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Abstract— Analysis of the 802.11 CSMA/CA mechanism has
received considerable attention recently. Bianchi [3] presents an
analytic model under a saturated traffic assumption. Bianchi’s
model is accurate, but typical network conditions are non-
saturated heterogenous. We present an extension of his model
to a non-saturated environment. The model’s predictions, val-
idated against simulation, accurately capture many interesting
features of non-saturated operation. For example, the model
predicts that peak throughput occurs prior to saturation. Our
model also allows stations to have different traffic arrival
rates, enabling us to address the question of fairness between
competing flows.

I. INTRODUCTION

The 802.11 wireless LAN standard has been widely de-
ployed during recent years and has received considerable
research attention. The 802.11 MAC layer uses a CSMA/CA
algorithm with binary exponential back-off to regulate access
to the shared wireless channel. While this CSMA/CA algo-
rithm has been the subject of numerous empirical studies, an
analytic framework for reasoning about its properties remains
notably lacking. Developing analysis tools is desirable not
only because of the wide deployment of 802.11 equipment
but also because the CSMA/CA mechanism continues to
play a central role in new standards proposals such as
802.11e. A key difficulty in the mathematical modeling of
the 802.11 MAC lies in the large number of states that may
exist (scaling exponentially with the number of stations). In
his seminal paper, Bianchi [3] addressed this difficulty by
assuming that (i) every station is saturated (i.e. always has a
packet waiting to be transmitted), (ii) the packet collision
probability is constant regardless of the state or station
considered and (iii) transmission error is a result of packets
colliding and is not caused by medium errors. Provided
that every station is indeed saturated, the resulting model is
remarkably accurate. However, the saturation assumption is
unlikely to be valid in real 802.11 networks. Network traffic
is frequently bursty in nature while streaming traffic such
as sampled data operates at relatively low rates and often
in an on-off manner, i.e. stations are often far from being
saturated. Our aim in this paper is to derive a mathematical
model of CSMA/CA that relaxes the restriction to saturated
operation while retaining as much as possible of the attractive
simplicity of Bianchi’s model, in particular, the ability to
obtain analytic relationships.

II. MODELLING NON-SATURATED HETEROGENOUS

STATIONS

Following the seminal paper of Bianchi [3], much of the
analytic work on 802.11 MAC performance has focused on
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Fig. 1. Non-saturated Markov Chain.

saturated networks where each station always has a packet
to send. For notable examples, see [2], [8]. The saturation
assumption enables queueing dynamics to be neglected and
avoids the need for detailed modeling of traffic characteris-
tics, making these networks particularly tractable.

Networks do not typically operate in saturated conditions.
In particular, traffic generated by measurement sensors and
by actuator control signals is derived from sampling pro-
cesses that naturally lead to on-off traffic characteristics.
Creating an analytic model that includes fine detail of traffic-
arrivals and queueing behavior, as well as 802.11 MAC
operation, presents a significant challenge. We introduce
a model with traffic and buffering assumptions that make
it sufficiently simple to give explicit expressions for the
quantities of interest (throughput per station, delay, collision
probabilities), but still capture key effects of non-saturated
operation. Although our traffic assumptions form only a
subset of the possible arrival processes, we will see they
are useful in modeling a wide range of traffic, including
sampled data streams. As in [3], our fundamental assumption
is that each station has a fixed probability of collision when
it attempts to transmit, irrespective of its history.

Bianchi [3] presents a Markov model where each station
is modeled by a pair of integers (i, k). The back-off stage,
i, starts at 0 at the first attempt to transmit a packet and
is increased by 1 every time a transmission attempt results
in a collision, up to a maximum value m. It is reset after
a successful transmission. The counter, k is initially chosen
uniformly between [0, Wi − 1], where typically Wi = 2iW
is the range of the counter and W0 is the 802.11 parameter
CWmin. While the medium is idle, the counter is decre-
mented. Transmission is attempted when k = 0.
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We introduce new states (0, k)e for k ∈ [0, W0 − 1],
representing a node which has transmitted a packet, but has
none waiting. This is called postbackoff. The first two stages
of the new chain are depicted in Figure 1. Note that i = 0 in
all such states, because if i > 0 then a collision has occurred,
so we must have a packet awaiting transmission.

We assume that for each station there is a constant proba-
bility 1 − q that the station’s buffer has no packets awaiting
transmission at the start of each counter decrement. This
enables us to derive relationships between the per-station
quantities: q, the probability of at least one packet awaiting
transmission at the start of a counter decrement; m, the
maximum backoff stage; p, the probability of collision given
the station is attempting tranmission; P , the Markov chain’s
transition matrix; b, the chain’s stationary distribution; and
τ , the stationary distribution’s probability that the station
transmits in a slot. These relationships can be solved for
p and τ , and network throughput predicted. It is important
to note that the Markov chain’s evolution is not real-time,
and so the estimation of throughput requires an estimate of
the average state duration.

Under our assumptions, we have for 0 < k < Wi

0 < i ≤ m, P [(i, k − 1)|(i, k)] = 1,
P [(0, k − 1)e|(0, k)e] = 1 − q,
P [(0, k − 1)|(0, k)e] = q.

If the counter reaches 0 and a packet is queued, then we
begin a transmission. We assume there is a station-dependent
probability p that other stations transmit at the same time,
resulting in a collision. In the case of a collision we must
increase the backoff stage (or discard). In the case of a
successful transmission we return to backoff stage 0 and
the station’s buffer is empty with probability 1 − q. In the
case with infinitely many retransmission attempts we need
introduce no extra per-station parameters and for 0 ≤ i ≤ m
and k ≥ 0 we have

P [(0, k)e|(i, 0)] = (1−p)(1−q)
W0

,

P [(0, k)|(i, 0)] = (1−p)q
W0

,

P [(min(i + 1, m), k)|(i, 0)] = p
Wmin(i+1,m)

.

Naturally, these transitions could be adapted to allow discards
after a certain number of transmission attempts.

The final transitions are from the (0, 0)e state, where
postbackoff is complete, but the station’s buffer is empty.
In this case we remain in this state if the station’s buffer
remains empty. If a packet arrives we have three possibilities:
successful transmission, collision or, if the medium is busy,
the 802.11 MAC begins another stage-0 backoff, now with a
packet. With Pidle denoting the probability that the medium
is idle during a typical slot, the transitions from the (0, 0)e

state are:

P [(0, 0)e|(0, 0)e] = 1 − q +
qPidle(1−p)

W0
,

k > 0, P [(0, k)e|(0, 0)e] =
qPidle(1−p)

W0
,

k ≥ 0, P [(1, k)|(0, 0)e] =
qPidlep

W1
,

k ≥ 0, P [(0, k)|(0, 0)e] =
q(1−Pidle)

W0
.

Observe that p, the probability of a collision given that we
are about to transmit, is the probability that at least one other
station is transmitting. This is also the probability that the
medium is busy if we know the station under consideration
has been silent. Hence we substitute Pidle = 1 − p.

Given the collision probability p for this station in the
system and per-station parameters q, Wi and m we may
solve for a stationary distribution of this Markov chain. This
will enable us to determine the probability, τ , that this station
is attempting transmission in a typical slot.

First we make observations that aid in the deduction of the
stationary distribution. With b(i, k) and b(0, k)e denoting the
stationary probability of being in states (i, k) and (0, k)e, as
b is a probability distribution we have

m∑
i=0

Wi−1∑
k=0

b(i, k) +

W0−1∑
k=0

b(0, k) = 1. (1)

We will write all probabilities in term of b(0, 0)e and use
the normalization in equation (1) to determine b(0, 0)e. We
have the following relations. To be in the sub-chain (1, k), a
collision must have occurred from state (0, 0) or an arrival
to state (0, 0)e followed by detection of an idle medium and
then a collision, so that b(1, 0) = b(0, 0)p + b(0, 0)eq(1 −
p)p. Neglecting packet discard, for i > 1 we have b(i, 0) =
pi−1b(1, 0) and so

∑
i≥1

b(i, 0) =
b(1, 0)

1 − p
=

b(0, 0)p + b(0, 0)eq(1 − p)p

1 − p
. (2)

The keystone in the calculation is then the determination
of b(0, W0 − 1)e. Probability flows into (0, W0 − 1)e from
(0, 0)e if there is an arrival, the medium is sensed busy and
no collision occurs. It also flows in from (i, 0) if no collision
or arrival occurs

b(0, W0 − 1)e = b(0, 0)e
q(1−p)2

W0

+ (1−p)(1−q)
W0

∑
i≥0 b(i, 0).

(3)

Combining equations (2) and (3) gives

b(0, W0 − 1)e = b(0, 0)e
(1−p)q(1−pq)

W0

+b(0, 0)1−q
W0

.

We then have for W0−1 > k > 0, b(0, k)e = (1−q)b(0, k+
1)e + b(0, W0 − 1)e, with b(0, k)e on the left hand side
replaced by qb(0, 0)e if k = 0. Straight forward recursion
leads to expressions for b(0, k)e in terms of b(0, 0)e and
b(0, 0), and so we find

b(0,0)e

b(0,0) = 1−q
q(

1−(1−q)W0

qW0−(1−p)(1−pq)(1−(1−q)W0 )

)
.

(4)

Using these equations we can determine the second sum in
equation (1)

W0−1∑
k=0

b(0, k)e = b(0, 0)e
qW0

1 − (1 − q)W0
.
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The (0, k) chain can then be tackled, starting with the
relation

b(0, W0 − 1) =
∑
i≥0

b(i, 0)
(1 − p)q

W0
+ b(0, 0)e

qp

W0
.

Recursion leads to
W0−1∑
k=0

b(0, k) = b(0, 0)e

[
q

1 − q

W0 + 1

2(
q2W0

1−(1−q)W
0

+ p(1 − q) − q(1 − p)2
)

+
qW0(qW0 + q − 2)

2(1 − (1 − q)W
0 )

+ 1 − q

]
.

Using equation(4) we can determine b(1, 0) in terms of
b(0, 0)e:

b(1, 0) = b(0, 0)e
pq2

1 − q

(
W0

1 − (1 − q)W
0

− (1 − p)2
)

.

Finally, after algebra, the normalization (1) gives

1/b(0,0)e
= (1 − q) + q2W0(W0+1)

2(1−(1−q)W0 )

+ q(W0+1)
2(1−q)

(
q2W0

1−(1−q)W0
+

p(1 − q) − q(1 − p)2
)

+ pq2

2(1−q)(1−p)

(
W0

1−(1−q)W0
− (1 − p)2

)
(
2W0

1−p−p(2p)m−1

1−2p + 1
)

.

(5)

The main quantity of interest is τ , the probability that
the station is attempting transmission. A station attempts
transmission if it is in the state (i, 0) (for any i) or if it
is in the state (0, 0)e, a packet arrives and the medium is
sensed idle. Thus τ = q(1−p)b(0, 0)e +

∑
i≥0 b(i, 0), which

reduces to

τ = b(0, 0)e

(
q2W0

(1−p)(1−q)(1−(1−q)W0 )

− q2(1−p)
1−q

)
,

(6)

where b(0, 0)e is given in equation (5), so that τ is expressed
solely in terms of p, q, W0 and m. While q, W0 and m are
fixed for each station, in order to determine the collision
probability, p, we must give a relation between the stations
competing for the medium.

Consider the case where n stations are present, labeled
l = 1, . . . , n. Equation (6) gives an expression for τl, the
per-station transmission probability, in terms of a per-station
arrival process ql and a per-station collision probability pl.
Observe that

1 − pl =
∏
j �=l

(1 − τj), for l = 1, . . . , n, (7)

that is, there is no collision for station l when all other
stations are not transmitting. With n stations, (6) and (7)
provide 2n coupled non-linear equations which can be solved
numerically for pl and τl. Observe that (1 − pi)(1 − τi) is
the same for all i = 1, . . . , n and represents the probability
that the medium is idle (as we observed before 1 − pi is
the probability that other stations are silent and 1 − τi is

the probability that this station is silent). Note that these
equations imply that different stations’ collision probabilities
are not the same unless their transmission probabilities are
equal. We remark that in the case where the stations are
homogenous, the equations (7) reduce to 1−p = (1−τ)n−1.
Placing the system in saturation by setting q = 1, the model
reduces to that of Bianchi [3], as expected.

The length of each state in the Markov chain is not a
fixed period of real time. Each state may be occupied by a
successful transmission, a collision or the medium being idle.
To convert between states and real time, we must calculate
the expected time spent per state, which is given by

Es = (1 − Ptr)σ +
∑n

i=1 Psi
Tsi

+
∑n

r=2

∑
1≤k1<···<kr≤n Pck1...kr

Tck1...kr
,

(8)

where:

Psi
= τi

∏
j �=i

(1 − τj)

is the probability station i successfully transmits; Tsi
is

the expected time taken for a successful transmission from
station i;

Pck1...kr
=

r∏
i=1

τkr

∏
j �=k1...kr

(1 − τj),

the probability that only the stations labeled k1 to kr experi-
ence a collision by attempting transmission; Tck1...ckr

is the
expected time taken for a collision from stations labeled k1

to kr;

Ptr = 1 −

n∏
i=1

(1 − τi)

is the probability at least one station attempts transmission;
and σ is the slot-time.

Once the mean state time is known, we can estimate the
proportion of time that the medium is used by each station
for successfully transferring data:

Si =
Psi

Li

Es
, (9)

where Li is the expected time spent transmitting payload
data for source i. The normalized throughput of the system
is then

S =

n∑
i=1

Si. (10)

Thus in order to determine the throughput and collision
probability for each station, and the overall throughput, one
first solves equations (7) using equations (5) and (6). Then
one uses equations (8), (9) and (10).

We are now in a position to estimate the mean MAC
delay associated with a transmission by a particular source.
Consider the situation immediately after a transmission, the
station begins post backoff and chooses a backoff of k, and
a packet arrives after j states. Then the mean time between
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the packet arrival at the MAC layer and the completion of
its transmission will be

∆ =
∑W0

k=0
1

W0

∑∞
j=0 q(1 − q)j∆ik

∆ik =

{
k ≥ j (k − j)E

s
′ + (1 − p)Tsi

+ p(Tci
+ K1)

k < j (1 − p)2Tsi
+ (1 − p)p(Tci

+ K1) + pK0

(11)
where Es′ is the mean state length if this source is silent,
Tci

is the mean length of a collision involving this source,
K0 is the mean time to transmit a frame beginning with a
stage 0 backoff,

K0 =
∑∞

j=0
2min(i,m)W0−1

2 piEs′

+
∑∞

j=1 jpj(1 − p)Tci
+ Tsi

,
(12)

and K1 is the mean time to transmit beginning with a stage
1 backoff, defined similarly.

Delay, as estimated directly by equation (11), is an un-
derestimate of the simulated delay. Investigation indicates
that this is because the mean state length approximation
is too coarse grained for accurate delay estimation. For
example, the probability of there being a packet available
for transmission immediately after a successful transmission
is higher than q because the previous state is not a slot of
average length Es, it is of length Ts. For a specific traffic
model this can be corrected. Similarly, after postbackoff a
better estimate of the probability that a packet is available
while the medium is idle is (Es′ − (1 − p)σ)/Es′ .

III. MODEL VERIFICATION

We first consider a homogenous group of stations and then
consider the heterogenous setting where each station has one
of two arrival rates. Station parameters1 are shown in Table I.

We compare predictions of the model from Section II with
simulations using the ns2 based 802.11 simulator produced
by TU-Berlin [10]. We compare model predictions with
simulation for various numbers of stations and arrival rates.

In order to move between model and simulation arrival
rates, we use the following logic. Queues are set as small
as ns2 will permit and traffic arrivals are Poisson. Since we
have small buffers, the parameter qi is the probability that at
least one packet arrives in the expected time spent per state,
Es defined in equation (8). In simulation, the probability
that at least one packet arrives during Es is one minus the
probability that the first inter-packet time is greater than
Es. Hence, when inter-packet arrival times are exponentially
distributed the exponential rate λi should be set so that
qi = 1 − exp(−λiEs), i.e. λi = − log(1 − qi)/Es. With
λi so chosen, the arrival rate in the model and in simulation
agree.

For the homogeneous case, Figure 2 shows how collision
probability depends on the total normalized offered load.
Figure 3 shows how the normalized throughput of the link

1Note that the 802.11 standards do not specify a length for ACKTimeout.
Thus the length of a collision may depend on whether a station was
involved in the collision (including a vendor selected ACKTimeout) or was
an onlooker (then using EIFS). We choose Tc = Ts, following the spirit
for the 802.11 standard. For a model of what occurs when they are set
differently in a saturated situation, see Robinson and Randhawa [8].
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Fig. 4. Delay in the MAC as a function of collision probability.

depends on the total normalized offered load. In all cases
there is good agreement between the model and simulations.
The model has captured a number of important features of
the behavior, including:

• the linear relationship between the offered load and
throughput when well below saturation.

• the behavior of throughput as predicted by Bianchi’s
model and simulation at high offered loads (correspond-
ing to saturation).

• for larger numbers of stations the maximum throughput
is achieved before saturation in both the model and
simulation. The point at which this maximum occurs
is relatively insensitive to the number of stations.

• a complex transition from under-loaded to saturated.

As a function of collision probability average delays
experienced by a single station are independent of the
number of stations. Thus Figure 4, which shows simulated
and estimated delays, includes values from all validation
experiments. The estimated delays in Figure 4 are determined
by equation (11), post-transmission q corrected using 1−(1−
qTs/Es). The term K0 from equation (12), which does not
account for postbackoff, is also shown. The similarity of the
estimated delay and K0 suggest that the K0 dominates. Both
are accurate for small collision probabilities but become mild
underestimates for high collision rates.

For the heterogenous setting of where stations are divided
into two classes with each class having a different arrival rate,
Figure 5 shows the model’s normalized throughput prediction
for a station in each class, with n1 = 12 and n2 = 24.
The throughput is plotted against normalized arrival rate
for a station in each class. We take a representative slice
through this surface along the line where the arrival rate to
the second group is 1/4 of that of the first group. Figure
6 shows predicted and simulated throughputs and collision
probabilities against overall normalized offered load. There
is good match between predicted and observed throughputs,
although the simulated collision probabilities are slightly
lower than the model predicts. The collision probabilities of
a station in each class are always close, but not the same. As
commented after equation (7), this is expected because of an
asymmetry in the system: a station in class 1 sees 11 other
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W0 31 L 364us = 500.0 bytes @ 11Mbps
m 5 Ts 944us = Header + L + SIFS + δ + ACK + δ + DIFS
σ 20us Tc 944us = Header + L + SIFS + δ + ACKTimeout
SIFS 10us DIFS 50us = 2σ + SIFS
δ 2us ACK 304us = 192 bits @ 1Mbps + 14 bytes @ 1Mbps

TABLE I

PARAMETERS VALUES FOR MODEL AND SIMULATION.
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Fig. 2. Collision probability as the traffic arrival rate is varied.
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Fig. 5. Per-station throughput for two classes of stations offering different
loads, n1 = 12, n2 = 24.

class 1 stations and 24 class 2 stations; a station in class 2
sees 12 class 1 stations and 23 class 2 stations.

We have taken a large number of slices for ranges of
values of n1 and n2. For smaller numbers of users, we have
found that while the predicted throughputs are accurate, the
predicted collision probabilities are typically underestimates.
For larger number of stations, the estimates’ accuracy in-
creases.

As a case-study we consider the predictions of the model
in a situation that represents a sampled data stream in an ad-
hoc network. A 64Kbs sampled data stream is transmitted
between pairs of stations. Figure 7 shows the predicted
and simulated throughput, as the number of station-pairs is
increased. It can be seen that the model makes remarkably
accurate predictions.
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IV. RELATED WORK

There are alternative approaches to non-saturated mod-
eling. In [1] a modification of [3] is considered where a
probability of not transmitting is introduced that represents a
station having no data to send. The model is not predictive as
this probability is not known as a function of load and must
be estimated from simulation. In [6] idle states are added
after packet transmission to represent bursty arrivals in a
way that does not account for postbackoff, a key bandwidth
saving feature of the 802.11 MAC. In [11] a Markov model
where states are of fixed real-time length is introduced, but by
virtue of its design it cannot predict the pre-saturation peak in
throughput. In [5] a model focusing on multi-rate situations
is presented, but not solved analytically and is subject to
limited validation. In [9] a non-Markov model is developed,
but is based on an unjustified assumption that the saturated
setting provides good approximation to certain unsaturated
quantities. It appears to produce inaccurate predictions. None
of these previous models have gone beyond the homogeneous
setting and so have not been able to consider fairness issues
for competing traffic types. The p-persistent approach of the
802.11 MAC has also been studied extensively, for recent
work see [4] and the references therein.

V. CONCLUSIONS

We have presented a model and analysis of the 802.11
MAC under non-saturated and heterogenous conditions. The
model’s predictions were validated against simulation and
seen to accurately capture many interesting features of non-
saturated operation, including predicting that peak through-
put occurs prior to saturation.
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