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Abstract— This paper deals with the problem of estab-
lishing integral Input-to-State Stability(iISS) of interconnected
nonlinear systems. Recently, the iISS-ISS small-gain theorem
has been developed to cover iISS components to which the
popular ISS small-gain theorem is not applicable. This paper
focuses on a small-gain-like ‘condition’ in the iISS-ISS small-
gain ‘theorem’. The purpose is to expand the capability of the
iISS-ISS small-gain ‘condition’ by introducing new flexibility
in choosing supply rates. A novel technique of parametrization
of supply rates provides us with many supply rates with which
a fixed single iISS-ISS small-gain condition can establish the
iISS property of the interconnection.

I. INTRODUCTION

The problem of establishing stability properties of in-
terconnected systems has attracted a lot of attention in
the field of nonlinear systems control for many decades.
Classical methods which can be found in [1], [2], [3] have
become popular. Recently, the ISS small-gain theorem[4],
[5] has been found useful in dealing with an important
class of essential nonlinearities described by the input-to-
state stability(ISS) property[6], and widely exploited in sta-
bilization of nonlinear systems. There are, however, systems
for which ISS is too strong requirement. The integral input-
to-state stability(iISS) property introduced by [7], [8] covers
nonlinearities much broader and stronger than the ISS. More
recently, the spirit of the ISS small-gain theorem has been
smoothly extended to interconnected systems involving the
iISS property in [9] by the author. The new stability criterion
deals with iISS components which do not have finite ISS
nonlinear gain in a global sense. For brevity, the author
refers to the new criterion as the iISS-ISS small-gain theorem
although it is not completely described in terms of gain. The
technique proposed in [9] also covers cascade systems as
special cases, and it generalizes a result in [10] developed
for a class of cascades from a different angle.

The iISS-ISS small-gain theorem developed in [9] applies
to the interconnected system of the form

Σ1 : ẋ1 = f1(x1,u1,r1), u1 = x2 (1)

Σ2 : ẋ2 = f2(x2,u2,r2), u2 = x1 (2)

It assumes the existence of C1 functions Vi and continuous
functions α i, ᾱi,α1 ∈ K∞, α2,σi,σri ∈ K such that

α i(|xi|) ≤Vi(xi) ≤ ᾱi(|xi|) (3)
∂Vi

∂xi
fi(xi,ui,ri)≤−αi(|xi|)+σi(|ui|)+σri(|ri|) (4)
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hold. This assumption indicates that Σ2 is only iISS, while
Σ1 is ISS. The iISS-ISS small-gain theorem is written as

max
w∈[0,s]

[c2σ2 ◦Γ1(w)]k

σ1(w)
≤ [α2 ◦ ᾱ−1

2 ◦α2(s)]
k

σ1(s)
, ∀s∈R+ (5)

⇓
(1)-(2) is iISS with respect to (r1,r2) and (x1,x2).

where k > 0, ci > 1, i = 1,2, and Γ1 given by

Γ1(s) = α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1(s)

is the nonlinear gain of Σ1 [11], [12]. The iISS-ISS small-
gain theorem supposes that the supply rates(See [1] for termi-
nology) −αi(|xi|)+ σi(|ui|)+ σri(|ri|) are given a priori, as
does the ISS small-gain theorem. This paper pays particular
attention to the fact that the small-gain condition (5) never
leads us to the stability if one fails to find supply rates that
are accepted by Σi, i = 1,2 as in (4), and satisfy the condition
(5) at the same time. Selecting supply rates fulfilling these
two requirements is not an easy task.

This paper develops a useful tool for accomplishing the
task. For this purpose, this paper employs the unique idea of
parametrization of supply rates which originates from [13].
Answers to the following problem are given in this paper.

Parametrization of supply rates: Suppose that a supply
rate of Σ2 is fixed a priori. Find a set of multiple
supply rates for Σ1 with which the iISS property of
the interconnected system can be proved under a fixed
single iISS-ISS small-gain condition (5).

The previous study presented in [13] deals with only ISS
systems. This paper extends it to iISS systems on the basis
of the recent result of the iISS-ISS small-gain theorem[9].
The results of this paper provide us with more chances to
come at a supply rate that fit a system.

II. ILLUSTRATIVE EXAMPLE

This section explains the goal of this paper using a simple
example. Consider an interconnected system defined by

Σ1 : ẋ1 = −µx4
1 + x2

1

(
x2

x2 +1

)2

, µ = 1.1, x1(0) ∈ R+(6)

Σ2 : ẋ2 = f (x2,x1,r2), x2(0) ∈ R+, r2(t) ∈ R+ (7)

where x1, x2 and r2 are scalar variables. The set R+ denotes
the interval [0,∞). Assume

f2(0,0,0) = 0, f2(0,x1,r2) ≥ 0, ∀x1 ∈ R+,r2 ∈ R+

so that the interconnected system has an equilibrium at the
origin x = [x1,x2]T = 0 for r2 = 0, and all trajectories remain
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in the positive cone x(t) = [x1(t),x2(t)]T ∈ R
2
+ for all t ∈

R+. Supposed that we do not have information about f2

except the existence of a continuously differentiable radially
unbounded function V2 : x2 ∈ R+ → R+ satisfying

dV2(x2)
dt

≤− x2

x2 +1
+ x1 + r2

2 (8)

along the trajectories of Σ2. This paper addresses the question
of whether the interconnected system is iISS with respect to
input r2 and the state x(t) = [x1(t),x2(t)]T .

The assumption (8) only ensures that Σ2 is iISS with
respect to input (x1,r2) and state x2 since V2 is an iISS
Lyapunov function[7]. The system Σ1 is ISS with respect
to input x2 and state x1, and V1 = x1 is an ISS Lyapunov
function[6], [11]. Since the system Σ2 is not ISS, we are not
able to resort to the ISS small-gain theorem[4], [5].

A stability theorem which is recently developed in [9]
and called the iISS-ISS small-gain theorem is ‘applicable’
to the interconnection involving the iISS property. The time-
derivative of V1 = x1 along the trajectories of (6) satisfies

V̇1(x1) ≤

⎧⎪⎨
⎪⎩

−µx4
1 +a−1

1 x4
1 for x1 ≥√

a1
x2

x2+1

−µx4
1 +a1

(
x2

x2+1

)4

for x1 ≤√
a1

x2
x2+1

≤ −α1(s)+σ1(s)

α1(s) = (µ −a−1
1 )s4, σ1(s) = a1

(
s

s+1

)4

(9)

for any a1 > 0. A nonlinear gain function of Σ1 with respect
to input x2 and state x1 is obtained from (9) as

Γ1,a1(s) = (1+ε1)

(
a1

µ −a−1
1

)1/4 (
s

s+1

)

for any ε1 > 0 [11], [12]. The minimum of the gain function
is achieved with a1 = 2/µ as follows:

Γ1(s) = (1+ε1)

√
2
µ

s
s+1

Write (8) as follows:

V̇2(x2) ≤−α2(x2)+σ2(x1)+σr2(r2)

α2(s) =
s

s+1
, σ2(s) = s, σr2(s) = s2 (10)

We obtain

σ2 ◦Γ1(s) = (1+ε1)

√
2
µ

s
s+1

,
[σ2(s)]k

α1(s)
=

2sk−4

µ

Thus, there exist ε1,ε2 > 0 such that

(1+ε2)σ2 ◦Γ1(s) ≤ α2(s), ∀s ∈ R+ (11)

holds for µ > 2. There also exists k > 0 such that

[σ2(s)]k

α1(s)
is non-decreasing. (12)

According to the iISS-ISS small-gain theorem[9], the con-
traction condition (11) with the help of the non-decreasing

Σ1 : ẋ1 = f1(t,x1,u1,r1)

Σ2 : ẋ2 = f2(t,x2,u2,r2)

�

�

�

�
x2

x1
r1

r2

u1

u2

Fig. 1. Feedback interconnected system Σ

property (12) could imply iISS of the interconnected system
if µ > 2 held. However, the theorem does not guarantee the
stability for µ = 1.1 given in (6).

If we could use

V̂1(x1) =
∫ V1(x1)

0

1
s2 ds (13)

we would obtain

˙̂V1(x1) = −µx2
1 +

(
x2

x2 +1

)2

= −α1(s)+σ1(s), α1(s)=µs2, σ1(s)=
(

s
s+1

)2

Γ1(s) = (1+ε1)

√
1
µ

s
s+1

(14)

along the trajectories of (6). Then, there exist ε1,ε2 > 0 and
k > 0 such that the contraction condition (11) holds for µ > 1,
and the property (12) holds. The function in (13) is, however,
not integrable, so that V̂1(x1) in (13) is not qualified as a
Lyapunov function. In addition, a function of the form

V̂1(x1) =
∫ V1(x1)

0
β (s)ds

with a positive-valued function β (s) decreasing faster than
or as fast as 1/s2 toward ∞ is not radially unbounded, so that
it cannot be used for proving global properties[14]. Indeed,
the gain in (14) cannot be justified by (13). Thus, the iISS-
ISS small-gain theorem does not bring the stability of the
interconnected system to us.

This example suggests that the supply rate in (9) for Σ1

is not a right choice for establishing the stability of the
interconnected system. The iISS-ISS small-gain theorem is
surely better than the ISS small-gain theorem in the sense that
it covers iISS systems. However, we cannot appreciate it truly
unless we select a successful supply rate for an individual
system. It is also indicated that direct use of the technique
of changing supply rates introduced in [14] does not help
much for this example. This paper will demonstrate that
the iISS-ISS small-gain ‘condition’ held for the ficticious
functions in (14) is able to lead us to the iISS property of
the interconnected system. In other words, the usage of the
ficticious functions chosen in (14) will be justified without
relying on the forbidden function in (13).

III. PARAMETRIZATION OF SUPPLY RATES

Consider the nonlinear interconnected system Σ shown in
Fig.1. Suppose that subsystems Σ1 and Σ2 are described by

Σ1 : ẋ1 = f1(t,x1,u1,r1) (15)

Σ2 : ẋ2 = f2(t,x2,u2,r2) (16)
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These two systems are connected each other through u1 = x2

and u2 = x1. Assume that f1(t,0,0,0) = 0 and f2(t,0,0,0) =
0 hold for all t ∈ [t0,∞), t0 ≥ 0. The functions f1 and f2

are supposed to be piecewise continuous in t, and locally
Lipschitz in the other arguments. The state vector of the
interconnected system Σ is x = [xT

1 ,xT
2 ]T ∈R

n where xi ∈R
ni

is the state of Σi. The exogenous inputs r1 ∈ R
m1 and r2 ∈

R
m2 are packed into a single vector r = [rT

1 ,rT
2 ]T ∈ R

m. We
make the following assumption.

Assumption 1: There exist a C1 function V2 : R+×R
n2 →

R+, continuous functions α2,σ2,σ2r ∈ K such that

α2(|x2|) ≤V2(t,x2) ≤ ᾱ2(|x2|) (17)
∂V2

∂ t
+

∂V2

∂x2
f2(t,x2,u2,r2)

≤−α2(|x2|)+σ2(|u2|)+σr2(|r2|) (18)

hold for all x2 ∈ R
n2 , u2 ∈ R

n1 , r2 ∈ R
m2 and t ∈ R+ with

some α2, ᾱ2 ∈ K∞.
The following are the main results which offer techniques

of parametrization of supply rates for interconnected systems
involving iISS properties.

Theorem 1: Suppose that the system Σ2 satisfies Assump-
tion 1. Assume that real numbers ci > 1, i = 1,2, and k > 0
and functions

α1 ∈ K∞, σ1 ∈ K \K∞ (19)

satisfy

max
w∈[0,s]

[c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1(w)]k

σ1(w)

≤ [α2 ◦ ᾱ−1
2 ◦α2(s)]

k

σ1(s)
, ∀s∈R+ (20)

If there exist a continuous function λ̂ : R+ → R and a C1

function V1 : R+ ×R
n1 → R such that

λ̂ (s) > 0, ∀s ∈ (0,∞) (21)

lim
s→0+

[σ2 ◦α−1
1 (s)]k

[α1 ◦ ᾱ−1
1 (s)]λ̂ (s)

< ∞ (22)

α1(|x1|) ≤V1(t,x1) ≤ ᾱ1(|x1|) (23)
∂V1(t,x1)

∂ t
+

∂V1(t,x1)
∂x1

f1(t,x1,u1,r1) ≤
λ̂ (V1(t,x1)) [−α1(|x1|)+σ1(|u1|)+σr1(|r1|)] (24)

hold for all x1∈R
n1 , u1∈R

n2 , r1∈R
m1 and t∈R+ with some

α1, ᾱ1 ∈ K∞ and some σr1 ∈ K , then the interconnected
system Σ is iISS with respect to input r and state x.

Theorem 2: Suppose that the system Σ2 satisfies Assump-
tion 1. Assume that real numbers ci > 1, i = 1,2, and k > 0
and functions

α1 ∈ K∞, σ1 ∈ K∞ (25)

satisfy (20). If there exist a continuous function λ̂ : R+ → R

and a C1 function V1 : R+ ×R
n1 → R such that

∫ ∞

1
max

w∈[0,s]

{
[σ2 ◦α−1

1 (w)]k

α1 ◦ ᾱ−1
1 (w)

}
1

λ̂ (s)
ds = ∞ (26)

and (21)-(24) hold for all x1 ∈ R
n1 , u1 ∈ R

n2 , r1 ∈ R
m1 and

t ∈ R+ with some α1, ᾱ1 ∈ K∞ and some σr1 ∈ K , then
the interconnected system Σ is iISS with respect to input r
and state x.

The system Σ2 satisfying Assumption 1 is iISS and it does
not require the ISS property. The condition (20) is referred
to as the iISS-ISS small-gain condition in [9]. Theorem 1
incorporates new flexibility λ̂ into the stability test based on
the iISS-ISS small-gain condition. The function λ̂ in (24)
provides an adaptable parameter in selecting a supply rate
of Σ1 to establish the iISS property of the interconnected
system. The flexible function λ̂ allows us to scale an initial
supply rate −α1(|x1|)+σ1(|u1|)+σr1(|r1|) which is chosen
such that the iISS-ISS small-gain condition is fulfilled. The
freedom of λ̂ can be utilized to have (24) fulfilled by a given
system Σ1. The flexibility of λ̂ in the supply rate offers more
chances to come at a supply rate that fit the system Σ1.

The iISS property of interconnected systems can be estab-
lished by Theorem 1 and 2 without constructing Lyapunov
functions of the closed-loop systems. When we need a
Lyapunov function, a formula is available in the next section.

Remark 1: Theorem 1 and 2 include the iISS-ISS small-
gain theorem developed in [9] as a special case. In fact, when
we pick λ̂ (s) = 1, the condition (22) and (26) are always
satisfied. To see this, we suppose that (20) holds. The left
hand side of (20) is non-decreasing due to the maximization.
The right hand side takes finite positive value at all s∈ (0,∞).
These two facts imply

[c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 (s)]k

s
< ∞, ∀s ∈ [0,h)

for some h > 0. In the case of σ1 ∈ K∞ we can use h = ∞.
Thus, (22) is fulfilled for any constant λ̂ . On the other hand,
that constraint (26) is fulfilled for any constant λ̂ since

[σ2 ◦α−1
1 (w)]k

α1 ◦ ᾱ−1
1 (w)

> 0, w ∈ (0,∞)

is implied by σ2 ,α1, α−1
1 , ᾱ−1

1 ∈ K .
Remark 2: Theorem 1 and Theorem 2 allow the functions

λ̂ to be much more flexible than ones we can obtained from
techniques in [14], [12]. Indeed, the function

∫ V1
0 1/λ̂ (s)ds

does not guaranteed to be integrable and radially unbound-
eded. Theorem 1 and Theorem 2 are developed without using∫ V1

0 1/λ̂ (s)ds in the construction of Lyapunov functions. This
paper extends the idea proposed in [13] to iISS systems.

Remark 3: The assumption (20) can be replaced by sim-
pler assumptions. In fact, if there exists a constant k > 0 such
that at least one of

[σ2 ◦α−1
1 (s)]k

α1 ◦ ᾱ−1
1 (s)

is non-decreasing (27)

[α2 ◦ ᾱ−1
2 (s)]k

σ1 ◦α−1
2 (s)

is non-decreasing (28)

holds and

c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1(s)
≤ α2 ◦ ᾱ−1

2 ◦α2(s), ∀s ∈ R+ (29)
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is satisfied, the assumption (20) is fulfilled.
Remark 4: An easy way to pick an initial supply rate

−α1(|x1|)+σ1(|u1|)+σr1(|r1|) fulfilling the iISS-ISS small-
gain condition (20) is to take copies of functions in the supply
rates of Σ2. If we choose σ1 and α1 such that

α1(s) = ν1σ2(s), σ1(s) = ν2α2(s), νi > 0 (30)

holds, the condition (20) is reduced to (29) and the two
constraints (22) and (26) can be replaced by

lim
s→0+

[σ2 ◦α−1
1 (s)]k−1

λ̂ (s)
< ∞

∫ ∞

1

[σ2 ◦α−1
1 (s)]k−1

λ̂ (s)
ds = ∞

respectively. These facts can be verified from Remark 6.
Remark 5: It is worth noting that the condition (22) is

satisfied for all k > l if it is satisfied for k = l. The conditions
(26) and (20) have the same property. It is also worth noticing
that there always exists k > 0 such that (22) holds if each
function appearing in (22) satisfies a Lipschitz condition of
some order at s = 0. There always exists k > 0 such that (26)
holds if each function there satisfies a Lipschitz condition of
some order toward s → ∞.

IV. ILLUSTRATIVE EXAMPLE CONTINUED

Using the development in the previous section, we can
give an affirmative answer to our question posed in Section
II. For the simple choice V1 = x1, we obtain

V̇1 = x2
1

{
−µx2

1 +
(

x2

x2 +1

)2
}

which fulfills (24) with

λ̂ (s)=s2, α1(s)=µs2, σ1(s)=
(

s
s+1

)2

, r1(t) ≡ 0 (31)

Thus, the inequality (29) and the property (27) become

c2σ2 ◦α−1
1 ◦ c1σ1(s) ≤ α2(s), ∀s ∈ R+ (32)

and (12), respectively. It is verified that (12) holds for k ≥ 2,
and there exist c1,c2 > 1 such that (32) holds for µ > 1.
Theorem 1 concludes that the interconnected system (6)-(7)
is iISS with respect to input r2 and state x(t) = [x1(t),x2(t)]T .

It is important that Theorem 1 and Theorem 2 enable us
to obtain the iISS property without constructing a Lyapunov
function of the overall system explicitly. It is, however, possi-
ble to construct a Lyapunov function explicitly whenever one
prefers it. For instance, if Σ2 achieves (8) with V2(x2) = x2,
an iISS Lyapunov function of the interconnected system is

Vcl(x1,x2) = x1 +
∫ V2(x2)

0
2

(
s

s+1

)3

ds (33)

which is obtained with q = 4 from a formula presented in
the next section. Indeed, the time-derivative of this function

Vcl along the trajectories of (6)-(7) is computed as

V̇cl(x1,x2) ≤−µx4
1 + x2

1

(
x2

x2 +1

)2

−2

(
x2

x2 +1

)4

+2x1

(
x2

x2 +1

)3

+2

(
x2

x2 +1

)3

r2
2

≤−ρI(x1,x2)+br8
2 (34)

It can be verified that (34) holds for some positive definite
function ρI(x1,x2) and some positive constant b if and
only if µ > 1 holds. Since Vcl(x1,x2) defined by (33) is
positive definite and radially unbounded, the fulfillment of
(34) ensures the iISS property of (6)-(7).

V. PROOFS

A. A key lemma

Lemma 1: Suppose that continuous functions Vi : (t,xi) ∈
R+ ×R

ni → R+, i = 1,2, satisfy

α i(|xi|)≤Vi(t,xi)≤ ᾱi(|xi|), ∀xi∈R
ni ,t∈R+ (35)

for some α i, ᾱi ∈ K∞. Let ρi, i = 1,2, be

ρi(xi,ui,ri)=−αi(|xi|)+σi(|ui|)+σri(|ri|) (36)

consisting of continuous functions satisfying

α1 ∈ K∞, α2 ∈ K , (37)

σ1 ∈ K , σ2 ∈ K , (38)

σr1(s) ≥ 0, σr2(s) ≥ 0 ∀s ∈ R+ (39)

If there exist ci > 1, i = 1,2 and k > 0 such that (20) holds,
there exists a continuous function ρe(x,r) of the form

ρe(x,r) = −αcl(|x|)+σcl(|r|) (40)

αcl ∈K , σcl(s) ≥ 0, ∀s ∈ R+ (41)

such that

λ1(V1(t,x1))ρ1(x1,x2,r1)
+λ2(V2(t,x2))ρ2(x2,x1,r2) ≤ ρe(x,r1,r2),

∀x1∈R
n1,x2∈R

n2,r1∈R
m1,r2∈R

m2, t∈R+ (42)

holds with non-decreasing continuous functions λi : s ∈
R+ → R+, i = 1,2 satisfying

λ1(s) = max
w∈[0,s]

c1cq
2δ

q
q+1

[σ2 ◦α−1
1 (w)]q

α1 ◦ ᾱ−1
1 (w)

∀s ∈ [0,d) (43)

λ1(s) ≥ max
w∈[0,s]

c1cq
2δ

q
q+1

[σ2 ◦α−1
1 (w)]q

α1 ◦ ᾱ−1
1 (w)

∀s ∈ [d,∞) (44)

d = lim
s→∞

ᾱ1 ◦α−1
1 ◦ c1σ1(s)

λ2(s) = q[δ
1

q+1 α2 ◦ ᾱ−1
2 (s)]q−1 ∀s ∈ R+ (45)

where δ and q are any constants satisfying

1 > δ > 0, cq
2 > [δ (c1 −1)]−1, q ≥ k, q > 1(46)

Furthermore, if σr1 and σr2 are class K functions, the
inequality (42) holds with a class K function σcl .
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It is worth noting that there always exist δ and q such
that (46) holds. In the case of σ1 ∈K∞, the function λ1(s) is
given completely for all s ∈ R+ by (43), In the case of σ1 ∈
K \K∞, the segment of λ1(s) on the interval s ∈ [d,∞) can
be any non-decreasing continuous curve satisfying (44) and
connected continuously to (43) at s = d. The function λ1(s)
given as (43) fulfills lims→0+ λ1(s) < ∞, which is guaranteed
by (20). In fact, the left hand side of (20) is a non-decreasing
continuous function due to the maximization. The right hand
side of (20) takes finite positive value at all s∈ (0,∞). In this
situation, the inequality of (20) implies

lim
s→0+

[σ2 ◦α−1
1 (s)]k

α1 ◦ ᾱ−1
1 (s)

< ∞ (47)

Hence, the functions λi(s), i = 1,2 given in (43)-(45) are non-
decreasing continuous and lims→0+ λi(s) < ∞ is satisfied.

Lemma 1 is proved as follows. Define p > 1 as

1 = (1/p)+(1/q)

Due to (46) and c2 > 1, there exists µ > 1 such that(
c2

µ

)q

≥ 1
δ (c1 −1)

(48)

holds. If σr1(s) is not identically zero, pick δ̄ satisfying

δ
1

q+1 < δ̄ < 1 (49)

There exists τr > 1 such that

1− 1
c1

− 1
τr

≥ δ̄
(

1− 1
c1

)
(50)

is satisfied. If σr1(s) ≡ 0 holds, let δ̄ = 1 and the rest of the
proof does not require τr. If σr2(s) is not identically zero,
there exists µr > 1 such that

1 ≥ 1
µ p +

1
µ p

r
(51)

holds. In the case of σr2(s) ≡ 0, the parameter µr does not
appear in the rest of the proof. Define the following class
K functions.

θ1(s) = ᾱ1 ◦α−1
1 ◦ c1σ1(s)

θr1(s) = ᾱ1 ◦α−1
1 ◦ τrσr1(s)

Suppose that λ1,λ2 : s ∈ R+ → R+ satisfy (43)-(45) which
are non-decreasing continuous functions. Combining calcu-
lations in individual cases separated by α1(|x1|)≥ c1σ1(|x2|),
α1(|x1|) < c1σ1(|x2|), α1(|x1|) ≥ τrσr1(|r1|) and α1(|x1|) <
τrσr1(|r1|), we obtain

λ1(V1(t,x1)){−α1(|x1|)+σ1(|x2|)+σr1(|r1|)}
≤ δ̄

(
−1+

1
c1

)
λ1(V1(t,x1))α1(|x1|)

+λ1(θ1(|x2|))σ1(|x2|)+λ1(θr1(|r1|))σr1(|r1|)
Using Young’s inequality

xy ≤ 1
p

∣∣∣ x
a

∣∣∣p
+

1
q
|ay|q ,∀x,y ∈ R,a 
= 0

we obtain

λ2(V2(t,x2)){−α2(|x2|)+σ2(|x1|)+σr2(|r2|)}
≤ −λ2(V2(t,x2))α2(|x2|)+q

[
1
p

(
1

qµ
λ2(V2(t,x2))

)p

+

µq

q
σ2(|x1|)q +

1
p

(
1

qµr
λ2(V2(t,x2))

)p

+
µq

r

q
σr2(|r2|)q

]

Define αcl(s) and σcl(s) as follows:

αcl(s) = min
s=|x|

{
(δ̄ −δ

1
q+1 )

c1−1
c1

λ1(α1(|x1|))α1(|x1|)

+(1−δ
1

q+1 )λ2(α2(|x2|))α2(|x2|)
}

σcl(s) = max
s=|r|

{λ1(θr1(|r1|))σr1(|r1|)+ µq
r σr2(|r2|)q}

From (49) it follows that αcl∈K . Moreover, the function σcl

satisfies σcl(s) ≥ 0 for all s ∈ R+. It is class K if σri ∈ K
holds for i = 1,2. The inequality (42) is achieved if the pair
of λ1 and λ2 solves

−δ
1

q+1
c1−1

c1
λ1(s)α1(ᾱ−1

1 (s))

+µq[σ2(α−1
1 (s))]q≤0, ∀s∈R+ (52)

1
p

(
1
q

)p−1

λ2(s)p −δ
1

q+1 λ2(s)α2(ᾱ−1
2 (s))

+λ1(θ1(α−1
2 (s)))σ1(α−1

2 (s)) ≤ 0, ∀s ∈ R+ (53)

The inequalities (50) and (51) are used to obtain (53). The
inequality (52) holds if and only if

µqc1[σ2(α−1
1 (s))]q

δ
1

q+1 (c1−1)α1(ᾱ−1
1 (s))

≤ λ1(s), ∀s ∈ R+ (54)

is achieved. Using λ2 given by (45) in (53), we obtain

λ1(θ1(s))σ1(s) ≤ [δ
1

q+1 α2(ᾱ−1
2 (α2(s)))]

q, ∀s ∈ R+

Hence, the pair of (52) and (53) holds if λ1 satisfies (54) and

λ1(s)σ1(θ−1
1 (s)) ≤ [δ

1
q+1 α2(ᾱ−1

2 (α2(θ
−1
1 (s)))]q

∀s ∈ [0,d) (55)

The choice of λ1 given in (43)-(44) fulfills (54) since we
have (48). The function λ1 satisfies (55) if

max
w∈[0,s]

[c2σ2(α−1
1 (θ1(w)))]q

α1(ᾱ−1
1 (θ1(w)))

≤ [α2(ᾱ−1
2 (α2(s)))]

q

c1σ1(s)
∀s∈R+ (56)

The inequality (20) implies (29), so that

max
w∈[0,s]

[
c2σ2 ◦α−1

1 ◦ ᾱ1 ◦α−1
1 ◦ c1σ1(w)

]
≤ α2 ◦ ᾱ−1

2 ◦α2(s)

holds. The inequality (20) implies that (20) still holds even if
k is replaced by q > k. Therefore, the condition (20) ensures
(56). Hence, the functions λ1 and λ2 given in (43)-(44) and
(45) achieve (52) and (53).

Remark 6: In the case that

α1(s) = ν1σ2(s), σ1(s) = ν2α2(s), νi > 0 (57)
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holds, the condition (20) and the formulas (43)-(44) can be
replaced by (29) and

λ1(s) =
c1cq

2δ
q

q+1

ν1
[σ2 ◦α−1

1 (s)]q−1, ∀s∈ [0,d) (58)

λ1(s) ≥ c1cq
2δ

q
q+1

ν1
[σ2 ◦α−1

1 (s)]q−1, ∀s∈ [d,∞) (59)

respectively. These facts are true since

−δ
1

q+1
c1−1

c1
λ1(s)ν1 + µq[σ2(α−1

1 (s))]q−1≤0, ∀s∈R+

can replace (52).

B. Proof of Theorem 1

Since k > 0 satisfies (22), the function

1

λ̂ (s)
· max

w∈[0,s]

[σ2 ◦α−1
1 (w)]l

α1 ◦ ᾱ−1
1 (w)

(60)

is guaranteed to be continuous on R+ for all l ≥ k. Suppose
that q and δ satisfying (46). Let η(s) denote

η(s) = max
w∈[0,s]

c1cq
2δ

q
q+1

[σ2 ◦α−1
1 (w)]q

α1 ◦ ᾱ−1
1 (w)

which is non-decreasing and continuous on R+. Define λ1(s)
by (43) and

λ1(s) = max

{
η(d)

λ̂ (d)
max

w∈[d,s]
{λ̂ (w)},η(s)

}
, ∀s ∈ [d,∞) (61)

Then, the function λ1(s) is continuous on R+ and meets (44).
Define λ0(s) by

λ0(s) = λ1(s)/λ̂ (s) (62)

The function is continuous on R+ and satisfies

lim
s→0+

λ0(s) < ∞, lim
s→∞

λ0(s) > 0

0 < λ0(s) < ∞, ∀s ∈ (0,∞)

Since α2 ◦ ᾱ−1
2 ∈K and q > 1 hold, the function λ2(s) given

by (45) is a class K function. Therefore, the C1 function

Vcl(t,x)=
∫ V1(t,x1)

0
λ0(s)ds+

∫ V2(t,x2)

0
λ2(s)ds (63)

satisfies

αcl(|x|)≤Vcl(t,x)≤ ᾱcl(|x|), ∀x∈R
n, t∈R+ (64)

for some αcl , ᾱcl ∈ K∞. Due to (62) and Lemma 1, there
exist αcl ,σcl ∈ K such that

dVcl

dt
≤−αcl(|x|)+σcl(|r|), ∀x∈R

n,r∈R
m, t∈R+

holds along the trajectories of the interconnected system Σ.

C. Proof of Theorem 2

Define λ0(s) as (62) where λ1(s) is determined completely
by (43) due to σ1 ∈ K∞ . The requirements (22) and (26)
guarantee that the C1 function Vcl given by (63) satisfies (64)
for some αcl , ᾱcl ∈K∞. The rest is the same as Theorem 1.

VI. CONCLUDING REMARKS

This paper has expanded the capability of the iISS-
ISS small-gain condition by introducing the technique of
parametrization of supply rates. The parametrization has
provided a set of supply rates with which a fixed single
small-gain condition can establish iISS property of an inter-
connected system. A first attempt to introduce a parametriza-
tion technique for iISS systems was made by a preceding
paper[15]. The reformulation done by this paper has enabled
us to achieve the following significant points which are not
possible in the previous work[15].

• This paper has dealt with iISS property of intercon-
nected systems which is stronger than the asymptotic
stability in [15].

• This paper has introduced more flexibility into the
parametrization than the previous paper [15]. More
precisely, we do not have to take copies of functions
in the supply rate of Σ2 in choosing a supply rate of Σ1.

• The results of this paper are exactly identical to the iISS-
ISS small-gain theorem when the free parameter λ̂ (s) is
fixed as λ̂ = 1. In contrast, the previous results in [15]
do not agree with the iISS-ISS small-gain theorem even
if λ̂ = 1 is taken. This paper has succeeded in putting
freedom into the iISS-ISS small-gain theorem literally.
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