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Abstract—The feedback stabilization problem for ensembles
of coupled spin 1/2 systems is discussed. The noninvasive
nature of the bulk measurement allows for a fully unitary and
deterministic closed loop. The Lyapunov-based feedback design
does not require that the spins are selectively addressable.

I. INTRODUCTION

NMR spectroscopy deals with the manipulation of nuclear

spins of quantum ensembles, see [1], [5]. These systems

exhibit most of the essential features of quantum mechanical

systems, like the state space of tensorial type (providing

exponential growth of the degrees of freedom available) and

natural coupling mechanisms between spins, which guaran-

tee the nonclassical nonlocality characteristic of quantum

evolutions. For the purposes of state manipulation, over the

last 40 years the field of NMR has developed a bewildering

set of open loop control tools, in the form of sequences of

electromagnetic pulses. While these methods are extremely

versatile and universally accepted, from a control perspective

NMR systems constitute a remarkable opportunity to device

feedback control methods at a quantum level for a number

of reasons:

1) the model of the system is known in detail;

2) its control mechanism is also very accurate;

3) the measurement is classical, thus avoiding all com-

plications due to the state collapse problem (weak or

less) unavoidable in other quantum control contexts

[12], [11];

4) the relaxation times are sufficiently long to make the

real-time interface with a control device feasible.

For all these reasons, a completely classical, unitary and

deterministic feedback in the context of NMR systems is

theoretically feasible, although major technical problems
remain to be addressed, like the very low signal-to-noise

ratio and the on-line extraction of measurements from coil

magnetization in real time and in presence of rf excitation.

The main purpose of this work is to investigate in detail

this feedback synthesis from a theoretical viewpoint. For this

purpose, the system is formulated as a bilinear control system

living on a compact homogeneous space. For the task of

tracking a given orbit, a class of control Lyapunov functions

is naturally defined by the notion of distance induced by

the real Euclidean structure with which the homogeneous

space is endowed. This construction resembles closely the

Jurdjevic-Quinn stabilization technique [8] (see also [6],

[13], [7], [10] for related material dealing with pure states

only), although the computation of the largest invariance

set via LaSalle principle is more complicated. This is a

consequence of the nontrivial topology of the state space

(for a single spin 1/2 it is a sphere S
2), implying that no

(smooth) feedback design can achieve global stabilization.

At most one can achieve convergence out of a singular set

of isolated, repulsive points. The emphasis on the exact

knowledge of the singular locus is motivated by the fact

that near a singularity the convergence can be very slow.

Moreover, a local design is of limited practical interest in a

quantum context. For multispin systems it is shown that the

tensor product nature of the state space does not complicate

exceedingly the feedback synthesis. On the contrary, the

singular set of the control law can be computed explicitly

thanks to this tensorial structure.

While the analysis is easier for the Ising Hamiltonian, all

the results are valid for different types of interactions like

Heisenberg or dipole-dipole. In particular, we show how it

is possible to reject unwanted coupling terms, provided they

are sufficiently slow compared to the residual nonlocal part

of the Hamiltonian.

Throughout the paper we consider only the case of spins

that are not selectively excitable. This is clearly the most

difficult case, as an rf field affects all spins and interacts

with all couplings. A similar feedback synthesis for selective

controls is much simpler (especially for what concerns the

convergence analysis) and can be deduced by similar means.

II. MODEL FORMULATION FOR SPIN ENSEMBLES

For a single spin 1/2 system, assume the Hamiltonian is
composed of a free part Hf (the drift) and a forcing part Hc

(the control term). If λj , j = 0, . . . , 3, are the (normalized)
Pauli matrices (see [4]), in a suitable reference frame,

Hf = −(ωo − ωrf )λ3 = h3λ3 (1)

Hc = uλ1 (2)

where ωo is the precession frequency and ωrf the frequency

of the rf field whose amplitude u is our real valued control
parameter (the phase of the rf field is fixed and kept con-

stant). If we have a two spin 1/2 weakly coupled system and
a single rf field, calling γα and γβ the gyromagnetic ratios

of the two nuclear species, the Hamiltonian in the rotating

frame is given by

Hf = h03Λ03 + h30Λ30 + h33Λ33 (3)

Hc = uHc,ns = u (Λ01 + Λ10) (4)

where h30 and h03 are the differences between the Larmor

frequencies of each spin, call them ωo,α and ωo,β , and the
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carrier frequency ωrf , h
30 = −(ωo,α−ωrf ), h03 = −(ωo,β−

ωrf ), h33 represents the so-called J (or scalar) coupling and
Λjk = λj ⊗λk, j, k = 0, . . . , 3, form a basis of frequent use
in the NMR literature under the name of product operators

basis. The control Hamiltonian (4) is nonselective. Such a

model is suited for homonuclear species with ωo,α and ωo,β

not sufficiently separated by chemical shifts. We shall focus

on this model, as from a mathematical (as well as practical)

point of view, it is the most difficult case to control.

Hamiltonians like (3) with only a vertical coupling are

often referred to as Ising Hamiltonians. In particular, when

h03 = h30 the unforced system has at least one degenerate

eigenvalue of multiplicity 2, regardless of the value of h33.

This may result in a loss of controllability and complicates

also the convergence in the closed-loop system. Hf is

diagonal,

Hf =

⎡
⎢⎢⎣

h03 + h30 + h33

−h03 + h30 − h33

h03 − h30 − h33

−h03 − h30 + h33

⎤
⎥⎥⎦

and its diagonal elements have the meaning of energy levels

of the (unperturbed) system. From [3], since Graph(Hc,ns)
is connected, as soon as Hf is Hc,ns-strongly regular,

i.e., has energy levels that are nondegenerate and transition

frequencies all different in correspondence of the nonzero

elements of Hc,ns, then the system is controllable, see

Theorem 3 of [3].

Lemma 1 Consider the system (3)-(4). Hf is Hc,ns-strongly
regular if h03 �= h30, h33 �= 0 and h33 �= ±(h03 − h30)/2.

Proof: The graph of the control Hamiltonian Hc,ns

enables the following 4 (nonoriented) transitions: 1 ↔ 2,
1 ↔ 3, 2 ↔ 4, 3 ↔ 4. Computing the energy differences in
terms of the h03, h30 and h33, lack of degenerate transitions

corresponds to the three inequalities stated above. �

For n spin 1/2, in a rotating frame of frequency ωrf , the

Ising Hamiltonian of a linear spin chain is still composed

of a drift part containing the Larmor precessions (relative to

ωrf as in (3)) plus the J couplings between adjacent spins

Hf =
(
h0...03Λ0...03 + . . . + h30...0Λ30...0

+h0...033Λ0...033 + . . . + h330...0Λ330...0

)
,

and of a forcing term along the λ1 axis of each spin which,

in the nonselective case, is

Hc = uHc,ns = u (Λ0...01 + . . . + Λ10...0) .

Next we introduce a particular representation of density

operators, the so-called Stokes tensor parametrization, which

allows to rewrite the forced Liouville equation of motion as

a real bilinear control system. All details are given in [4].

For a single spin 1/2, it is well-known that one can write
the density operator ρ as a real vector of expectation values
along the Pauli matrices λj , j = 0, . . . , 3: ρ = �jλj = � ·λ.

In terms of �, and for the Hamiltonian in (1) and (2) one

obtains the Bloch equations:

�̇ = −i
(
h3adλ3

+ uadλ1

)
�. (5)

The notation “ad” in (5) originates from the notion of

adjoint representation, and the adjoint operators adλj
stand

for matrices of structure constants with respect to the su(2)
basis given by the −iλj : adλj

λk = [λj , λk] =
∑3

l=0 cl
jkλl.

In general, the adjoint representation of a semisimple Lie

algebra is a real linear isomorphic representation of the

algebra. This enables us to formulate the control problem

in terms of standard real bilinear control systems also for

multispin systems. In fact, for 2 or more spin 1/2 densities,
a parametrization similar to the Bloch vector yields a tensor,

called the Stokes tensor and also denoted by �: if ρ ∈ H⊗2
2 ,

ρ = �jkΛjk = � · Λ where �jk = tr (ρΛjk) are expectation
values capturing all 15 degrees of freedom of ρ along the
complete set of observables Λ = {Λjk, j, k = 0, . . . , 3}.
Calling

adΛjk
=

1

2

(
adλj

⊗ aadλk
+ aadλj

⊗ adλk

)

the real skew-symmetric operators obtained from the adλj

above and the “antiadjoint” operators aadλj
(which have a

similar meaning, only involving the “symmetric” structure

constants aadλj
λk = {λj , λk} =

∑3
l=0 sl

jkλl), then we

obtain the following adjoint representation of the Liouville

equation

�̇ = −i
(
adHf

+ uadHc,ns

)
� (6)

or, in components,

ρ̇pq = − i
(
h03adΛ03

+ h30adΛ30
+ h33adΛ33

)pq

lm
ρlm

− iu (adΛ01
+ adΛ10

)
pq
lm ρlm.

(7)

By writing ρjk as a 16-vector and expanding the tensor

products, a bilinear control system with drift and control

vector fields that are 16 × 16 matrices is obtained.
Obviously, from g2s = Lie{−iΛjk, j, k = 0, . . . , 3} =

su(2) ⊕ su(2) ∪ su(2) ⊗ su(2), one gets for the adjoint
representation adg2s

= Lie{−iadΛjk
, j, k = 0, . . . , 3} =

so(3) ⊕ so(3) ∪ so(3) ⊗ so(3).
The generalization to n spin 1/2 is completely analogous:

the 2n×2n density matrix ρ can be described by an n-index
tensor ρ = �j1...jnΛj1...jn

= � · Λ, each index ranging in
0, . . . , 3, Λj1...jn

= λj1 ⊗ . . .⊗λjn
. The corresponding ODE

is still given by an equation like (6).

III. FEEDBACK STABILIZATION FOR SPIN-HALF SYSTEMS

In this Section, we are only interested in full state feed-

back. Assume the entire state vector (or tensor) � is available

in real-time. The feedback scheme consists in choosing the

amplitude profile of the rf field as a function of the desired

(fixed or time-dependent) reference state �d and of the

current value of the state �.

The topology of the manifolds discussed in this work

(spheres and compact homogeneous spaces obtained by

taking the “envelope” of tensor products of “affine” spheres)
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forbids to have globally converging smooth algorithms. For

example, for the Bloch sphere S
2 there does not exist smooth

positive definite functions with less than two points having

zero derivative. In control theory, the functions having such

minimal number of zeros are sometimes referred to as Morse

functions [9]. Hence in the simplest case of a single spin 1/2,
the Lyapunov-based design will always be characterized by

the presence of at least a spurious equilibrium point, which

can, however, be rendered repulsive.

Consider the system (5) from a given initial condition

�(0). Describe the desired orbit �d(t) (with the obvious
prerequisite ‖�d‖ = ‖�‖) by means of a ODE like (5) but
without forcing terms

�̇d = −ih3
dadλ3

�d. (8)

This means that �1
d and �2

d evolve on a circle while �3
d(t) =

�3
d(0) is the fixed value that characterizes the orbit.

Proposition 1 The system (5) with the time-varying feed-
back law

u = k〈〈�d, −iadλ1
�〉〉, (9)

where k ∈ R
+, is tracking the reference orbit �d(t) given

by (8) with h3
d = h3, in an asymptotically stable manner, for

all �(0) with the exception of �(0) = −�d(0) and of �(0),
�d(0) such that �3(0) = �3

d = 0.

Proof: In terms of Bloch vectors �d, �, consider the

following S
2 distance between �d and �, see e.g. [14]:

d(�d,�) = ‖�d‖
2 − 〈〈�d,�〉〉 = ‖�d‖

2 − �T
d �. (10)

Take as candidate Lyapunov function the time-dependent

distance (10): V (t) = d(�d,�). Clearly V � 0 and V = 0

only when �d = �. Since
d‖�d‖

2

dt
= 0,

V̇ = −〈〈�̇d,�〉〉 − 〈〈�d, �̇〉〉

= −〈〈−ih3adλ3
�d,�〉〉 − 〈〈�d,−i

(
h3adλ3

+ uadλ1

)
�〉〉

= u〈〈�d,−iadλ1
�〉〉,

(11)

because iadλ3
is skew-symmetric. Inserting (9):

V̇ = −(u)2 = −k
(
i�T

d adλ1
�
)2

� 0.

Using the LaSalle’s invariance principle, we want to com-

pute the largest invariance set for (5) confined to N =
{� such that V̇ = 0} (and corresponding to u = 0), call
it E . Following the same idea of the proof of Theorem 2 of
[8], in N it must also be

du

dt
= kh3�T

d [−iadλ1
, −iadλ3

]� = 0 (12)

Notice, however, that u = du
dt

= 0 yields bilinear forms
as opposed to the quadratic forms of the original proof of

[8]; that in addition we have the constraint of ‖�(t)‖ =
const �= 0 to deal with; and that the resulting Lie algebra is
composed of only skew-symmetric matrices, which applied

to a point yields (out of the singularities) the tangent plane

to such sphere (not R
3). This makes the condition of [8]

nonglobal. For example, both bilinear forms u = 0 and
(12) are identically zero on the great circles �3

d = �3 = 0,
regardless of the values of �j

d, �j , j = 1, 2. Using the
isospectral constraint ‖�(t)‖ = const, it is easy to check that
when �3

d �= 0 in N we have E = {�(t) = ±�d(t)} and the
closed loop system almost globally tracks the desired orbit

in an asymptotically stable manner, since −� is the antipodal

point to the desired position, an isolated equilibrium point

rendered repulsive by (9).

�

Notice that the exact cancellation of the drift in (11) is

crucial for the proof of stability. If h3
d �= h3, in fact, the set

of critical equilibria in N is larger and the stability of the
reference orbit is not asymptotic. This implies for example

that almost global asymptotic stabilization to a point (other

than north and south poles) of S
2 is not achievable, at least

with this scheme. For a single spin in a rotating frame,

something similar is however possible provided ωrf is tuned

exactly at the Larmour frequency so that both (6) and (8) are

driftless: h3 = −(ωo − ωrf ) = 0. In this case, however, the
singular set is larger.

In Figg. 1-3, simulations of the closed loop system with

the controller (9) are shown 1. In particular, Fig. 3 shows
the instability of the antipodal point: while �(0) = −�d(0)
implies the state (dashed line) is not converging to �d(t)
(dotted line), a small perturbation is enough to make �(t)
(solid line) converging to �d(t).
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Fig. 1. Closed-loop trajectory on the Bloch sphere for the controller (9).

0 5 10 15 20 25
−1

−0.5

0

0.5

1

ρ 1

0 5 10 15 20 25
−1

−0.5

0

0.5

1

ρ 2

0 5 10 15 20 25
−1

−0.5

0

0.5

1

ρ 3

time units

Fig. 2. The components of the Bloch vector of �d(t) (dotted line) and
�(t) (solid line) for the same data as in Fig. 1.

1All plotted signals, here and below, are suitably normalized.
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Fig. 3. The closed-loop trajectories of the system with initial state (dashed
line) “antipodal” to the desired state (dotted line) �d(0) = −�(0) and from
the same antipodal inital state plus a small perturbation (solid line).

A major problem of the Lyapunov design for spheres and

other homogeneous spaces, is that its extension to systems

with more that 2 levels makes the characterization of the

region of convergence of the controller difficult to describe.

See for example the N -level construction of [10]. The class
of systems considered in this work, coupled spins 1/2, makes
a pleasant exception: for them the singular locus of the

multispin case is a replica of the single spin case. Consider

for example the two weakly coupled spin 1/2 case. Assuming
the entire state tensor � is available on-line, we want to

obtain feedback laws for the Hamiltonian (3)-(4). Let �α,

�β and �αd
, �βd

be the reduced densities respectively of

� and �d. We shall assume that the initial condition is a

product state �(0) = �α(0) ⊗ �β(0). The aim is to achieve
asymptotically stable tracking of the following periodic orbit:

�̇d = − iadHfd
�d

= − i
(
h03

d adΛ03
+ h30

d adΛ30
+ h33

d adΛ33

)
�d

(13)

by means of a single control input.

Proposition 2 Whenever Hf is Hc,ns-strongly regular, the
feedback

u = k〈〈�d, −iadHc,ns
�〉〉 (14)

with k ∈ R
+, asymptotically stabilizes the system (6) to

the time-varying reference state �d(t) given by (13) with
Hfd

= Hf , for all �(0) with the exception of �(0) such
that (�α(0), �β(0)) = −(�αd

(0), �βd
(0)) and of all pairs

(�(0), �d(0)) having (�3
α, �3

αd
) = (0, 0) and (�3

β , �3
βd

) =
(0, 0).

Proof: We shall only sketch the arguments of the
proof. As in the proof of Proposition 1, take as Lyapunov

function the analogous of the distance (10), V (t) = ‖�d‖
2−

〈〈�d(t), �(t)〉〉. Again, when differentiating the drift disap-
pears,

V̇ = −u〈〈�d, −iadHc,ns
�〉〉, (15)

and V̇ is made negative semidefinite by the choice of

feedback (14). Complications arise when using LaSalle in-

variance principle. In fact, the Jurdjevic-Quinn condition

never applies to tensor product systems. Furthermore, since

the reduced densities �α(t) and �β(t) in N have time-

varying norm due to the J coupling, neither the method
used in the proof of Proposition 1 is directly applicable.

However, the strong regularity of Hc,ns guarantees that the

two reduced closed-loop evolutions (each obtained tracing

out a subsystem) restricted to N are nonidentical and hence
they cannot simultaneously satisfy the constraints u =
du/dt = d2u/dt2 = 0 for all times. This allows to compute
explicitly the singular set, which is essentially a replica of

the one in Proposition 1.

�

A typical simulation is shown in Figg. 4-5. The entire 16-

state reference tensor (dotted) and the tensor of the closed-

loop system (solid) are shown in Fig. 4; the tracking on the

two reduced densities in Fig. 5.
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line) for the orbit tracking problem.
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Remark 1 Since −iadHc,ns
is local, in the feedback action

(14) only the reduced densities matter.

In spite of this, the closed loop retains a nonlocality due to

the J coupling. The changes in the norms ‖�α‖ and ‖�β‖
visible in Fig. 5 are a consequence of this coupling.

A consequence of the “distinguishability” argument, men-

tioned in the proof of Proposition 2, is that the same tracking

scheme can be used for more complicated free Hamiltonians

than (3). In particular, any

Hf = h03Λ03 + h30Λ30 + hjkΛjk, j, k �= 0 (16)

can be used in Proposition 2, provided that Hfd
= Hf . We

state it as a Corollary.

Corollary 1 If Hf given by (16) is Hc,ns-strongly regular,
the feedback law (14) asymptotically stabilizes the system
�̇ = −iad(Hf+uHc,ns)� to the time-varying reference state
�d(t) given by �̇d = −iadHf

�d for all �(0), except for the
same singular set described in Proposition 2.

For the Ising Hamiltonian, the generalization of the feed-

back stabilization algorithm to n spin 1/2 can be done along
the same lines. We only sketch the equivalent of Proposi-

tion 2 without proof, as it makes use of the same techniques

used above, only the notation is more cumbersome. If we

start from a product state, label the spins as α, . . ., ν and
call ρα , . . ., ρν the corresponding reduced densities, then we

can arrive at the same conclusion as Proposition 2, provided

all energy levels are neither equal nor equispaced.

Proposition 3 If Hf is Hc,ns-strongly regular, the feedback

u = k〈〈�d, −iadHc,ns
�〉〉

with k ∈ R
+, asymptotically stabilizes the system �̇ =

−i(adHf
+ uadHc

)� to the time-varying reference orbit
�d(t) given by �̇d = −iadHf

�d, for all �(0), with the
exception of the antipodal point (�α(0), . . . ,�η(0)) =
−(�αd

(0), . . . ,�ηd
(0)) and of all pairs (�(0), �d(0)) having

(�3
α, �3

αd
) = (0, 0), . . ., (�3

η, �3
ηd

) = (0, 0).

IV. SUPPRESSING UNWANTED WEAK COUPLINGS

The J-coupling used in the previous Sections is an indirect
coupling mechanics, physically due to the electrons shared

in the chemical bonds between the atoms. Apart from this

coupling, there are other interaction mechanisms, due to the

direct or electron-mediated interactions between the spins.

Consider the nonselective two spin 1/2 Hamiltonian (16)
and

Hfd
= h03Λ03 + h30Λ30 + hjk

d Λjk, j, k �= 0. (17)

Call Hδ = Hfd
− Hf the difference between the desired

and the true Hamiltonian. While Corollary 1 affirms that the

tracking design is still possible, we are interested here in

treating the extra terms Hδ as disturbances and suppressing

them by means of feedback.

Assume the frequencies hjk
d are of the same order of mag-

nitude, call it 1/τd. When the frequency of the disturbance

Hδ , call it 1/τδ (
 hjk
δ ), is about one order of magnitude

smaller than that of the desired drift Hfd
then it can be

suppressed by the control action.

Proposition 4 Assume τδ 
 10τd and that Hf is Hc,ns-
strongly regular. Then there exists a ωrf and a sufficiently
high gain k such that the system �̇ = −iad(Hf +uHc,ns)� with
the feedback (14) can track the reference trajectory �d(t)
given by �̇d = −iadHfd

�d and reject the disturbance Hδ .

Proof: Since Hfd
�= Hf , in the proof of Proposition 2

the derivative of the Lyapunov function is no longer homo-

geneous in the control:

V̇ = 〈〈�d, −iadHδ
�〉〉 − k〈〈�d, −iadHc,ns

�〉〉2. (18)

Provided k is sufficiently high, in (18) the last term has a
fast dynamics with respect to the first one. Hence, in the

time scale τd, 〈〈�d, iadHδ
�〉〉 can be thought of as frozen.

The drift term in (18) implies negative semidefiniteness of

V̇ is not a priori guaranteed. In particular this may happen
when the controllable term of (18) vanishes, i.e., when any

of the 4 reduced densities �αd
, �βd

, �α, and �β approaches

the λ1 axis. Recall (Remark 1) that the amplitude of the

feedback action only depends from the reduced densities.

In absence of a local precession motion, the system leaves

this non-convergence region only due to the coupling terms

and it is not possible to guarantee a recovery from the

disturbance-induced instability for all Hfd
. However, since

h03 = −(ωo,α−ωrf ) and h30 = −(ωo,β −ωrf ), it is always
possible to choose ωrf so that 1/τδ is small compared to h03

and h30. The effect of the local precessions is to steer the

corresponding reduced dynamics, both the desired and the

real ones, out of the uncontrollable alignment with the λ1

axis. Therefore, since both local closed-loop dynamics evolve

fast compared to Hδ and so does Hfd
, the displacement due

to the drift term in (18) can be rejected in the fast time scale.

�

Two common coupling models often used in the literature

are the Heisenberg interaction and the dipole-dipole inter-

action [1], [5]. For example, the Heisenberg Hamiltonian is

given by

Hhe = −ωhe(Λ11 + Λ22 + Λ33) (19)

Up to (mathematically irrelevant) coefficients in front of

the Λjj , Hhe may also model the direct coupling due to

the magnetic dipole-dipole interaction between the magnetic

moments in solid state NMR. As an example, assume that

the Hamiltonian of our system includes also the coupling

(19) but that its strength is about one order of magnitude

smaller that Hfd
and the local precession frequencies. With

reference to Proposition 4, we shall assume that 10ωhe 

(ωo,α −ωrf ) 
 (ωo,β −ωrf ). In the rotating frame ωrf , the

free Hamiltonian is then

Hf = h03Λ03 +h30Λ30 +h33Λ33 +h11Λ11 +h22Λ22 (20)

where h33 includes both the J-coupling of (3) and Λ33

component of (19), Hδ = h11Λ11 + h22Λ22, and h11 =
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h22 = −ωhe. The control Hamiltonian is still nonselective

and given by (4). A typical closed loop behavior for this

choice is shown in Fig. 6. Even after the offset due to the

initial condition is recovered, the system does not reach an

unperturbed steady state due to the persistent excitation given

be Hδ . Notice that Corollary 1 implies that the coupling

−1

0

1
ρ00 ρ01 ρ02 ρ03

−1

0

1
ρ10 ρ11 ρ12 ρ13

−1

0

1
ρ20 ρ21 ρ22 ρ23
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0

1
ρ30

0 10 20

ρ31

0 10 20

ρ32

0 10 20
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Fig. 6. The 16-components of the tensor �d (dotted lines) and � (solid
line) for the weak coupling suppression problem.

included in Hfd
needs not be restricted to the vertical

Λ33 direction. Only the weakness of the unwanted coupling

Hf −Hfd
with respect to Hfd

and with respect to the local

precession frequencies matters for the disturbance rejection.

V. FEEDBACK FROM MEASURABLE QUANTITIES

Recall that for ensembles the measurement is a clas-
sical process and that its result is an expectation value.
In principle, a typical NMR measurement apparatus can

provide a continuous collective magnetization measurement
in the (λ1, λ2) plane. While for a single spin ensemble this,
together with ‖�‖ = const, allows to easily recover the
entire Bloch vector, for two spin systems what is measurable

depends on the nuclear species we are considering. In the

nonselective case, the measurement corresponds to the output

vector y = [y1 y2]
T , where yj(t) = �0j(t) + �j0(t). Since

also the controls are nonselective, a feedback from y cannot
stabilize the system. However, if we can, by means of a

state observer 2, access the entire 3-vectors �0j and �j0

rather than just the sums of their (λ1, λ2) components, then
several control designs are possible. We will not investigate

the state estimation issue in detail here. We only notice that

the system is easily seen to be observable as soon as it is

controllable [2] but that due to the complicated structure of

the state space, linear state observers are inadequate (they do

not preserve ‖�‖). In the heteronuclear case, the estimation
of �α and �β is an easier task than in the homonuclear one.

In fact, for different spin species, different coils (tuned at the

different, well-separated, precession frequencies ωo,α, ωo,β)

can be used so that both pairs (�01, �02) and (�10, �20) can

2The word “observer” is used in the system-theoretic sense of state
estimator.

be available simultaneously from direct measurements. Since

in NMR experiments the initial condition �(0) is always
known, a naive way to recover the �03 and �30 components

in this case is obviously to numerically integrate the control

Hamiltonian Hc (Hf is not contributing to the evolution of

the two vertical coordinates). Assuming �α(t) and �β(t)
are available (by this or by more sophisticated estimation

procedures yet to be devised), then one could use for example

the product state �p(t) = �α(t) ⊗ �β(t) in place of �(t) in
the (nonselective) feedback controller of Proposition 2

u = k〈〈�d, −iadHc,ns
�α ⊗ �β〉〉. (21)

The approximation of the true state �(t) with the product
state �α(t)⊗�β(t) corresponds to disregarding at each time
the correlation that is being built by the J-coupling h33.

From Remark 1, this difference is to a large extent negligible.
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