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Abstract— This paper addresses the problems of stabilization
and H∞ control by means of state feedback parameter-
dependent gains applied to discrete-time linear systems whose
matrices are affected by arbitrarily time-varying parameters
belonging to a polytope. The solution of the proposed design
conditions, written as a finite set of linear matrix inequalities at
the polytope vertices, allows to obtain a parameter-dependent
gain (i.e. a gain scheduled controller) as an analytical function of
the parameters. The proposed strategy is different from similar
approaches in the literature, that are based on discretizations
of the space of parameters to determine interpolated control
gains, or that assume special structures for the time-varying
parameters or even suppose that some of the system matrices
are fixed and time-invariant in order to have a convex design
problem. Numerical examples illustrate the efficiency of the
conditions given in the paper.

I. INTRODUCTION

The design of gain scheduled controllers has been an
important issue in systems theory and control applications
for decades (see the survey papers [1], [2] and references
therein). Basically, this technique focus on determining the
control gain as a function of the system time-varying pa-
rameters, supposed to be available in real time. A classical
way to compute a gain scheduled controller for a given
linear parameter-varying (LPV) model of a plant, that usually
comes from the linearization of the nonlinear model of the
plant around operating points, follows the steps: i) determine
a grid in the space of parameters to choose a family of plants
and design one local controller for each plant, ii) based on
the values of the parameters (measured or estimated on-line),
schedule the control gains using some interpolation method,
iii) assess the closed-loop system stability and performance.
Although the system performance can be improved by means
of increasing the precision of the discretization of the space
of parameters (at the price of increasing the computational
burden) this approach may be unreliable, since the global sta-
bility and performance are only assessed through simulation.
Another problem is that the rates of variation of the time-
varying parameter are not taken into account in the design,
which may lead to instability or poor performance in the
case of fast time-varying parameters [3], [4].

More recently, several design approaches based on Lya-
punov functions attempt to provide gain scheduled con-
trollers to cope with time-varying parameters with bounded
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or unbounded rates of variation, some of them using linear
matrix inequalities (LMIs – see [5]), that are numerically
attractive due to their solvability via polynomial time al-
gorithms [6]. For instance, in the case of parameters with
arbitrary rates of variation, when the plant and the controller
admit a representation given by linear fractional transforma-
tion (LFT), a stabilizing controller can be determined solving
a convex problem with a finite number of LMIs [7], [8],
[9], [10], [11]. Also in the context of arbitrary parametric
variations, the quadratic stability was used to provide convex
LMI design of LPV controllers with H∞ guaranteed perfor-
mance for linear time-varying systems in polytopic domains
for which the control matrices are supposed to be fixed and
time-invariant [12], [13], [14]. It is interesting to note that
the previous mentioned works avoid gridding procedures by
means of restrictive assumptions on the structure of the time-
varying parameters or by considering some matrices of the
system as fixed and time-invariant. In the case of parameters
with bounded rates of variation, some works address the
design of parameter-dependent (i.e. gain scheduled) control
gains for linear time-varying systems in polytopic domains
using a discretization of the parametric space in a finite
number of points that can assure the design specifications
[15], [16], [17]. One problem with these approaches is that
to improve the performance, it is necessary to increase the
precision of the grid, thus increasing the computational effort
rapidly. A convex condition written as a finite set of LMIs
using only the vertices of the polytope and the bounds on the
rates of variation of the system parameters has been given
in [18], allowing to obtain stabilizing state feedback gain
scheduled controllers.

The aim of this paper is to provide LMI convex conditions
to design state feedback gain scheduling controllers to cope
with stabilization and H∞ performance for discrete-time
linear systems with time-varying parameters belonging to
a polytope with arbitrary rates of variation. It is worthy
of mention that previous results in the literature that deal
with the same problem using the Lyapunov approach, as
[19], [20], assume that the control matrices are fixed and
time-invariant. Here, all the system matrices are supposed to
be affected by the time-varying parameters which can vary
arbitrarily, being useful for instance to cope with problems
of actuator failures that can be modeled as variations in the
columns of the control matrices. Moreover, there is no use
of grids in the parametric space nor restrictive assumptions
for the uncertainty structure. Only the vector of time-varying
parameters and the vector of the state variables are supposed
to be available at each sampling instant to synthesize the
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control signal. Numerical examples show an improvement in
the stabilizabilization and in the H∞ performance provided
by the conditions given in the paper when compared to other
similar techniques from the literature.

II. PROBLEM FORMULATION

Consider the discrete-time linear system

x(k + 1) = A(α(k))x(k) + B1(α(k))w(k) + B2(α(k))u(k)
(1)

z(k) = C(α(k))x(k)+D1(α(k))w(k)+D2(α(k))u(k) (2)

where x(k) ∈ R
n is the state, w(k) ∈ R

r is an exogenous
input, u(k) ∈ R

m is the control input and z(k) ∈ R
p is the

system output. All the system matrices, A(α(k)) ∈ R
n×n,

B1(α(k)) ∈ R
n×r, B2(α(k)) ∈ R

n×m, C(α(k)) ∈ R
p×n,

D1(α(k)) ∈ R
p×r, D2(α(k)) ∈ R

p×m depend on time-
varying parameters, belonging to the polytope

D =
{

(A,B1, B2, C,D1, D2)(α(k)) :

(A,B1, B2, C,D1, D2)(α(k)) =
N∑

j=1

αj(k)(A,B1, B2, C,D1, D2)j ,

N∑
j=1

αj(k) = 1, αj(k) ≥ 0, j = 1, . . . , N
}

(3)

The vector of parameters α(k) = [α1(k) · · ·αN (k)]′,∑N
j=1 αj(k) = 1, αj(k) ≥ 0, j = 1, . . . , N is supposed

to be available in real time (measured or estimated).
Assume that system (1)-(2) is subject to the state feedback

control law with a parameter-dependent gain given by

u(k) = K(α(k))x(k) , K(α(k)) ∈ R
m×n (4)

which allows to represent the closed-loop system as

x(k + 1) = Acl(α(k))x(k) + B1(α(k))w(k) (5)

z(k) = Ccl(α(k))x(k) + D1(α(k))w(k) (6)

with

Acl(α(k)) = A(α(k)) + B2(α(k))K(α(k)) (7)

Ccl(α(k)) = C(α(k)) + D2(α(k))K(α(k)) (8)

This paper focuses on the following two problems.
Problem 1: Suppose w(k) = 0. Find a parameter-

dependent gain K(α(k)) such that the closed-loop system

x(k + 1) = Acl(α(k))x(k) (9)

with the state feedback control law (4) and Acl(α(k)) given
by (7) is stable for any arbitrary time variation of the
parameters α(k) in the polytope D given by (3).

Problem 2: Suppose x(0) = 0. Find a parameter-
dependent gain K(α(k)) such that the closed-loop system
(5)-(8) is stable for any arbitrary time variation of the
parameters α(k) in the polytope D given by (3), and also

assuring that, for any input w(k) ∈ �2, the system output
z(k) ∈ �2 such that

‖z(k)‖2 < γ‖w(k)‖2 (10)

for a finite γ > 0, called an H∞ guaranteed cost for the
system.

III. STABILIZABILITY

A convex LMI condition which is sufficient to solve
Problem 1 is given by the next theorem.

Theorem 1: If there exist symmetric positive definite ma-
trices Sj ∈ R

n×n and matrices Gj ∈ R
n×n and Fj ∈ R

m×n,
j = 1, . . . , N such that the LMIs

Mij �
[

Gj + G′
j − Sj G′

jA
′
j + F ′

jB
′
2j

� Si

]
> 0,

i = 1, . . . , N , j = 1, . . . , N
(11)

Mijk �
[

Gj + G′
j + Gk + G′

k − Sj − Sk T12

� 2Si

]
> 0,

i = 1, . . . , N , j = 1, . . . , N − 1 , k = j + 1, . . . , N
(12)

T12 � G′
jA

′
k + G′

kA′
j + F ′

jB
′
2k + F ′

kB′
2j (13)

have a solution, then the stability of the closed-loop system
(9) is assured by the state feedback control law (4) with the
parameter-dependent gain

K(α(k)) = F (α(k))G(α(k))−1 (14)

with

(F, G, S)(α(k)) =
N∑

j=1

αj(k)(F, G, S)j ,

N∑
j=1

αj(k) = 1 , αj(k) ≥ 0 , j = 1, . . . , N (15)

Proof: Consider the parameter-dependent Lyapunov
function

v(x(k)) = x(k)′P (α(k))x(k) (16)

with

P (α(k)) =
N∑

j=1

αj(k)Pj , Pj = P ′
j > 0 ,

N∑
j=1

αj(k) = 1 ,

αj(k) ≥ 0 , j = 1, . . . , N (17)

Notice that

v(x(k + 1)) = x(k + 1)′P (α(k + 1))x(k + 1) (18)

where P (α(k + 1)) can be rewritten as

P (β(k)) =
N∑

i=1

βi(k)Pi , Pi = P ′
i > 0 ,

N∑
i=1

βi(k) = 1 ,

βi(k) ≥ 0 , i = 1, . . . , N (19)
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Using (9) and P (α(k+1)) = P (β(k)), one can rewrite (18)
as

v(x(k + 1)) = x(k)′Acl(α(k))′P (β(k))Acl(α(k))x(k)
(20)

Taking into account (16) and (20), the difference function
∆v(x(k)) � v(x(k + 1)) − v(x(k)) is given by

x(k)′
(
Acl(α(k))′P (β(k))Acl(α(k))−P (α(k))

)
x(k) (21)

Recall that system (9) is stable if

Acl(α(k))′P (β(k))Acl(α(k)) − P (α(k)) < 0 (22)

or, using Schur complement, if[
P (α(k)) Acl(α(k))′P (β(k))

� P (β(k)))

]
> 0 (23)

Multiplying (23) at left and at right by[
P (α(k))−1 0

0 P (β(k))−1

]

and taking the change of variables P (α(k))−1 = S(α(k))
P (β(k))−1 = S(β(k)) into account one has[

S(α(k)) S(α(k))Acl(α(k))′

� S(β(k))

]
> 0 (24)

which is equivalent to (23). In addition, expression (24) is
equivalent to[

G(α(k)) + G(α(k))′ − S(α(k)) J12

� S(β(k))

]
> 0 (25)

with J12 = G(α(k))′Acl(α(k))′, since if (24) has as solution
S(α(k)) and S(β(k)), then (25) is feasible with G(α(k)) =
G(α(k))′ = S(α(k)). Conversely, multiplying (25) at left
by T =

[ −Acl(α(k)) I
]

and at right by T ′, one has
S(β(k))−A(α(k))S(α(k))A(α(k))′ > 0, which is the Schur
complement of (24).

Replacing Acl(α(k)) by (7) and making the change of
variables F (α(k)) = K(α(k))G(α(k)), it is possible to
rewrite (25) as[

G(α(k)) + G(α(k))′ − S(α(k)) L12

� S(β(k))

]
> 0 (26)

with L12 = G(α(k))′A(α(k))′ +F (α(k))′B2(α(k))′. Using
(3), (15) and

S(β(k)) =
N∑

i=1

βi(k)Si , Si = S′
i > 0 ,

N∑
i=1

βi(k) = 1 ,

βi(k) ≥ 0 , i = 1, . . . , N

and taking into account
∑N

j=1 αj(k) = 1,
∑N

i=1 βi(k) = 1,
(26) can be rewritten as

N∑
j=1

αj(k)2
N∑

i=1

βi(k)Mij

+
N−1∑
j=1

N∑
k=j+1

αj(k)αk(k)
N∑

i=1

βi(k)Mijk > 0 (27)

with Mij defined in (11) and Mijk defined in (12)-(13).
Notice, finally, that if the conditions of Theorem 1 are
feasible one has Mij > 0, Mijk > 0, which is sufficient to
assure (27) for all α(k),

∑N
j=1 αj(k) = 1, αj(k) ≥ 0 , j =

1, . . . , N , β(k),
∑N

i=1 βi(k) = 1, βi(k) ≥ 0 , i = 1, . . . , N ,
thus assuring the stability of the closed-loop system for any
arbitrary time variation of the parameters in the polytope D.

As a first remark, notice that Theorem 1 provides a convex
condition with N + N2 + N2(N − 1)/2 LMIs (including
Sj > 0, j = 1, . . . , N ) whose solution allows to obtain
a stabilizing gain scheduled controller with no need of
discretization of the parametric space neither use of interpo-
lation between controllers locally designed. The parameter-
dependent gains is determined analytically by (14)-(15) as a
nonlinear function of the parameter vector.

A second important remark is that the conditions of
Theorem 1 are particularly useful to deal with systems
where the matrices (A,B2)(α(k)) are supposed to be time-
varying. Recall that similar conditions in the literature [19]
deal with the problem of design of LPV gains using LMIs
but only for the special case of B2(α(k)) = B2, i.e.,
the case of control matrices fixed and time-invariant. The
conditions in [19] cannot cope, for instance, with the problem
of actuator failures, modeled as time-varying entries in the
control matrix.

A third remark is that the conditions of Theorem 1 contain
the stabilizability conditions given in [21] to design via LMIs
a robust state feedback stabilizing gain for the system with
time-varying matrices (A,B2)(α(k)). The condition from
[21] states that if there exist symmetric positive definite
matrices Sj ∈ R

n×n, j = 1, . . . , N , and matrices G ∈ R
n×n

and F ∈ R
m×n such that[
G + G′ − Sj G′A′

j + F ′B′
2j

� Si

]
> 0,

i = 1, . . . , N , j = 1, . . . , N
(28)

then the gain K = FG−1 stabilizes the closed-loop system.
However, there are systems for which (28) fails to provide
a feasible solution and the conditions of Theorem 1 provide
a parameter-dependent stabilizing gain thanks to the extra
variables Gj , Fj , j = 1, . . . , N , as illustrated in the sequel
by means of a numerical example.

Finally, as a fourth remark, considering a practical imple-
mentation of the gain scheduled controller designed through
the conditions of Theorem 1, one has that given a priori
the system vertices (A,B)j , j = 1, . . . , N , the feasibility
of (11)-(12) allows to obtain a set of matrices (F,G)j ,
j = 1, . . . , N , that can be stored in a memory. Then, based
on the values of the vector of parameters (on-line measured
or estimated), one can determine (F, G)(α(k)) using (15) to
obtain the parameter-dependent gain K(α(k)) through (14).

IV. H∞ CONTROL

A sufficient convex solution to Problem 2 is given by the
next theorem.
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Theorem 2: If there exist symmetric positive definite ma-
trices Sj ∈ R

n×n and matrices Gj ∈ R
n×n and Fj ∈ R

m×n,
j = 1, . . . , N such that the optimization problem

min µ

subject to

Nij �

⎡
⎢⎢⎣

Gj + G′
j − Sj 0 Q13 Q14

� I B′
1j D′

1j

� � Si 0
� � � µI

⎤
⎥⎥⎦ > 0,

i = 1, . . . , N , j = 1, . . . , N

(29)

Q13 � G′
jA

′
j + F ′

jB
′
2j

Q14 � G′
jC

′
j + F ′

jD
′
2j

Nijk �

⎡
⎢⎢⎣

R11 0 R13 R14

� I B′
1j + B′

1k D′
1j + D′

1k

� � 2Si 0
� � � 2µI

⎤
⎥⎥⎦ > 0,

i = 1, . . . , N , j = 1, . . . , N − 1 , k = j + 1, . . . , N
(30)

R11 � Gj + G′
j + Gk + G′

k − Sj − Sk

R13 � G′
jA

′
k + G′

kA′
j + F ′

jB
′
2k + F ′

kB′
2j

R14 � G′
jC

′
k + G′

kC ′
j + F ′

jD
′
2k + F ′

kD′
2j

has a solution, then the stability of the closed-loop system
(5)-(8) with an H∞ guaranteed cost given by

γ =
√

µ� , µ� = min µ (31)

is assured by the state feedback control law (4) with the
parameter-dependent gain (14)-(15) for any arbitrary time
variation of the parameters α(k) in the polytope D.

Proof: The stability of the system with an H∞ guar-
anteed cost is assured if

∆v(x(k)) + z(k)′z(k) − µ w(k)′w(k) < 0 (32)

Replacing ∆v(x(k)) and z(k) by expressions (21)
and (6) respectively, inequality (32) can be rewritten as
θ(k)′Uθ(k) < 0 with θ(k)′ =

[
x(k)′ w(k)′

]
and

U =
[

U11 U12

� U22

]
(33)

U11 = Acl(α(k))′P (β(k))Acl(α(k)) − P (α(k))
+ Ccl(α(k))′Ccl(α(k))

U12 = Acl(α(k))′P (β(k))B1(α(k)) + Ccl(α(k))′D1(α(k))

U22 = B1(α(k))′P (β(k))B1(α(k))
+ D1(α(k))′D1(α(k)) − µI

Notice that imposing U < 0 in (33), one guarantees
that (32) holds for all x(k) �= 0, w(k) �= 0. Using Schur
complement, (33) is equivalent to

⎡
⎢⎢⎣

P (α(k)) V12 0 Ccl(α(k))′

� P (β(k)) V23 0
� � I D1(α(k))′

� � � µI

⎤
⎥⎥⎦ > 0 (34)

V12 = Acl(α(k))′P (β(k))

V23 = P (β(k))B1(α(k))

Following steps similar to those in the proof of Theorem 1,
one can find that (34) is equivalent to⎡

⎢⎢⎣
X11 0 G(α(k))′Acl(α(k))′ X14

� I B1(α(k))′ D1(α(k))′

� � S(β(k)) 0
� � � µI

⎤
⎥⎥⎦ > 0

(35)
X11 = G(α(k)) + G(α(k))′ − S(α(k))

X14 = G(α(k))′Ccl(α(k))′

Under the definitions of the matrices given previously
and using the problem constraints

∑N
j=1 αj(k) = 1,∑N

i=1 βi(k) = 1, (35) can be rewritten as

N∑
j=1

αj(k)2
N∑

i=1

βi(k)Nij

+
N−1∑
j=1

N∑
k=j+1

αj(k)αk(k)
N∑

i=1

βi(k)Nijk > 0 (36)

with Nij defined in (29) and Nijk defined in (30). Finally,
if the conditions of Theorem 2 hold, one has that Nij > 0,
Nijk > 0, which is sufficient to assure (35) for all α(k),∑N

j=1 αj(k) = 1, αj(k) ≥ 0 , j = 1, . . . , N , β(k),∑N
i=1 βi(k) = 1, βi(k) ≥ 0 , i = 1, . . . , N , thus assuring

the stability with an H∞ guaranteed cost for the closed-loop
system under any arbitrary time variation of the parameters
in the polytope D.

Some remarks are now in order. First, it is interesting
to recall that the problem of design via LMIs of LPV
controllers to the class of systems under investigation here
was addressed with a similar methodology in [20], but
also only for the case where matrices (B2, D2)(α(k)) are
considered as fixed and time-invariant. Theorem 2 deals with
a more general case, where these matrices are supposed to
be arbitrarily time-varying. Second remark, the extension
of the robust stabilizability condition (28) to cope with
H∞ performance is straightforward: if there exist symmetric
positive definite matrices Sj ∈ R

n×n, j = 1, . . . , N , and
matrices G ∈ R

n×n and F ∈ R
m×n such that min µ

subject to (29) with Gj = G, Fj = F has a solution, then
K = FG−1 assures the closed-loop stability with γ given
by (31). It is interesting to mention that there are systems for
which such robust gain cannot be determined or, if one can
obtain the fixed gain, it may lead to a poor performance (high
values of γ) compared to those obtained with parameter-
dependent gains given by Theorem 2, as illustrated by the
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Fig. 1. Entries of the parameter-dependent stabilizing gain (39) obtained
from Theorem 1 as a function of α1(k).

second example in the sequel. Notice also that the first and
the fourth remarks of Theorem 1 are valid for Theorem 2.

V. NUMERICAL EXAMPLES

Example 1: Consider a system with N = 2 vertices
randomly generated given by

A1 =

⎡
⎢⎢⎣

0.3158 0.2261 0.4781 0.4588
0.0473 0.6081 0.2509 0.2790
0.1581 0.4883 0.9031 0.6497
0.7402 0.4455 0.8582 0.1879

⎤
⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎣

0.7926 0.9792 0.4006 0.7986
0.4810 0.1183 0.1389 0.2469
0.7169 0.8413 0.6237 0.4428
0.7596 0.8886 0.8093 0.2588

⎤
⎥⎥⎦ (37)

B21 =

⎡
⎢⎢⎣

0.6594
0.9802
0.2648
0.9155

⎤
⎥⎥⎦ , B22 =

⎡
⎢⎢⎣

0.0816
0.1295
0.5339
0.7519

⎤
⎥⎥⎦ (38)

and the problem of stabilizability (Problem 1). The condi-
tions from [19] to design LPV stabilizing gains cannot be
applied here since B21 �= B22, implying in a time-varying
control matrix B2(α(k)). Moreover, condition (28) fails in
providing a stabilizing robust state feedback control gain
to this system. On the other hand, Theorem 1 allows to
determine a stabilizing parameter-dependent gain in the form

K(α1(k)) =

⎡
⎢⎢⎣

k11(α1(k))
k12(α1(k))
k13(α1(k))
k14(α1(k))

⎤
⎥⎥⎦
′

(39)

whose entries are shown in Fig. 1 as a function of α1(k),
with α2(k) = 1 − α1(k).

Observe the clear nonlinear behavior of entries k11(α1(k))
and k12(α1(k)). In the case of practical implementation of
the gain scheduled controller, matrices Fj and Gj , j = 1, 2,
calculated a priori using the conditions of Theorem 1, can be
stored in a memory. From the knowledge of α1(k) (supposed
available in real time), one evaluates F (α1(k)) and G(α1(k))

using (15) and then the control gain K(α1(k)) is obtained
from (14). Notice that there is no use of gridding in the
parametric space to obtain the gain scheduled controller. The
closed-loop stability is assured by the parameter-dependent
Lyapunov matrix P (α1(k)) = S(α1(k))−1, where

S(α1(k)) = α1(k)S1 + (1 − α1(k))S2 (40)

with

S1 =

⎡
⎢⎢⎣

0.3650 −0.0192 −0.0296 −0.0265
−0.0192 0.3564 −0.0660 −0.0612
−0.0296 −0.0660 0.3139 −0.0529
−0.0265 −0.0612 −0.0529 0.3139

⎤
⎥⎥⎦
(41)

S2 =

⎡
⎢⎢⎣

0.3481 −0.0531 −0.0204 −0.0782
−0.0531 0.3399 −0.0677 −0.0901
−0.0204 −0.0677 0.3640 −0.0414
−0.0782 −0.0901 −0.0414 0.3031

⎤
⎥⎥⎦
(42)

obtained from Theorem 1.
Example 2: Consider a system with vertices

A1 =
[

0.28 −0.315
0.63 −0.84

]
, B11 = B21 =

[
1
0

]
(43)

C1 =
[

1 0
]

, D11 = D21 =
[

0
]

(44)

A2 =
[

0.52 0.77
−0.7 −0.07

]
, B12 = B11 , B22 =

[
0
1

]

(45)
C2 = C1 , D12 = D22 =

[
0

]
(46)

and the problem of H∞ control (Problem 2). This system
was studied in [20] (second example), in the special case
where B21 = B22, implying that B(α(k)) is fixed and time-
invariant. The aim here is to investigate the more general case
B21 �= B22. Using the extension of condition (28) to cope
with H∞ stabilizability, as discussed in the second remark
given after the proof of Theorem 2, one can find this system
is stabilizable through the fixed state feedback gain

K =
[

0.2784 0.6364
]

(47)

with an H∞ guaranteed cost given by γK = 6.4938. It is pos-
sible to improve the system performance using the parameter-
dependent control strategy, provided by Theorem 2, yielding
the solution

F1 =
[ −2.3079 3.3073

]
,

F2 =
[

1.4653 −1.8766
]

(48)

G1 =
[

5.0467 −0.6525
−1.2692 7.4506

]
,

G2 =
[

7.6666 −4.1665
−0.0571 7.6578

]
(49)

S1 =
[

6.9920 1.4329
1.4329 9.8275

]
,

S2 =
[

6.8224 −4.2757
−4.2757 10.6498

]
(50)
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which allows to compute a gain scheduled controller that
stabilizes the closed-loop system with an H∞ guaranteed
cost given by γT2 = 4.9187, which represents a reduction
of 24.3% in the value of γK , providing better rejection of
disturbances.

VI. CONCLUSION

This paper has presented convex LMI conditions to design
gain scheduled controllers suitable to stabilize and to assure
H∞ performance to discrete-time linear systems which de-
pend on arbitrarily time-varying parameters in a polytope.
Differently from previous approaches, there are no restrictive
assumptions on the uncertainty structure and all the system
matrices are supposed affected by time-varying parameters.
The proposed design conditions are written as a finite set of
LMIs at the vertices of the polytope, which avoids gridding
the parametric space and the parameter-dependent gains
here are obtained through an analytical expression, without
interpolations. The closed-loop stability and performance
are assured by a parameter-dependent Lyapunov function,
obtained from the solution of the proposed LMIs. Numerical
examples have shown how the conditions given in the paper
allow to improve the stabilizability and the H∞ performance
compared to similar conditions from the literature.
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