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Abstract— It is well known that the adjoint state of the Pon-
tryagin maximum principle may be discontinuous whenever the
optimal trajectory lies partially on the boundary of constraints.
Still we prove that if the associated Hamiltonian H(t, x, ·) is
differentiable and the constraints are sleek, then every optimal
trajectory is continuously differentiable. Moreover if for all x
on the boundary of constraints, H ′

p(t, x, ·) is strictly monotone
in directions normal at x to the set of constraints, then the
adjoint state is also continuous on interior of its interval of
definition. Finally, we identify a class of constraints for which
the adjoint state is absolutely continuous or even Lipschitz on
this open interval. This allows us to derive necessary conditions
for optimality in the form of variational differential inequalities,
maximum principle and modified transversality conditions.

I. INTRODUCTION

Consider a control system

x′(t) = f(t, x(t), u(t)), u(t) ∈ U(t) a.e. in [0, 1] (1)

under state constraints

x(t) ∈ K for all t ∈ [0, 1], (2)

where U is a measurable set-valued map from [0, 1] into
nonempty closed subsets of a complete separable metric
space Z , f : [0, 1]×Rn×Z → Rn and K is a closed subset
of Rn. Denote by SK

[0,1] the set of all absolutely continuous
solutions to (1) satisfying state constraints (2).

In this paper we are interested by regularity of minimizers
of the Bolza optimal control problem under state constraints

min
{

ϕ(x(0), x(1)) +
∫ 1

0
L(t, x(t), u(t))dt |

x ∈ SK
[0,1], (x(0), x(1)) ∈ K1},

(3)

where ϕ : Rn × Rn → R is locally Lipschitz , L : [0, 1] ×
Rn×Z → R and K1 ⊂ Rn×Rn is closed. We also assume
that f, L are measurable with respect to the first variable and
continuous with respect to the second and third variables.

Consider an optimal trajectory/control pair (z, ū). Under
some regularity assumptions on data it satisfies the following
necessary condition for optimality: there exist λ ∈ {0, 1},
an absolutely continuous p : [0, 1] → Rn and a mapping
ψ : [0, 1] → Rn, ψ ∈ NBV ([0, 1]) (space of normalized
functions with bounded variation on [0, 1]) not vanishing
simultaneously such that

i) for a positive Radon measure µ on [0, 1] and a Borel
measurable ν(·) : [0, 1] → Rn satisfying µ-almost every-
where ν(s) ∈ NK(z(s)) ∩ B (where NK(z(s)) denotes the
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normal cone to K at z(s) and B the closed unit ball) we
have ψ(t) =

∫
[0,t]

ν(s)dµ(s) for all t ∈ (0, 1],

ii) p(·) is a solution to the adjoint system

−p′ = f ′
x(s, z(s), ū(s))∗(p + ψ) − λL′

x(s, z(s), ū(s)) (4)

satisfying the maximum principle

〈p(s) + ψ(s), z′(s)〉 − λL(s, z(s), z′(s)) =
maxu∈U(s)(〈p(s) + ψ(s), f(s, z(s), u)〉 − λL(s, z(s), u))

and the transversality condition

(p(0),−p(1)−ψ(1)) ∈ λ∇ϕ(z(0), z(1))+NK1(z(0), z(1)).

The above necessary conditions are called normal if λ = 1.
The Hamiltonian H : [0, 1] × Rn × Rn → R associated

to the above Bolza problem is defined by

H(t, x, p) = sup
u∈U(t)

(〈p, f(t, x, u)〉 − L(t, x, u)). (5)

For all (t, x) ∈ [0, 1] × Rn, H(t, x, ·) is convex and

∂pH(t, x, p) = {f(t, x, u) | u ∈ U(t),
H(t, x, p) = 〈p, f(t, x, u)〉 − L(t, x, u)}, (6)

where ∂pH(t, x, p) denotes the subdifferential of convex
analysis of H(t, x, ·) at p. Thus in the normal case,

z′(t) ∈ ∂pH(t, z(t), p(t) + ψ(t)) a.e. in [0, 1].

When there is no state and end point constraints, then λ = 1,
ψ = 0, and the above inclusion allows to deduce regularity
of the derivative z′ from regularity of H ′

p. Indeed if H ′
p

is continuous (respectively locally Lipschitz), then z′ is
continuous (respectively absolutely continuous). This fails to
be true in general because in the constrained case

z′(t) = H ′
p(t, z(t), p(t) + ψ(t)) a.e. in [0, 1] (7)

and ψ may be discontinuous.
In this paper we focus our attention on regularity of

optimal solutions and of mapping ψ for sleek K in the
normal case. (The state constraints K are sleek, if for every
x ∈ K the contingent cone to K at x coincides with Clarke’s
tangent cone to K at x). We show that if H is continuous,
then the function (0, 1) � t 	→ H(t, z(t), p(t) + ψ(t))
is continuous, even though ψ may be discontinuous. If in
addition H(t, z(t), ·) is differentiable, then z ∈ C1 and the
mapping

(0, 1) � t 	→ H ′
p(t, z(t), p(t) + ψ(t))
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is continuous (we prove this result without assuming conti-
nuity of H ′

p). Moreover for all t ∈ (0, 1),

〈ψ(t) − ψ(t−), z′(t)〉 = 0,

H ′
p(t, z(t), p(t) + ψ(t)) = H ′

p(t, z(t), p(t) + ψ(t−)).

Thus jumps of ψ occur only in the directions orthogonal
to derivatives of z (see Theorem 2.5). Furthermore, ψ is
continuous on (0, 1) provided that H ′

p(t, z(t), ·) is strictly
monotone in the directions normal to constraints at z(t).

We also propose sufficient conditions for ψ to be abso-
lutely continuous or Lipschitz on (0, 1), and for z′ to be
Lipschitz on [0, 1] (see Theorem 3.1). To obtain this result
we use some ideas of proofs from [13], [15], but we impose
a monotonicity assumption on the Hamiltonian with respect
to normals to constraints (instead of supposing the strict
convexity of the Lagrangian) and consider control systems
that are not affine with respect to controls. In Example 2 we
discuss relations of our assumptions to those of [15].

The above regularity results imply : if for a trajec-
tory/control pair (z, ū) the normal constrained maximum
principle i) − ii) holds true with absolutely continuous ψ,
then there exists an absolutely continuous mapping q :
[0, 1] → Rn satisfying the differential variational inequalities

−q′ ∈ f ′
x(s, z(s), ū(s))∗q − L′

x(s, z(s), ū(s)) − NK(z(s)),
(8)

the maximum principle

〈q(s), z′(s)〉 − L(s, z(s), ū(s)) = H(s, z(s), q(s)) a.e. (9)

and the transversality condition

(q(0),−q(1)) ∈ ∇ϕ(z(0), z(1))+
+NK1(z(0), z(1)) + NK(z(0)) × NK(z(1)), (10)

where NK(z(s)) (resp. NK1(z(0), z(1))) denotes Clarke’s
normal cone to K at z(s) (resp. to K1 at (z(0), z(1))).

The Maximum Principle with regular costate was proved
by Gamkrelidze in [12] for smooth optimal trajectories.
Then a number of papers were written on this subject
without restrictions imposed on z, but using measures in
the definition of costate (see for instance [9]). We refer to
[16] for extended discussions on the constrained maximum
principle and further references and to [1] for the Russian
bibliography on the subject. In this paper we go another way
around. We impose some assumptions on the Hamiltonian
and constraints to deduce absolute continuity of ψ.

Regularity of ψ can be used for further investigation of
smoothness of optimal control ū. Indeed, if for all q ∈ Rn

there exists exactly one u(t, q) such that

H(t, z(t), q) = 〈q, f(t, z(t), u(t, q))〉 − L(t, z(t), u(t, q))

then, by the maximum principle, ū(t) = u(t, p(t)+ψ(t)) for
almost all t. Thus regularity of ū depends upon regularity
of the mapping u(·, ·) and p + ψ. For instance Lipschitz
continuity of ψ on (0, 1) implied Lipschitz continuity of
minimizing controls in [13, Hager] for linear control sys-
tems, convex Lagrangian and convex state constraints, in

[8, Dontchev & Hager] for the LQR problem under affine
state constraints and in [14, Malanowski] for both control
system and Lagrangian nonlinear with respect to the state.
Very recently Shvartsman and Vinter [15] considered the case
of fully nonlinear constraints

K = {x | hj(x) ≤ 0, j = 1, ..., m}
with hj ∈ C1,1

loc (actually in their paper hj are also time
dependent). In their work the system is supposed to be
affine with respect to controls and the Lagrangian L(t, x, ·) is
smooth and strictly convex. Under various sets of conditions
they show that the above mapping u(·, ·) is locally Lipschitz.

Since the adjoint system is never used in this paper,
results of Sections 3, 4 and 5 can be applied with various
maximum principles, including their non smooth versions
(see for instance [1], [16]).

Let X be a real Banach space, B denote the closed unit
ball in X . A set C ⊂ X is called a cone if it is nonempty
and for all λ ≥ 0 and v ∈ C we have λv ∈ C. The negative
polar cone of C is denoted by C−. Let K ⊂ Rn be closed
and x ∈ K. The contingent cone to K at x is defined by

TK(x) = {v ∈ Rn | lim inf
h→0+

dist(x + hv, K)
h

= 0}.
K is called sleek if the set-valued map K � x � TK(x) is
lower semicontinuous Every convex set is sleek. For other
examples of sleek sets see [2]. The negative polar NK(x) :=
TK(x)− is called the normal cone to K at x ∈ K. If K is
sleek, then NK(x) is equal to Clarke’s normal cone to K at
x and K � x � NK(x) has closed graph.

Proposition 1.1 ([6]): Let K be closed and z : [0, 1] →
K be so that t � NK(z(t)) has closed graph. Let ψ ∈
NBV ([0, 1]) be such that for some scalar positive Radon
measure µ on [0, 1] and a selection ν(s) ∈ NK(z(s)) ∩ B
µ − a.e. we have ψ(t) =

∫
[0,t]

ν(s)dµ(s),∀ t ∈ (0, 1]. Then

ψ(0+) ∈ NK(z(0)) & ψ(t)−ψ(t−) ∈ NK(z(t)) ∀ t ∈ (0, 1].

Let z : [0, 1] → Rn be a Lipschitz function. For every
t ∈ [0, 1] set ∂∗z(t) = Limsups→t{z′(s)}, where Limsup
denotes the upper set-valued limit. (See for instance [2] for
the corresponding definition). If ∂∗z(t) is a singleton, then
z is differentiable at t and {z′(t)} = ∂∗z(t) (see [4]).

Recall that any function f : [0, 1] → Rn of bounded
variation on [0, 1] has right and left limits f(0+) and f(1−).

The space NBV ([0, 1]) (Normalized Bounded Variations)
is the space of functions f of bounded variation on [0, 1],
which are continuous from the right on (0, 1) and such
that f(0) = 0. The norm of f ∈ NBV ([0, 1]) is the total
variation of f on [0, 1].

In this paper when we say measurable or almost every-
where without refereeing to a precise measure, we always
mean the Lebesgue measure.

II. C1-MINIMIZERS AND CONTINUITY OF THE
ADJOINT STATE

Denote by ∂ϕ(z(0), z(1)) the generalized gradient of ϕ at
(z(0), z(1)).
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Definition 2.1: A trajectory/control pair (z, ū) of (1), (2)
with (z(0), z(1)) ∈ K1 satisfies the constrained maximum
principle if there exist λ ∈ {0, 1}, ψ ∈ NBV ([0, 1]) and
an absolutely continuous p(·) : [0, 1] → Rn not vanishing
simultaneously such that

(p(0),−p(1) − ψ(1)) ∈ λ∂ϕ(z(0), z(1)) + NK1(z(0), z(1))
(11)

〈p(s) + ψ(s), z′(s)〉 − λL(s, z(s), ū(s)) =
supu∈U(s)〈p(s) + ψ(s), f(s, z(s), u)〉 − λL(s, z(s), u)

(12)
a.e. in [0, 1] and

ψ(0+) ∈ NK(z(0)), ψ(t) − ψ(t−) ∈ NK(z(t))
ψ(t) =

∫
[0,t]

ν(s)dµ(s) ∀ t ∈ (0, 1] (13)

for a positive (scalar) Radon measure µ on [0, 1] and a Borel
measurable ν(·) : [0, 1] → Rn satisfying

ν(s) ∈ NK(z(s)) ∩ B µ − a.e. (14)

The constrained maximum principle is normal if λ = 1.
Remark 2.2: Notice that we did not invoke the adjoint

system in the above definition. In fact it will not be needed
in this paper. On the other hand many maximum principles
that exist in the literature differ just in the adjoint system and
transversality conditions. We also never use the particular
form of the transversality condition of the above definition.
In this way results of this paper may be applied with any
maximum principle under state constraints, including non
smooth versions (see for instance [1], [16]), provided ψ is
right continuous and the jump conditions (13) hold true.
This implies that the maximum principles of [16] have to
be written in a slightly different way (with right continuous
instead of left continuous multipliers).

Lemma 2.3: Let K ⊂ Rn be a closed set, z : [0, 1] → K
be a Lipschitz function and t ∈ [0, 1] be so that z(t) ∈ ∂K.
Then for every n ∈ NK(z(t)) we have

i) if z is differentiable at t ∈ (0, 1), then 〈n, z′(t)〉 = 0.
ii) for every set A ⊂ [0, 1] of zero measure there exist

si → t, si /∈ A, si ≤ t and ti → t, ti /∈ A, ti ≥ t such that

t > 0 =⇒ lim
i→∞

〈n, z′(si)〉 ≥ 0

t < 1 =⇒ lim
i→∞

〈n, z′(ti)〉 ≤ 0.

Let (z, ū) be a trajectory control pair of (1) and let the
set-valued map F : [0, 1] × Rn � Rn+1 be defined by

F (t, x) = {(L(t, x, u) + v, f(t, x, u)) |u ∈ U(t), v ≥ 0}.
(15)

Theorem 2.4: Assume that (z, ū) satisfies the normal con-
strained maximum principle with some p, ψ, that z is
Lipschitz and K is sleek. If graph(F ) is closed and H is
continuous on graph(z) × Rn, then the function

[0, 1] � t 	→ H(t, z(t), p(t) + ψ(t))

is continuous on (0, 1) and upper semicontinuous at 0, 1.
Proof — We only prove the first statement. Set φ(t) =

H(t, z(t), p(t)+ψ(t)). Then φ is right continuous on (0, 1).
Fix 0 ≤ t ≤ 1. Define n := ψ(t) − ψ(t−) ∈ NK(z(t)) if

t > 0 and n = ψ(0+) otherwise. By (12) and Lemma 2.3 if
t < 1, then there exist ti → t, ti ≥ t such that

H(ti, z(ti), p(ti) + ψ(ti)) =

〈p(ti) + ψ(ti), z′(ti)〉 − L(ti, z(ti), u(ti))

and limi→∞〈n, z′(ti)〉 ≤ 0. Taking a subsequence and
keeping the same notations, we may assume that for some
u ∈ U(t), v0 ≥ 0, we have limi→∞ z′(ti) = f(t, z(t), u),

lim
i→∞

L(ti, z(ti), u(ti)) = L(t, z(t), u) + v0.

Thus

φ(t+) = 〈n, f(t, z(t), u)〉+
+〈p(t) + ψ(t+) − n, f(t, z(t), u)〉 − L(t, z(t), u) − v0.

It follows that φ(0+) ≤ φ(0) and if 0 < t < 1, then φ(t) ≤
φ(t−). Thus φ is upper semicontinuous at zero. Similarly, if
t > 0, then for some v ∈ U(t), v1 ≥ 0

φ(t−) ≤ 〈p(t)+ψ(t), f(t, z(t), v)〉−L(t, z(t), v)−v1 ≤ φ(t).

Thus, φ is continuous on (0, 1) and u.s.c. at 1. �

Theorem 2.5: Assume that (z, ū) satisfies the normal con-
strained maximum principle with some p, ψ, that z is
Lipschitz, K is sleek, graph(F ) is closed, H is continuous
on graph(z) × Rn and H(t, z(t), ·) is differentiable for all
t ∈ [0, 1]. Then z ∈ C1([0, 1]), the mapping

(0, 1) � t 	→ H ′
p(t, z(t), p(t) + ψ(t))

is continuous and z′(t) = H ′
p(t, z(t), p(t) + ψ(t)) for every

t ∈ (0, 1). Furthermore

〈ψ(t) − ψ(t−), z′(t)〉 = 0 ∀ t ∈ (0, 1),

〈ψ(0+), z′(0)〉 ≤ 0, 〈ψ(1) − ψ(1−), z′(1)〉 ≥ 0

and for a measurable function u(t) ∈ U(t) such that u = ū
almost everywhere

z′(t) = f(t, z(t), u(t)) ∀ t ∈ [0, 1],

∀ t ∈ [0, 1), H(t, z(t), p(t) + ψ(t+)) =
〈p(t) + ψ(t+), f(t, z(t), u(t))〉 − L(t, z(t), u(t)),

H(1, z(1), p(1) + ψ(1−)) =
〈p(1) + ψ(1−), f(1, z(1), u(1))〉 − L(1, z(1), u(1)).

Moreover,

H ′
p(t, z(t), p(t) + ψ(t)) =

H ′
p(t, z(t), p(t) + ψ(t−)) ∀ t ∈ (0, 1).

(16)

Proof — Define the subset D ⊂ [0, 1] of full measure
by

D = {s ∈ [0, 1] | z′(s) = f(s, z(s), ū(s)), (12) holds true}
and fix 0 ≤ t ≤ 1. We claim that there exist w, v ∈ U(t)
such that

H(t, z(t), p(t) + ψ(t−)) =

〈p(t) + ψ(t−), f(t, z(t), w)〉 − L(t, z(t), w) if t > 0,
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H(t, z(t), p(t) + ψ(t+)) =

〈p(t) + ψ(t+), f(t, z(t), v)〉 − L(t, z(t), v) if t < 1

and that f(t, z(t), w) = f(t, z(t), v), L(t, z(t), w) =
L(t, z(t), v) whenever t ∈ (0, 1).

Indeed fix t > 0. Let D � ti 	→ t− be such that z′(ti)
converge to some ζ. Then, by continuity of H and closedness
of graph(F ), ζ = f(t, z(t), w) for some w ∈ U(t) and

H(t, z(t), p(t) + ψ(t−)) =

〈p(t) + ψ(t−), f(t, z(t), w)〉 − L(t, z(t), w).

Then H ′
p(t, z(t), p(t) + ψ(t−)) = f(t, z(t), w), because

H(t, z(t), ·) is differentiable. Consequently,

Limsups→Dt− {z′(s)} = {H ′
p(t, z(t), p(t)+ψ(t−))}. (17)

According to Lemma 2.3 applied with A = [0, 1]\D,

〈ψ(t) − ψ(t−), f(t, z(t), w)〉 ≥ 0.

Similarly if t < 1 and D � ti 	→ t+ are such that z′(ti)
converge to some η, then for some v ∈ U(t), f(t, z(t), v) =
H ′

p(t, z(t), p(t) + ψ(t+)) and

H(t, z(t), p(t) + ψ(t+)) =

〈p(t) + ψ(t+), f(t, z(t), v)〉 − L(t, z(t), v).

Consequently,

Limsups→Dt+ {z′(s)} = {H ′
p(t, z(t), p(t)+ψ(t+))}. (18)

By Theorem 2.4, if 0 < t < 1, then

H(t, z(t), p(t) + ψ(t)) = H(t, z(t), p(t) + ψ(t−)) =

〈p(t) + ψ(t), f(t, z(t), w)〉 − 〈ψ(t) − ψ(t−), f(t, z(t), w)〉
−L(t, z(t), w) ≤ H(t, z(t), p(t) + ψ(t)).

This implies that 〈ψ(t) − ψ(t−), f(t, z(t), w)〉 = 0 and
H(t, z(t), p(t) + ψ(t)) = 〈p(t) + ψ(t), f(t, z(t), w)〉 −
L(t, z(t), w). Since ψ(t+) = ψ(t) for t ∈ (0, 1), we deduce
from (6) that f(t, z(t), w) = f(t, z(t), v), L(t, z(t), w) =
L(t, z(t), v) and (16) follows.

By [4], ∂z(t) = co Limsups→t, s∈D{z′(s)}. So (16), (17)
and (18) imply that ∂∗z(t) is a singleton for all t ∈ [0, 1].
Hence z is differentiable and z′ is continuous on [0, 1]. Let
V (t) ⊂ U(t) be such that for any u ∈ V (t), if t ∈ [0, 1) then
H(t, z(t), p(t) + ψ(t+)) = 〈p(t) + ψ(t+), f(t, z(t), u)〉 −
L(t, z(t), u) and if t = 1, H(1, z(1), p(1) + ψ(1−)) =
〈p(1) + ψ(1−), f(1, z(1), u)〉 − L(1, z(1), u). Then V is
measurable and has closed nonempty images. Consider a
measurable selection u(t) ∈ V (t) for all t ∈ [0, 1] such that
u = ū a.e. Then H ′

p(t, z(t), p(t) + ψ(t+)) = f(t, z(t), u(t))
and z′(t) = f(t, z(t), u(t)) for all t ∈ [0, 1], and for every
t ∈ (0, 1), 〈ψ(t) − ψ(t−), z′(t)〉 = 0. Since z([0, 1]) ⊂ K,
by (13), 〈ψ(0+), z′(0)〉 ≤ 0, 〈ψ(1)−ψ(1−), z′(1)〉 ≥ 0. �

Theorems 2.4, 2.5 do not exclude discontinuity of ψ. Still
Theorem 2.5 implies C1−regularity of an optimal solution.

Corollary 2.6: Under all the assumptions of Theorem 2.5,
suppose in addition that for every t ∈ (0, 1) and p, q ∈

Rn, satisfying p − q ∈ NK(z(t)) and H(t, z(t), p) =
H(t, z(t), q), H ′

p(t, z(t), p) = H ′
p(t, z(t), q) = z′(t) we

have p = q. Then ψ is continuous in (0, 1).
In particular, if H ′

p(t, z(t), ·) is strictly monotone in the
directions normal to K at z(t) : for every t ∈ (0, 1) and all
p �= q ∈ Rn such that p−q ∈ NK(z(t)) and H(t, z(t), p) =
H(t, z(t), q) we have〈

H ′
p(t, z(t), p) − H ′

p(t, z(t), q), p − q
〉

> 0,

then ψ is continuous in (0, 1).
Example 1. Let K be a closed sleek subset of Rn, K1

be a closed subset of Rn × Rn, d : [0, 1] × Rn → Rn,
g : [0, 1] × Rn → Rn×m, L : [0, 1] × Rn × Rm → R be
continuous, ϕ : Rn → R be locally Lipschitz. Assume that
L(t, x, ·) is convex and satisfies the Tonelli condition

L(t, x, u) ≥ Θ(|u|), ∀ t ∈ [0, 1], ∀ x ∈ K,

where Θ : R+ → R+ has a superlinear growth.
Set U(t) = Rm, f(t, x, u) = d(t, x) + g(t, x)u and

consider the associated constrained Bolza problem (1) - (3).
The Hamiltonian H is defined by

H(t, x, p) = max
u∈Rm

(〈p, d(t, x) + g(t, x)u〉 − L(t, x, u)).

Let (z, ū) be a trajectory/control pair of (1), (2). Assume
that for all t ∈ [0, 1], L(t, z(t), ·) is differentiable and that
∂L
∂u (t, z(t), ·) is monotone in the following sense:

u �= v ∈ Rn =⇒
〈L′

u(t, z(t), u) − L′
u(t, z(t), v), u − v〉 > 0.

We claim that H and H ′
p are continuous on graph(z) ×

Rn. Indeed, fix t ∈ [0, 1] and p1, p2 ∈ Rn. By Tonelli’s
condition, there exist ui ∈ Rm such that

H(t, z(t), pi) = 〈pi, d(t, z(t))+g(t, z(t))ui〉−L(t, z(t), ui),

i = 1, 2. Then L′
u(t, z(t), ui) = g(t, z(t))∗pi and by

the monotonicity assumption this implies that u1 = u2

whenever p1 = p2. Hence for every p ∈ Rn there exists
exactly one u(t, p) satisfying H(t, z(t), p) = 〈p, d(t, z(t))+
g(t, z(t))u(t, p)〉 − L(t, z(t), u(t, p)). From (6) we deduce
that H(t, z(t), ·) is differentiable and H ′

p(t, z(t), p) =
d(t, z(t)) + g(t, z(t))u(t, p) for all t ∈ [0, 1] and p ∈ Rn.
Using the Tonelli condition and continuity of d, g, L, it is
not difficult to show that u(·, ·) is continuous on [0, 1]×Rn.
So also H and H ′

p are continuous on graph(z) × Rn.
Assume in addition that for every t ∈ [0, 1] such that

z(t) ∈ ∂K we have

NK(z(t)) ∩ kernel(g(t, z(t))∗) = {0}. (19)

Notice that this implies that for a constant ρ > 0 and all
t ∈ [0, 1] and n ∈ NK(z(t)), |g(t, z(t))∗n| ≥ ρ|n|. We
claim that for every t ∈ [0, 1] and all p1 �= p2 ∈ Rn such
that p1−p2 ∈ NK(z(t)) we have u(t, p1) �= u(t, p2). Indeed,
assume that for some pi, i = 1, 2, u(t, p1) = u(t, p2) and
p1 − p2 ∈ NK(z(t)). Since u(t, pi) maximizes the function
Rm � u 	→ 〈pi, g(t, z(t))u〉 − L(t, z(t), u), we deduce that
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g(t, z(t))∗(p1 − p2) = 0 and, by (19), p1 = p2 proving our
claim.

The above implies that the assumption of Corollary 2.6
holds true. Therefore, if (z, ū) satisfies the normal con-
strained maximum principle with some p, ψ, then, by
Corollary 2.6, ψ is continuous on (0, 1).

If moreover for all r > 0 there exists cr, kr > 0 such that
for all t ∈ [0, 1] and all u, v ∈ rB

L′
u(t, z(t), ·) is cr − Lipschitz on B(0, r)

〈L′
u(t, z(t), u) − L′

u(t, z(t), v), u − v〉 ≥ kr|u − v|2
(20)

then a stronger monotonicity condition holds true: for every
r > 0, there exists a constant lr > 0 such that for all p, q ∈
rB satisfying p − q ∈ NK(z(t)), we have〈

H ′
p(t, z(t), p) − H ′

p(t, z(t), q), p − q
〉 ≥ lr|p − q|2. (21)

Example 2. This example corresponds to the control sys-
tem studied in [15], where the authors considered a different
set of constraints (time dependent inequality constraints).

Let d, g, L, K, K1, ϕ be as in Example 1, but this time
for every t ∈ [0, 1], U(t) is a closed convex subset of Rm

and the set-valued map t � U(t) is lower semicontinuous
and has closed graph. Then the Hamiltonian H is given by

H(t, x, p) = max
u∈U(t)

(〈p, d(t, x) + g(t, x)u〉 − L(t, x, u)).

Assume that a trajectory/control pair (z, ū) satisfies the
normal constrained maximum principle with some p, ψ and
that L′

u(t, z(t), ·) satisfies the monotonicity assumption of
Example 1 on Rm.

Then for all p ∈ Rn there exists exactly one element
u(t, p) ∈ U(t) such that H(t, z(t), p) = 〈p, d(t, z(t)) +
g(t, z(t))u(t, p)〉−L(t, z(t), u(t, p)). Using the Tonelli con-
dition and continuity of d, g, L it is not difficult to show that
u(·, ·) is continuous on [0, 1] ×Rn. So also H and H ′

p are
continuous on graph(z)×Rn. Since for almost all t ∈ [0, 1],
z′(t) = H ′

p(t, z(t), p(t) + ψ(t)), from continuity of H ′
p on

graph(z) ×Rn and boundedness of p, ψ, z it follows that
z′ ∈ L∞ and so z is Lipschitz continuous. By Theorem
2.5, g(t, z(t))u(t, p(t)+ψ(t)) = g(t, z(t))u(t, p(t)+ψ(t−))
for all t ∈ (0, 1) and z ∈ C1. Using arguments of convex
analysis we deduce that u(t, p(t)+ψ(t)) = u(t, p(t)+ψ(t−))
for all t ∈ (0, 1). So u(·, p(·)+ψ(·)) is continuous on (0, 1).

Set u0(t) = u(t, p(t) + ψ(t)) for all t ∈ (0, 1) and
u0(0) = u(0, p(0) + ψ(0+)), u0(1) = u(1, p(1) + ψ(1−))
(u0(·) corresponds to the control u(·) from the statement
of Theorem 2.5). Notice that if u(t, p) �= u(t, q) whenever
0 �= p − q ∈ NK(z(t)), then ψ continuous on (0, 1) by
Corollary 2.6.

Assume (19) and that for all t ∈ [0, 1]

g(t, z(t))∗(NK(z(t))) ∩ span(NU (u0(t))) = {0}. (22)

In the difference with Example 1, the condition imposed on
NK(z(t)) depends on the control u0(t).

Assumptions (19) and (22) together are of the same nature
as Hypothesis (H6) in [15]. To prove continuity of ψ fix
t ∈ (0, 1) such that z(t) ∈ ∂K.

Let p, q ∈ Rm be such that p − q ∈ NK(z(t)).
If H ′

p(t, z(t), p) = H ′
p(t, z(t), q) = z′(t), then

g(t, z(t))u(t, p) = g(t, z(t))u(t, q) = g(t, z(t))u0(t) and
thus u(t, p) = u(t, q) = u0(t). This implies that

g(t, z(t))∗(p − q) ∈ span(NU (u0(t))).

From (22) we deduce that p = q. Therefore, by Corollary
2.6, ψ is continuous on (0, 1).

If moreover (20) holds true and for some ε > 0 and cones
Cε, C0 defined by

Cε := ∪u∈U(t)∩B(u0(t),ε)NU(t)(u)

C0 := ∪t∈[0,1]NU(t)(u0(t))

and for every t ∈ [0, 1] we have

g(t, z(t))∗(NK(z(t))) ∩ Cε − C0 = {0}, (23)

then a strong monotonicity condition holds true for the
Hamiltonian H . Namely for every r > 0, there exists a
constant lr > 0 such that for all t ∈ [0, 1] and q ∈ rB
satisfying H ′

p(t, z(t), q) = z′(t) and all p− q ∈ NK(z(t))∩
εB 〈

H ′
p(t, z(t), p) − H ′

p(t, z(t), q), p − q
〉 ≥ lr|p − q|2.

III. ABSOLUTE CONTINUITY OF ADJOINT
STATES AND APPLICATIONS

Let Q ⊂ Rn be a closed set. We say that its boundary
∂Q ∈ C1,1

loc if for every x ∈ ∂Q there exists δ > 0 such that
the signed distance defined by

h(x) =
{ −dist(x, ∂Q) ∀ x ∈ Q

dist(x, ∂Q) otherwise

is of class C1,1 on x + δB. By [7] this is equivalent to
the assumption : ∂Q is a C1,1−manifold. In this section
we assume that the set of state constraints K satisfies the
following requirements:

K = ∩m
j=1Kj , Kj is closed, ∂Kj ∈ C1,1

loc (24)

and
0 /∈ co{nj(x) | j ∈ I(x)}, ∀ x ∈ ∂K, (25)

where nj(x) denotes the outward unit normal to Kj at x ∈
∂Kj and I(x) denotes the set of all indices that are active
at x, i.e. j ∈ I(x) if and only if x ∈ ∂Kj . Notice that (25)
implies that for every r > 0 there exists ρr > 0 such that

min
v∈B

max
j∈I(x)

〈nj(x), v〉 ≤ −ρr, ∀ x ∈ ∂K ∩ rB. (26)

Thus assumption (25) and [2, Chapter 4] imply that K
is sleek, TK(x) =

⋂m
j=1 TKj

(x) and for every j ∈ I(x),
TKj

(x) = {v | 〈nj(x), v〉 ≤ 0}, while for every j /∈ I(x),
TKj

(x) = Rn and

NK(x) = Σj∈I(x)NKj
(x) = Σm

j=1NKj
(x). (27)

Let (z, ū) be trajectory/control pair of (1), (2) and F be
defined by (15).
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Theorem 3.1: Assume that graph(F ) is closed and let
(z, ū) satisfy the normal constrained maximum principle
with some p, ψ and state constraints K be as in (24), (25).
Define Γ := graph(z)×Rn and assume that H is continuous
on Γ, H ′

p is locally Lipschitz on Γ and for every r > 0
there exists kr > 0, ρ > 0 such that for all t ∈ [0, 1] and
q ∈ rB satisfying H ′

p(t, z(t), q) = z′(t) we have for all
p − q ∈ NK(z(t)) ∩ ρB〈

H ′
p(t, z(t), p) − H ′

p(t, z(t), q), p − q
〉 ≥ kr|p − q|2.

Then ψ is absolutely continuous on (0, 1) and z′ is absolutely
continuous on [0, 1]. Furthermore, if p(·) is Lipschitz, then
ψ is Lipschitz on (0, 1) and z′ is Lipschitz on [0, 1].

The proof of the above theorem is very long and uses
several ideas from [13]. It will appear in [10].

Theorem 3.1 can be used to study regularity of optimal
controls and to obtain necessary optimality conditions in the
form of variational inequalities.

Corollary 3.2: Under all the assumptions of Theorem 3.1
suppose that the supremum in (5) is attained by exactly
one u(t, x, p) ∈ U(t) and that u(·, ·, ·) is locally Lipschitz
on Γ. Then there exists an absolutely continuous selection
uac(t) ∈ U(t) such that uac(t) = ū(t) almost everywhere.
Furthermore, if p(·) is Lipschitz on [0, 1], then uac may be
taken Lipschitz.

Remark 3.3: The problem investigated in [11] is so that
u(·, ·, ·) is locally Lipschitz.

Proof — Set uac(t) = u(t, z(t), p(t) + ψ(t)) for
t ∈ (0, 1), uac(0) = u(0, z(0), p(0) + ψ(0+)), uac(1) =
u(1, z(1), p(1)+ψ(1−)) . Then uac is absolutely continuous
(respectively Lipschitz if p is Lipschitz). From (12) we
deduce that uac(t) = ū(t) for a.e. t ∈ [0, 1] �.

Theorem 3.4: Let a trajectory/control pair (z, ū) satisfy
the normal constrained maximum principle i), ii) from
the introduction with some p, ψ, where we assumed that
ϕ is differentiable at (z(0), z(1)) and (L, f)(t, ·, ū(t)) is
differentiable at z(t) for almost all t ∈ [0, 1]. Under all
the assumptions of Theorem 3.1 there exists an absolutely
continuous mapping q : [0, 1] → Rn such that (8) - (10)
hold true.
Proof — Set q(t) = p(t) + ψ(t) for t ∈ (0, 1), q(0) =
p(0)+ψ(0+) and q(1) = p(1)+ψ(1−). Then q is continuous
at the end points and therefore, by Theorem 3.1, it is
absolutely continuous. From (12) we deduce (9) and from
(11), (13) we obtain (10).

To prove (8) denote by Sn−1 the unit sphere in Rn. Since
K is sleek, the set-valued map s � NK(z(s)) ∩ Sn−1

is upper semicontinuous. Fix t ∈ [0, 1) such that ψ is
differentiable at t. We claim that

ψ′(t) ∈ NK(z(t)). (28)

Indeed if z(t) ∈ Int(K), then ψ′(t) = 0 ∈ NK(z(t)).
Assume next that z(t) ∈ ∂K and define for all ε > 0 the
convex cone

Γ(ε) =
⋃
λ≥0

λco (NK(z(t)) ∩ Sn−1 + εB).

By (25) the normal cone NK(z(t)) is pointed, that is 0 /∈
co (NK(z(t)) ∩ Sn−1). Thus Γ(ε) is closed when ε > 0 is
small enough and ∩ε>0Γ(ε) = NK(z(t)). Fix a sufficiently
small ε > 0 and let δ > 0 be such that for every s ∈
[t, t + δ], NK(z(s)) ∩ Sn−1 ⊂ NK(z(t)) ∩ Sn−1 + εB.
Define λ(s) = |ν(s)|,

n(s) :=

{
ν(s)
|ν(s)| if ν(s) �= 0
0 otherwise.

Since ν(s) ∈ NK(z(s)) ∩ B µ−a.e., for all 0 < h < δ

ψ(t + h) − ψ(t) =
∫
(t,t+h]

ν(s)dµ(s) =∫
(t,t+h]

n(s)λ(s)dµ(s) ∈ ∫
(t,t+h]

Γ(ε)dµ(s) ⊂ Γ(ε)

Dividing by h and taking the limit yields ψ′(t) ∈ Γ(ε). Since
ε > 0 is arbitrary, we proved (28).

Let t ∈ (0, 1) be such that (4) holds true at t and ψ is
differentiable at t. Then the equality

q′(t) = p′(t) + ψ′(t)

and (28) imply (8). �

Remark 3.5: The proof that an optimal trajectory satis-
fies the constrained maximum principle for differentiable
ϕ, (L, f)(t, ·, ū(t)) can be found for instance in [6].
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