather than requiring that the distance between system

observations is and remains zero, we require that the distance

between observations is and remains bounded. We showed

that a class of functions called bisimulation functions allows
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to characterize approximate bisimulation relations in a com-

putationally efficient manner.

In this paper, we extend our work by developing

Lyapunov-like differential inequalities for bisimulation func-

tions to a class of constrained linear systems. For a specific

class of functions based on quadratic forms, these conditions

can be interpreted in terms of linear matrix inequalities, set

inclusions and optimal values of static games. In [8], the

method is generalized to the class of metric transition sys-

tems generated by nonlinear but deterministic (autonomous)

systems.

Compared to other approximation frameworks for linear

systems such as traditional model reduction techniques [1],

[2], [11], the reduction problem we consider is quite different

and much more natural for safety verification for the follow-

ing reasons. First, the systems we consider have constrained

inputs which are internal (and hence they should be thought

of as internal disturbances). Second, we do not assume

that the systems are initially at the equilibrium: contrarily

to the model reduction framework, the transient dynamics

of the systems are not ignored during the approximation

process. From the point of view of verification, the transient

phase and the asymptotic phase of a trajectory are of equal

importance. In fact, the quality of the approximation may

critically depend on initial set of states. Finally, since our

research has been motivated by the algorithmic verification of

continuous and hybrid systems, the error bounds we compute

are based on the L∞ norm which is the only norm which

makes sense for safety verification. In comparison, in [1],

[2], the error bounds stand for the L2 norm; in [11] the error

bound is valid only on a time interval of finite length. We

conclude this paper by illustrating this point in the context

of safety verification for constrained linear systems.

II. APPROXIMATION OF TRANSITION SYSTEMS

In this section, we summarize the notion of approxi-

mate bisimulation of labeled transition systems as developed

in [9]. Labeled transition systems can be seen as graphs,

possibly with an infinite number of states or transitions.

Definition 2.1: A labeled transition system with observa-

tions is a tuple T = (Q,Σ,→,Q0, Π, 〈〈.〉〉) that consists of:

• a (possibly infinite) set Q of states,

• a (possibly infinite) set Σ of labels,

• a transition relation →⊆ Q× Σ ×Q,

• a (possibly infinite) set Q0 ⊆ Q of initial states,

• a (possibly infinite) set Π of observations, and

• an observation map 〈〈.〉〉 : Q → Π.

The transition (q, σ, q′) ∈→ is denoted q
σ→ q′. For all

labels σ ∈ Σ, the σ-successor is defined as the set valued
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map given by

∀q ∈ Q, Postσ(q) =
{

q′ ∈ Q| q
σ→ q′

}
.

We assume that the systems we consider are non-blocking.

A state trajectory of T is an infinite sequence of transitions,

q0 σ0

→ q1 σ1

→ q2 σ2

→ . . . , where q0 ∈ Q0.

The associated external trajectory π0 σ0

→ π1 σ1

→ π2 σ2

→ . . .
(where πi = 〈〈qi〉〉 for all i ∈ N) describes the evolution

of the observations under the dynamics of the labeled tran-

sition system. The set of external trajectories of the labeled

transition system T is called the language of T .

A. Approximate Bisimulations

Exact bisimulation between two labeled transition systems

requires that their observations are (and remain) identical [3].

Approximate bisimulation is less strict since it only requires

that the observations of both systems are (and remain)

arbitrarily close. Let T1 = (Q1,Σ1,→1,Q0
1,Π1, 〈〈.〉〉1) and

T2 = (Q2, Σ2,→2, Q0
2, Π2, 〈〈.〉〉2) be two labeled transition

systems with the same set of labels (Σ1 = Σ2 = Σ) and the

same set of observations (Π1 = Π2 = Π). Let us assume

that the sets of states Q1, Q2 and the set of observations Π
are metric spaces. We assume that the initial sets Q0

1 and Q0
2

as well as the sets Postσ1 (q1) and Postσ2 (q2) (for all σ ∈ Σ,

q1 ∈ Q1, q2 ∈ Q2) are compact sets. Let us note by dΠ a

metric on set of observations Π.

Definition 2.2: A relation Bδ ⊆ Q1 × Q2 is a δ-

approximate bisimulation between T1 and T2 if for all

(q1, q2) ∈ Bδ:

1) dΠ (〈〈q1〉〉1, 〈〈q2〉〉2) ≤ δ,

2) ∀q1
σ→1 q′1, ∃q2

σ→2 q′2 such that (q′1, q
′
2) ∈ Bδ ,

3) ∀q2
σ→2 q′2, ∃q1

σ→1 q′1 such that (q′1, q
′
2) ∈ Bδ .

Note that for δ = 0, we have the usual notion of exact

bisimulation [3].

Definition 2.3: T1 and T2 are said to be approximately

bisimilar with the precision δ (noted T1 ∼δ T2), if there

exists Bδ , a δ-approximate bisimulation between T1 and T2

such that for all q1 ∈ Q0
1, there exists q2 ∈ Q0

2 such that

(q1, q2) ∈ Bδ , and conversely.

Approximate bisimilarity of two systems guarantees that

the distance between their language is bounded.

Theorem 2.4: [9] If T1 and T2 are approximately bisim-

ilar with the precision δ then for all external trajectory of

T1 (respectively T2), π0
1

σ0

→ π1
1

σ1

→ π2
1

σ2

→ . . . , there exists

an external trajectory of T2 (respectively T1) with the same

sequence of labels π0
2

σ0

→ π1
2

σ1

→ π2
2

σ2

→ . . . such that for all

i ∈ N, dΠ(πi
1, π

i
2) ≤ δ.

B. Bisimulation Functions

The construction and precision of approximate bisimu-

lations can be performed using a class of functions called

bisimulation functions. Essentially, bisimulation functions

are positive functions defined on Q1 × Q2, bounding the

distance between the observations associated to a couple

(q1, q2) and non increasing under the dynamics of the

systems.

Definition 2.5: A function VB : Q1 × Q2 → R
+ is a

bisimulation function between T1 and T2 if its level sets are

closed sets, and for all (q1, q2) ∈ Q1 ×Q2 we have:

1) VB(q1, q2) ≥ dΠ (〈〈q1〉〉1, 〈〈q2〉〉2),
2) VB(q1, q2) ≥ max

q1
σ→1q′

1
min

q2
σ→2q′

2
VB(q′1, q

′
2),

3) VB(q1, q2) ≥ max
q2

σ→2q′
2
min

q1
σ→1q′

1
VB(q′1, q

′
2).

The level sets of a bisimulation functions define approxi-

mate bisimulation relations.

Theorem 2.6: [9] Let VB be a bisimulation function. Then,

for all δ ≥ 0, the set

Bδ = {(q1, q2) ∈ Q1 ×Q2, VB(q1, q2) ≤ δ}
is a δ-approximate bisimulation between T1 and T2.

Let us remark that particularly, the zero set of a bisimu-

lation function is an exact bisimulation between T1 and T2.

The following corollary is straightforward from Theorem 2.6

and Definition 2.3.

Corollary 2.7: [9] Let VB be a bisimulation function. Let

δ be the value of the following static game:

δ = max
(

max
q1∈Q0

1

min
q2∈Q0

2

VB(q1, q2), max
q2∈Q0

2

min
q1∈Q0

1

VB(q1, q2)
)

(1)

Then, T1 and T2 are approximately bisimilar with the preci-

sion δ.

Thus, the challenge consists in developing methods to

compute bisimulation functions for several classes of transi-

tion systems. In the following, this is done for constrained

linear systems.

III. BISIMULATION FUNCTIONS FOR CONSTRAINED

LINEAR SYSTEMS

We consider continuous-time linear dynamical systems of

the form:

∆i :
{

ẋi(t) = Aixi(t) + Biui(t),
yi(t) = Cixi(t)

, i = 1, 2

with yi(t) ∈ R
pi , xi(t) ∈ R

ni , xi(0) ∈ Ii where Ii is a

compact subset of R
ni and ui(t) ∈ Ui where Ui is a compact

subset of R
mi . We assume that both systems have the same

observation space (i.e. R
p1 = R

p2 = R
p) which is equipped

with the usual Euclidean distance.

As suggested in [14], ∆i can be seen as a labeled transition

system Ti = (Qi,Σi,→i,Q0
i , Πi, 〈〈.〉〉i), where:

• the set of states is Qi = R
ni ,

• the set of labels is Σi = R+,

• the transition relation →i is given by x
t→i x′ if and

only if there exists a locally measurable function ui(.)
such that ∀s ∈ [0, t], ui(s) ∈ Ui and

x′ = eAitx +
∫ t

0

eAi(t−s)Biui(s)ds,

• the set of initial states is Q0
i = Ii,

• the set of observations is Πi = R
p,

• the observation map is given by 〈〈x〉〉i = Cix.
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Let us remark that the systems are nondeterministic, since

there are many possible evolutions from a state for a given

t. We define the following notations:

x =
[

x1

x2

]
, A =

[
A1 0
0 A2

]
, C =

[
C1 −C2

]
,

B1 =
[

B1

0

]
, B2 =

[
0

B2

]
.

We consider the problem of computing a bisimulation

function between the two constrained linear systems. It is

not straightforward to derive computational methods from

the characterization given by Definition 2.5. The following

proposition provides a more tractable characterization of

bisimulation function. Due to the lack of space, the proof

is not stated here.
Proposition 3.1: Let q : R

n1 × R
n2 → R

+ be differen-

tiable and let ∇q denote its gradient. If for all x ∈ R
n1+n2 ,

q(x) ≥ xT CT Cx (2)

maxu1∈U1 minu2∈U2 ∇q(x)T (Ax + B1u1 + B2u2) ≤ 0 (3)

maxu2∈U2 minu1∈U1 ∇q(x)T (Ax + B1u1 + B2u2) ≤ 0 (4)

then VB(x) =
√

q(x) is a bisimulation function.
Remark 3.2: There are similarities between the notions of

bisimulation function and robust control Lyapunov function

[6], [13] as well as are some significant conceptual differ-

ences. Indeed, let us consider the input u1 as a disturbance

and the input u2 as a control variable in equation (3). Then,

the interpretation of this inequality is that for all disturbances

there exists a control such that the bisimulation function

decreases during the evolution of the system. This means that

the choice of u2 can be made with the knowledge of u1. In

comparison, a robust control Lyapunov function requires that

there exists a control u1 such that for all disturbances u2, the

function decreases during the evolution of the system. Thus,

it appears that robust control Lyapunov functions require

stronger conditions than bisimulation functions.
In the following, we show that for specific classes of

bisimulation functions, we can derive from Proposition 3.1

computationally effective characterizations.

A. Bisimulation Functions for Stable Systems
Let us assume that ∆1 and ∆2 are asymptotically stable

(i.e. the real part of all eigenvalues of A1 and A2 is strictly

negative).
1) Autonomous systems: Let B1 = 0, B2 = 0. Then,

equations (3) and (4) become equivalent and reduce to a

Lyapunov-like condition. For linear systems, it is well known

that the class of quadratic functions provides universal and

computationally effective Lyapunov functions. Therefore, let

us search for bisimulation functions of the form:

VB(x) =
√

xT Mx. (5)

where M is a symmetric positive semidefinite matrix. Then,

the characterization given by proposition 3.1 reduces to the

following set of linear matrix inequalities:

M ≥ CT C (6)

AT M + MA ≤ 0. (7)

These equations provide tractable conditions for bisimulation

functions since linear matrix inequalities can be solved

efficiently using semidefinite programming [15], [17]. More-

over this class of bisimulation functions is universal for

autonomous stable linear systems.

Proposition 3.3: Let ∆1 and ∆2 be autonomous asymp-

totically stable linear systems. Then, there exists a bisimula-

tion function of the form (5) between ∆1 and ∆2.

Proof: Equation (6) implies that M = CT C + N
where N is symmetric positive semidefinite. Then equation

(6) becomes

AT N + NA ≤ −AT CT C + CT CA. (8)

Let Q be a symmetric positive semidefinite matrix such

that AT CT C + CT CA ≤ Q. Then, since ∆1 and ∆2 are

asymptotically stable, the Lyapunov equation

AT N + NA = −Q (9)

has a unique solution which is symmetric positive semidefi-

nite. Moreover it is clear that this solution satisfies (8).

We assumed that the initial sets of ∆1 and ∆2 are compact

and thus bounded. Hence, the value of the game (1) is

necessarily finite. Then, any two autonomous asymptotically

stable linear systems are approximately bisimilar.

2) Systems with inputs: We now consider systems with

constrained inputs. For such systems, the class of quadratic

functions is often too restrictive to find a bisimulation func-

tion. Indeed, the value of such functions at x = 0 is always

0. Particularly, this means that if ∆1 and ∆2 start from 0, the

outputs of both systems will be identical. Equivalently, this

means that ∆1 and ∆2 have identical asymptotic behaviors

and that only their transient behaviors can differ. A natural

extension of quadratic functions consists in searching for

bisimulation functions of the form

VB(x) = max(α,
√

xT Mx). (10)

In this function, the term
√

xT Mx accounts for the error of

approximation between the transient behaviors of ∆1 and ∆2

whereas α accounts for the error of approximation between

their asymptotic behaviors and is therefore independent of

the initial states x.

A characterization of bisimulation functions under that

form is given in the following result:

Theorem 3.4: If there exists λ > 0, such that

M ≥ CT C (11)

AT M + MA + 2λM ≤ 0 (12)

α ≥ 1
λ

max
xT Mx=1

(
max

u1∈U1
min

u2∈U2
xT M(B1u1 + B2u2)

)
(13)

α ≥ 1
λ

max
xT Mx=1

(
max

u2∈U2
min

u1∈U1
xT M(B1u1 + B2u2)

)
(14)

then the function VB(x) = max(α,
√

xT Mx) is a bisimula-

tion function between ∆1 and ∆2.

Proof: Let q(x) = max(α2, xT Mx), then VB(x) =√
q(x). Let us show that q(x) satisfies the conditions of
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Proposition 3.1. First, it is clear from equation (11) that

equation (2) is satisfied. Let x ∈ R
n1+n2 such that xT Mx ≥

α2, then equation (13) implies that

max
u1∈U1

min
u2∈U2

xT M(B1u1 + B2u2) ≤ λα
√

xT Mx.

Therefore, it is straightforward that

max
u1∈U1

min
u2∈U2

∇q(x)T (Ax + B1u1 + B2u2) ≤
xT AT Mx + xT MAx + 2λα

√
xT Mx.

Then, from equation (12),

max
u1∈U1

min
u2∈U2

∇q(x)T (Ax + B1u1 + B2u2) ≤
−2λxT Mx + 2λα

√
xT Mx ≤

−2λ
√

xT Mx(
√

xT Mx − α) ≤ 0.

Hence, if xT Mx ≥ α2 then equation (3) holds. If xT Mx ≤
α2, then ∇q(x) = 0 and therefore equation (3) holds as well.

Using symmetrical arguments, it can be shown that equation

(4) holds as well and therefore VB(x) = max(α,
√

xT Mx)
is a bisimulation function between ∆1 and ∆2.

Remark 3.5: If ker(M) + B1U1 = ker(M)−B2U2, then

we can obviously choose α = 0. In that case, there exists a

quadratic bisimulation function between ∆1 and ∆2 which

implies that their asymptotic behaviors are identical.

A small example shall help to understand the proposed

methodology for the construction of bisimulation functions.

Example 3.6: Let us consider the following systems:

∆1 : ẋ1(t) = −x1(t) + u1(t), u1(t) ∈ [0, 1], y1(t) = x1(t)
∆2 : ẋ2(t) = −x2(t), y2(t) = x2(t)

Let us define

M = CT C =
[

1 −1
−1 1

]
.

Equation (11) holds. We can check that AT M + MA =
−2M . Hence, equation (12) holds for λ = 1. Equation (13)

becomes

α ≥ max
(x1−x2)2=1

(
max

u1∈[0,1]
(x1 − x2)u1

)
= 1.

Equation (14) becomes

α ≥ max
(x1−x2)2=1

(
min

u1∈[0,1]
(x1 − x2)u1

)
= 0.

From Theorem 3.4, VB(x) = max(|x1 − x2|, 1) is a bisim-

ulation function between ∆1 and ∆2.

The characterization given by Theorem 3.4 is quite ef-

fective from a computational point of view. Indeed, the

matrix M can be computed by solving a set of linear

matrix inequalities. Then, α is chosen by computing the

optimal value (or an over-approximation) of the optimization

problems given by equations (13) and (14).

Similar to Proposition 3.3, we can show that bisimulation

functions of the form (10) are universal for stable linear

systems with constrained inputs.

Proposition 3.7: Let ∆1 and ∆2 be asymptotically stable

linear systems with constrained inputs. Then, there exists a

bisimulation function of the form (10) between ∆1 and ∆2.

Proof: Similar to the proof of Proposition 3.3, we

can show that there exists a symmetric positive semidefinite

matrix M satisfying equations (11) and (12). Then,

max
xT Mx=1

(
max

u1∈U1
min

u2∈U2
xT M(B1u1 + B2u2)

)
≤

max
xT Mx=1

(
max

u1∈U1
max

u2∈U2
xT M(B1u1 + B2u2)

)
≤

max
u1∈U1

max
u2∈U2

(
max

xT Mx=1
xT M(B1u1 + B2u2)

)
≤

max
u1∈U1

max
u2∈U2

√
(B1u1 + B2u2)T M(B1u1 + B2u2).

Since the set of inputs U1 and U2 are compact sets there

exists α such that equation (13) and by symmetry equation

(14) hold.

We assumed that the initial sets of ∆1 and ∆2 are compact

and thus bounded. Hence, the value of the game (1) is

necessarily finite. Then, we have the following result:

Corollary 3.8: Let ∆1 and ∆2 be asymptotically stable

constrained linear systems. Then, ∆1 and ∆2 are approxi-

mately bisimilar and the precision of the approximate bisim-

ulation can be evaluated by solving game (1).

B. Bisimulation Functions for Non-Stable Systems

When ∆1 and ∆2 are not stable, the previous technique

cannot be used since Proposition 3.1 implicitly assumes that

there exists a bisimulation function with finite values on

R
n1+n2 . This implies that for any (x1, x2) ∈ R

n1+n2 , for

any trajectory of ∆1 starting in x1, there exists a trajectory

of ∆2 starting in x2 and such that the distance between

the observations of these trajectories remains bounded (and

conversely). When dealing with unstable dynamics, it is

not hard to see that this is generally not the case and that

bisimulation functions with finite values on R
n1+n2 cannot

exist. In the following, we search for simulation functions

whose values are finite on a subspace of R
n1+n2 .

Let Eu,i (respectively Es,i) be the subspace of R
ni

spanned by the generalized eigenvectors of Ai associated to

eigenvalues whose real part is positive (respectively strictly

negative). Note that we have Eu,i ⊕ Es,i = R
ni . Let Pu,i

and Ps,i denote the associated projections. Eu,i and Es,i are

invariant under Ai and are called the unstable and the stable

subspaces of the system ∆i. Using a change of coordinates,

the matrices of system ∆i can be transformed into the

following form

Ai =
[

Au,i 0
0 As,i

]
, Bi =

[
Bu,i

Bs,i

]
, Ci = [Cu,i Cs,i] ,

(15)

where all the eigenvalues of Au,i have a positive real part

and all the eigenvalues of As,i have a strictly negative real

part. Let us define the unstable subsystems of ∆1 and ∆2

∆u,i :
{

ẋu,i(t) = Au,ixu,i(t) + Bu,iui(t),
yu,i(t) = Cu,ixu,i(t)

(16)
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where yu,i(t) ∈ R
p, xu,i(t) ∈ Eu,i, xu,i(0) ∈ Pu,iIi and

ui(t) ∈ Ui. For j ∈ {u, s}, we define the matrices

Aj =
[

Aj,1 0
0 Aj,2

]
, Cj =

[
Cj,1 −Cj,2

]

Bj,1 =
[

Bj,1

0

]
, Bj,2 =

[
0

Bj,2

]
.

and the projection defined by

Pjx =
[

Pj,1x1

Pj,2x2

]
.

The following theorem generalizes the result of Proposi-

tion 3.1 to systems with unstable modes.

Theorem 3.9: Let Ru ⊆ Eu,1 × Eu,2 be a subspace

satisfying:

Ru ⊆ ker(Cu), (17)

AuRu ⊆ Ru, (18)

Ru + Bu,1U1 = Ru − Bu,2U2. (19)

Let qs : Es,1 × Es,2 → R
+ be differentiable and let ∇qs

denote its gradient. If for all xs ∈ Es,1 × Es,2,

qs(xs) ≥ xT
s CT

s Csxs (20)

max
u1∈U1

min
u2 ∈ U2

Bu,1u1 + Bu,2u2 ∈ Ru

∇qT
s (xs)

(
Asxs + Bs,1u1 + Bs,2u2

) ≤ 0 (21)

max
u2∈U2

min
u1 ∈ U1

Bu,1u1 + Bu,2u2 ∈ Ru

∇qT
s (xs)

(
Asxs + Bs,1u1 + Bs,2u2

) ≤ 0 (22)

then the function VB : R
n1+n2 → R

+ ∪ {+∞} defined

by VB(x) =
√

qs(Psx) if Pux ∈ Bu and VB(x) = +∞
otherwise, is a bisimulation function between ∆1 and ∆2.

Proof: The sketch of the proof is the following. Let

x = (x1, x2) ∈ R
n1+n2 , if Pux /∈ Bu then VB(x) = +∞

and it is clear that the conditions of Definition 2.5 hold.

Hence, let us assume Pux ∈ Bu, then VB(x) =
√

qs(Psx).
From equations (17) and (20),

VB(x) ≥ ‖CsPsx‖ = ‖CsPsx + CuPux‖ = ‖Cx‖.
Then, the first condition of Definition 2.5 holds. Let x1

t→1

x′
1, let u1(.) be an input which leads ∆1 from x1 to x′

1 in

time t. Equation (19) and (21) imply that there exists an

input u2(.) such that Bu,1u1(.) + Bu,2u2(.) ∈ Ru and the

function qs is decreasing under the evolution of the systems.

u2(.) leads ∆2 from x2 to x′
2 in time t, then

qs(Psx
′) ≤ qs(Psx) where x′ = (x′

1, x
′
2).

Moreover since Eu,1 and Eu,2 are invariant under A1 and

A2, we have that

Pux′ = eAutPux+
∫ t

0

eAu(t−s)
(
Bu,1u1(s) + Bu,2u2(s)

)
ds

From equation (18), it is straightforward that Pux′ ∈ Ru.

Hence, x2
t→2 x′

2 and VB(x′) ≤ VB(x). Therefore, the

second and by symmetry the third conditions of Definition

2.5 hold.

Remark 3.10: We can check (see [14], [19]), that the

subspace Ru ⊆ Eu,1 × Eu,2 satisfying equations (17), (18)

and (19) is actually an exact bisimulation relation between

the unstable subsystems ∆u,1 and ∆u,2.

The function qs can be computed using a technique similar

to the one we described for the computation of bisimulation

functions for stable systems. Actually, the only difference is

that now the inputs u1 and u2 are not independent anymore

but related by Bu,1u1+Bu,2u2 ∈ Ru. Similar to Proposition

3.7, we can show that there always exists a function qs of

the form (10) and satisfying equations (20), (21) and (22).

As a consequence, we have:

Corollary 3.11: If there exists a subspace Ru satisfying

equations (17), (18) and (19), and such that for all xu,1 ∈
Pu,1I1 there exists xu,2 ∈ Pu,2I2 satisfying (xu,1, xu,2) ∈
Ru (i.e. the unstable subsystems ∆u,1 and ∆u,2 are exactly

bisimilar), then ∆1 and ∆2 are approximately bisimilar.

Proof: For all x1 ∈ I1, there exists x2 ∈ I2 such that

Pux ∈ Ru then,

max
x1∈I1

min
x2∈I2

V (x1, x2) = max
x1∈I1

(
min

x2∈I2, Pux∈Ru

√
qs(Psx)

)
.

(23)

Since I1 and I2 are compact sets, this game has a finite value

and thus ∆1 approximately simulates ∆2.

IV. SAFETY VERIFICATION

We now show how our results can be used for the

approximation of a system by a system of lower dimension

in the context of safety verification.

Let ∆1 be a constrained linear system. Then Reach(∆1)
denotes the reachable set of ∆1 and is defined as the subset

of R
p1 of points reachable by the external trajectories of ∆1.

We consider the problem of checking wether the intersection

of Reach(∆1) with a set ΠF of unsafe sets is empty or

not. Thus, we must verify that for any inputs the external

trajectories of ∆1 does not reach ΠF . In that case, the inputs

must be seen as disturbances or uncertainties. Though recent

progress has been made in the reachability analysis of high

dimensional systems [7], [11], [12], [20], it remains one of

the most challenging issues of the verification of continuous

and hybrid systems. Our method consists in constructing a

smaller system ∆2 such that its reachable set is close enough

to the one of ∆1 in order to process the safety verification by

solving a reachability problem for ∆2. Particularly, if ∆2 is

approximately bisimilar to ∆1 (with some precision δ) and

if the distance of Reach(∆2) to ΠF is greater than δ then

Theorem 2.4 allows to conclude that ∆1 is safe.

Without loss of generality, let us assume that the matrices

of ∆1 are of the form (15). Let ∆u,1 be the unstable

subsystem of ∆1. From Corollary 3.11, we know that ∆1

and ∆u,1 are approximately bisimilar. We use the following

methodology to compute a bisimulation function. First, we

solve the linear matrix inequalities (11) and (12). The sec-

ond step consists in solving the two optimization problems

(13) and (14). Afterwards, the precision of the approximate

bisimulation can be evaluated by solving the game (1).
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Fig. 1. Reachable sets of the original ten dimensional system (top left) and
of its four dimensional and six dimensional approximations (top right and
bottom). The disk on the left figure represents the unsafe set ΠF . The disks
on the right and bottom figures consist of the set of points whose distance to
ΠF is smaller than the precision of the approximate bisimulation between
∆1 and its approximations.

We used this method with a ten dimensional system

with ten inputs and two outputs. The associated unstable

subsystem is a four dimensional system with four inputs

and two outputs. We computed the reachable sets of both

systems using zonotope techniques for reachability analysis

of linear systems with inputs [7]. In Figure 1, we represented

the reachable sets of the ten dimensional system and of

its four dimensional approximation. We can see that the

approximation does not allow to conclude though ∆1 is

actually safe.

Therefore, we need to refine the approximation. Our

approach consists in defining the approximation ∆2 as a

combination of the unstable subsystem ∆u,1 with a stable

subsystem. Then, from Corollary 3.11, we know that ∆1

and ∆2 are approximately bisimilar. The better the stable

subsystems approximates the stable part of ∆1, the better

the system ∆2 approximates system ∆1. For our example,

we chose the stable subsystem as the projection of the stable

part of ∆1 on the two dimensional space spanned by the

eigenvectors associated to the two largest eigenvalues of the

matrix As,1. We can see on Figure 1 that the approximation

of ∆1 by the six dimensional system ∆2 allows to check the

safety of ∆1.

The example also illustrates the important point that

robustness simplifies verification. Indeed, if the distance

between Reach(∆1) and ΠF would have been larger then

the approximation of ∆1 by its unstable subsystem might

have been sufficient to check the safety of ∆1. Generally,

the more robustly safe a system is, the larger the distance

from the unsafe safe, resulting in larger model compression

and easier safety verification.

V. CONCLUSION

In this paper, we applied the framework of approximate

bisimulations to the approximation of constrained linear

systems. We presented a class of functions which provide

universal bisimulation functions for such systems. An im-

portant consequence, is that any two systems with exactly

bisimilar unstable subsystems are approximately bisimilar.

A computationally tractable characterization for this class of

bisimulation functions has been given. Finally, we showed

how the approximate bisimulation framework could be used

in the context of safety verification of constrained linear

systems. Future research should deal with the development of

methods for computing bisimulation functions for nonlinear,

stochastic, and hybrid systems.
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