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Abstract— Orbital stabilization of a simple underactuted
manipulator, namely, two-link pendulum robot (Pendubot) is
under study. Since underactuated systems cannot be stabilized
by means of smooth feedback, the solution to the stabilization
problem is sought within switched control methods. The quasi-
homogeneous control synthesis is utilized to design a switched
controller that drives the Pendubot to its zero dynamics in finite
time and maintains it there in sliding mode. The constructed
controller is such that the Pendubot zero dynamics is generated
by a modified Van der Pol oscillator, being viewed as a reference
model. The closed-loop system is thus capable of moving
from one orbit to another by simply changing the parameters
of the proposed modification of the Van der Pol oscillator.
Performance issues of the controller constructed are illustrated
in a simulation study of the swing up control problem of moving
the Pendubot from its stable downward position to the unstable
inverted position and stabilizing it about the vertical.

I. INTRODUCTION

Motivated by applications where the natural operation
mode is periodic [6], orbital stabilization of underactu-
ated systems, enforced by fewer actuators than degrees of
freedom, presents a challenging problem. As well known
(see, e.g., [4], [24]), these systems possess nonholonomic
properties, caused by nonintegrable differential constraints,
and therefore, they cannot be stabilized by means of smooth
feedback. With this in mind, the solution to the orbital
stabilization problem is sought within switched control meth-
ods. Capability of switched systems to generate steady state
periodic solutions has recently been analyzed in [5].

For underactuted manipulators the orbital stabilization
paradigm, referred to as periodic balancing [6], [21], differs
from typical formulations of output tracking where the
reference trajectory to follow is known a priori. The control
objective for the periodic balancing, e.g., a walking rabbit
[7] is to result in the closed-loop system that generates its
own periodic orbit similar to that produced by a nonlinear
oscillator. Apart from this, the closed-loop system should
be capable of moving from one orbit to another by simply
modifying the orbit parameters such as frequency and/or
amplitude.

In the present paper, the following model orbit-based ap-
proach is explored to solve a periodic balancing problem for
a simple underactuated mechanical manipulator, Pendulum
robot (typically abbreviated as Pendubot), whose first link
(shoulder) is actuated whereas the second one (elbow) is
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not actuated. Throughout, the positions of both links and
their angular velocities are assumed to be available for
measurements.

We demonstrate, thus contributing to the area, that a
recently developed quasihomogeneous controller [15], [16],
[17], [18] drives the Pendubot state to the desired zero
dynamics in finite time and maintains it there in the so-called
sliding mode of the second order [14], even in the presence
of the input disturbances with an a priori known magnitude
bound. Due to these features, the controller turns out to
be extremely suited for addressing the problem in question.
A modification of the Van der Pol equation, proposed in
[19], is accepted as a reference model. This modification
still possesses a stable limit cycle, being expressible in an
analytical form (as opposed to that of the standard Van der
Pol equation!).

Effectiveness of the developed synthesis procedure is
illustrated in a simulation study of the swing up control
problem where the Pendubot is required to move from its
stable downward position to the unstable upright position
and be stabilized about the vertical.

The swinging controller is composed by an inner loop
controller, partially linearizing the Pendubot, and a model
orbit quasihomogeneous outer loop controller that completes
the generation of the swing up motion. The locally stabi-
lizing controller is obtained by applying the nonlinear H∞-
synthesis from [1], being robust due to its nature.

In contrast to the energy-based approach [8], resulting in
the Pendubot rotation along homoclinic orbits, the orbital
stabilization strategy aims to balance the actuated link of
the Pendubot in a vicinity of its upright position. Switching
from the swinging controller to the stabilizing one, when the
Pendubot enters the attraction basin of the latter, completes a
unified framework for the MORS of the Pendubot around its
unstable equilibrium. This framework presents an interesting
alternative to the energy-based approach.

The paper is organized as follows. Section 2 is focused
on the redesign of the Van der Pol dynamics to be used
in Section 3 where the quasihomogeneity-based controller is
synthesized for the Pendubot orbital stabilization. Simulation
results on application to the swing up control problem is
given in Section 4. Section 5 finalizes the paper with some
conclusions.

II. MODIFIED VAN DER POL OSCILLATOR

The Van der Pol equation, whose general representation
is given by the second order scalar nonlinear differential
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equation

..
x +ε[(x − x0)2 − ρ2]ẋ + µ2(x − x0) = 0 (1)

with positive parameters ε, ρ, µ, is a special case of the circuit
equation (see, e.g., [12])

..
v +εh′(v)v̇ + µ2v = 0 (2)

where the function h(v), characterizing the resistive element,
satisfies the conditions

h(0) = 0, h′(0) < 0
lim h(v)v→−∞ = −∞, limh(v)v→∞ = ∞. (3)

The Van der Pol equation is a fundamental example in non-
linear oscillation theory. It possesses a periodic solution that
attracts every other solutions except the unique equilibrium
point (x, ẋ) = (x0, 0). Such a periodic solution is typically
referred to as a stable limit cycle [12]. The parameter ρ
controls the amplitude of this limit cycle, the parameter µ
controls its frequency, the parameter ε controls the speed of
the limit cycle transients, and the parameter x0 is for the
offset of x (see [26] for details).

For later use, we present the recently proposed modifica-
tion of the Van der Pol equation [19]

..
x +ε[(x2 +

ẋ2

µ2
) − ρ2]ẋ + µ2x = 0 (4)

where in contrast to (1) no offset of x is admitted, i.e., the
parameter x0 = 0 is used, and the additional term ε

µ2 ẋ3 is
involved. As opposed to the Van der Pol equation (1), the
proposed modification (4) has nothing to do with the circuit
equation (2).

In order to demonstrate that this modification still pos-
sesses a stable limit cycle, let us differentiate the positive
definite function

V (x, ẋ) =
1
2
x2 +

1
2µ2

ẋ2 (5)

along the trajectories of (4):

V̇ (x, ẋ) = xẋ +
1
µ2

ẋ
..
x=

ε

µ2
[ρ2 − (x2 +

ẋ2

µ2
)]ẋ2. (6)

It follows that

V̇ (x, ẋ)

⎧⎪⎨
⎪⎩

> 0 if (x2 + ẋ2

µ2 ) < ρ2 & ẋ �= 0
< 0 if (x2 + ẋ2

µ2 ) > ρ2 & ẋ �= 0
= 0 if [ρ2 − (x2 + ẋ2

µ2 )]ẋ = 0
(7)

on the trajectories of equation (4). Since by inspection, the
origin x = ẋ = 0 is a unique equilibrium point of (4)
Poincare-Bendixson criterion [12, p. 61] is thus applicable to
the modified Van der Pol equation (4). By applying Poincare-
Bendixson criterion, the existence of a periodic orbit is
concluded for this equation. Remarkably, such a periodic
solution is expressed in an analytical form unlike that of the

Fig. 1. Phase portrait of the modified Van der Pol equation

Van der Pol equation. This analytical representation comes
from expression (7) of the time derivative of (5).

Indeed, by applying the invariance principle [12, Section
4.2] to (7), one concludes that a periodic solution of (4) has
to oscillate within the set {(x, ẋ) : V̇ (x, ẋ) = 0}, i.e.,

[ρ2 − (x2 +
ẋ2

µ2
)]ẋ = 0. (8)

Since the origin is the unique equilibrium point of (4) all the
trajectories of (4) cross the axis ẋ = 0 everywhere except
the origin. Hence, the largest invariant manifold of set (8)
coincides with the ellipse

x2 +
ẋ2

µ2
= ρ2, (9)

and it remains to straightforwardly verify that (9) is a
periodic orbit of the modified Van der Pol equation (4).

Now it becomes clear that in equation (4) the parameter
ρ stands for the amplitude of the periodic orbit whereas µ is
for its frequency.

According to (7), the norm of any trajectory of (4),
initialized inside the periodic orbit (9), must grow with time.
Conversely, the norm of any trajectory of (4), initialized
outside the periodic orbit (9), must shrink with time. Thus,
any trajectory of (4) except the equilibrium point x = ẋ = 0
is attracted by the periodic orbit. Phase portrait of equation
(4) is shown in Fig. 1 for the parameter values ε = 0.1,
ρ2 = 10, and µ2 = 1.

In what follows the Van der Pol modification (4) is used
as a reference model in the orbital Pendubot stabilization.

III. ORBITAL PENDUBOT STABILIZATION

A. Problem Statement

The state equation of the Pendubot, depicted in Fig. 2, is
given by [25, p. 55]:

M(q)
..
q +N(q, q̇) = τ + w (10)
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Fig. 2. Pendubot

where

M(q) =
(

m11 m12

m12 m22

)
, N(q, q̇) =

(
N1

N2

)
,

τ =
(

τ1

0

)
, w =

(
w1

0

)

and

m11 = Jm + J1 + m1l
2
1 + m2L

2
1

m12 = m2L1l2 cos(q1 − q2)

m22 = m2l
2
2 + J2

N1(q1, q2) = m2L1l2 sin(q1 − q2)q̇2
2

−g(m1l1 + m2L1) sin(q1),
N2(q1, q2) = −m2L1l2 sin(q1 − q2)q̇2

1 − m2gl2 sin(q2).

Here, m1 is the mass of link 1, m2 the mass of link 2, L1

and L2 are respectively the lengths of link 1 and link 2; l1
and l2 are the distances to the center of mass of link 1 and
link 2; J1 and J2 are the moments of inertia of link 1 and
link 2 about their centroids; Jm is the motor inertia, τ1 is the
control torque, w1 is the to-be-attenuated input disturbance,
and g is the gravity acceleration.

We assume throughout that the input disturbance is of class
L∞(0,∞) with an apriori known norm bound K > 0, i.e.,

ess sup
t∈[0,∞)

|w1(t)| ≤ K (11)

Another assumption that has implicitly been made is that
no mismatched disturbances affect the system. A reason for
the latter assumption is that the attenuation level against
mismatched disturbances is too large to be of practical
interest for controlling underactuated systems.

From equation (10), one has

m11

..
q1 +m12

..
q2 +N1 = τ1 + w1 (12)

m12

..
q1 +m22

..
q2 +N2 = 0. (13)

Now using equation (13), the following equation is derived

..
q2= −m−1

22 [m12

..
q1 +N2]. (14)

Then substituting equation (14) into (12) yields

(m11 − m12m
−1
22 m12)

..
q1 −m12m

−1
22 N2 + N1

= τ1 + w1. (15)

Finally, setting |M | = m11 − m12m
−1
22 m12 and

τ1 = |M |u − m12m
−1
22 N2 + N1 (16)

where u is the new control input, the partial linearization
[23] is obtained:

..
q1= u + |M |−1w1 (17)

..
q2= −m−1

22 [m12(u + |M |−1w1) + N2]. (18)

In the above relations the positive definiteness of the inertia
matrix M(q) has been used to ensure that |M | �= 0.
Since system (17)-(18) describes the linearized actuated joint
model it is referred to as collocated linearization [22].

Let the system output

y(t) = q1(t) + x(t) (19)

combine the actuated state q1(t) of the system and the
reference variable x(t) governed by the modified Van der
Pol equation (4).

The control objective is to drive the system to the manifold
y = 0 in finite time and maintains it there in spite of bounded
external disturbances, affecting the system.

B. Switched Control Synthesis

Due to (4), (17), (19), the output dynamics is given by

..
y= u + |M |−1w1 − ε[(x2 +

ẋ2

µ2
) − ρ2]ẋ − µ2x. (20)

The above objective is achieved with the following control
law

u = ε[(x2 +
ẋ2

µ2
) − ρ2]ẋ + µ2x

−k1sign(y) − k2sign(ẏ) − hy − pẏ (21)

if the gains are such that

h, p ≥ 0, k1 − k2 > |M |−1K. (22)

Following the quasihomogeneous synthesis [18], the con-
troller has been composed of the nonlinear compensator

uc = ε[(x2 +
ẋ2

µ2
) − ρ2]ẋ + µ2x, (23)

the homogeneous switching part (the so-called twisting con-
troller from [9], [10])

uh = −k1sign(y) − k2sign(ẏ),
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and the linear remainder

ul = −hy − pẏ

that vanishes in the origin y = ẏ = 0. Thus, the closed-loop
system (20), (21) is feedback transformed to the quasihomo-
geneous system

..
y= |M |−1w1 − k1sign(y) − k2sign(ẏ) − hy − pẏ. (24)

By Theorem 4.2 from [18] the quasihomogeneous system
(24) with the parameter subordination (22) is finite time
stable regardless of which external uniformly bounded dis-
turbance subject to (11) affects the system.

Until recently, finite time stability of asymptotically stable
(quasi)homogeneous systems has been well-recognized for
only continuous vector fields [3], [11]. Extending this result
to switched systems has required proceeding differently
[16], [18] because a smooth (quasi)homogeneous Lyapunov
function, whose existence was proven in [20] for continuous
asymptotically stable (quasi)homogeneous vector fields, can
no longer be brought into play.

The qualitative behavior of the quasihomogeneous system
(22), (24) is as follows. The system trajectories rotate around
the origin y = ẏ = 0, while approaching the origin in
finite time. Thus, the system exhibits an infinite number
of switches in a finite amount of time. This system do not
generate sliding motions everywhere except the origin. If a
trajectory starts there at any given finite time, there appears
the so-called sliding mode of the second order (see [2], [9],
[10] for advanced results on second order sliding modes).

So, starting from a finite time moment the Pendubot
evolves in the second order sliding mode on the zero dynam-
ics manifold y = 0. While being restricted to this manifold,
the system dynamics is given by

q̈2 = −
m12{ε[(x2 + ẋ2

µ2 ) − ρ2]ẋ + µ2x} + N2(x, q2)

m22
.

(25)

To formally derive (25) one should utilize the equivalent
control method [25] and substitute the only solution ueq of
the algebraic equation

u + |M |−1w1 − ε[(x2 +
ẋ2

µ2
) − ρ2]ẋ − µ2x = 0

with respect to u (i.e., the equivalent control input ueq that
ensures equality ÿ = 0) into (18). Phase portrait of the zero
dynamics (25) is depicted in Fig. 3 for the parameter values
ε = 100, ρ = 0.01, and µ = 10.

Summarizing, the following result is obtained.
Theorem 1: Let the modified Van der Pol equation (4)

with positive parameters ε, µ, ρ be a reference model of the
Pendubot dynamics (10) and let the system output be given
by (19). Then the quasihomogeneous controller (16), (21),
(22) drives the Pendubot to the zero dynamics manifold y =
0 in finite time, uniformly in admissible disturbances (11).

After that the actuated part q1(t) follows the output x(t)
of the modified Van der Pol equation (4) whereas the non-
actuated part q2(t) is governed by the zero dynamics equation
(25).

In the sequel, capabilities of the MORS procedure, con-
stituted by Theorem 1, are analyzed via application to the
swing up control problem.

IV. SWING UP CONTROL AND STABILIZATION

In this section, a MORS is used to swing up the Pendubot
from its downward position to the upright position and then it
is switched to a nonlinear H∞-controller, locally stabilizing
the Pendubot about the vertical. The strategy is to select the
amplitude ρ and the frequency µ of the model limit cycle
(9) reasonably small and the parameter ε, controlling the
speed of the limit cycle transient in the modified Van der
Pol equation (4), reasonably large to ensure that the Pendubot
driven by the developed controller (21) enters the attraction
basin of a locally stabilizing nonlinear H∞-controller. Proper
switching from the swinging quasihomogeneous controller
to the stabilizing one yields the generation of a swing up
motion, stable about the vertical.

A. Simulated Pendubot model

In order to make physical sense the subsequent numerical
study addresses the laboratory Pendubot presented in [13].
The following Pendubot parameters values, used in the sim-
ulations, are drown from [13]: L1 = 0.2030 m, L2 = 0.2540
m, l1 = 0.1574 m, l2 = 0.1109 m, m1 = 0.132 Kg,
m2 = 0.088 Kg, J1 = 0.00362 Kgm2, J2 = 0.00114 Kgm2,
and Jm = 6 × 10−5 Kgm2.

B. Swinging controller design

The capability of the model orbit robust synthesis (4),
(16), (21) to swing up the Pendubot is tested by means of
simulations. The tuning of the parameters of the Van der Pol
modification (4) is crucial to the achievement of a successful
swing up. In the simulation runs the parameters were tuned
to ε = 100, ρ = 0.01, µ = 10 whereas the controller gains
were set to k1 = 100, k2 = 24, h, p = 0.

C. Locally stabilizing controller design

A nonlinear H∞-controller, locally stabilizing the Pen-
dubot around its upright position, is derived according to the
synthesis procedure developed in [1]. The procedure is based
on a certain perturbation of the algebraic Riccati equation
that appears in solving the standard H∞- control problem
for the linearized system. Since the local stabilizability is
then ensured by the existence of a proper solution of the
unperturbed algebraic Riccati equation (see [1] for details),
an extra work on the stabilizability verification is thus
obviated.

To apply the afore-mentioned procedure the Pendubot
equations (17), (18) are represented in the form

ẋ = f(x) + g1(x)w1 + g2(x)u
z = h1(x) + k12u (26)
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where x = [q1, q2, q̇1, q̇2]T is the state space vector, z =
[z1, z2, z3]T is the unknown output to be controlled,

f(x) = (x3, x4, 0,−m−1
22 N2)T ,

g1(x) = (0, 0, |M |−1,−m−1
22 m12|M |−1)T ,

g2(x) = (0, 0, 1,−m−1
22 m12)T ,

h1(x) = (0, x1, x2)T ,

k12 = (1, 0, 0)T . (27)

Then a locally stabilizing nonlinear state feedback H∞-
controller is given by [1]

u = −gT
2 (x)Pεx (28)

where Pε is a symmetric positive definite solution of the
perturbed Riccati equation

PεA+AT Pε +CT
1 C1 +Pε

[
γ−2B1B

T
1 − B2B

T
2

]
Pε = −εI

(29)
with some positive ε and γ, and

A =
∂f

∂x
(0), B1 = g1(0), B2 = g2(0), C1 =

∂h1

∂x
(0).

(30)

To complete the nonlinear H∞-synthesis the following
positive definite solution

Pε =

⎡
⎢⎢⎣

159.98 1573.5 172.1064 228.7793
1573.5 22788.0 1753.5 2808.1

172.1064 1753.5 186.6592 250.77
228.7793 2808.1 250.77 373.1426

⎤
⎥⎥⎦ .

of the Riccati equation (29) has numerically been found for
γ = 200 and ε = 100.

D. Variable Structure Swinging/Stabilizing Controller

In order to accompany swinging up the Pendubot by
the subsequent stabilization around the upright position the
model orbit swinging controller, presented in Subsection
4.B, is switched to the locally stabilizing H∞-controller
from Subsection 4.C whenever the Pendubot enters the basin
of attraction, numerically found for the latter controller.
While being not studied in details, the capability of the
closed-loop system of entering the attraction basin of the
locally stabilizing H∞-controller is supported by simulation
evidences. The problem of driving the Pendubot to the
attraction domain is resolved via tuning the parameters of the
Van der Pol modification (4). Various parameter scenarios
are played for the Van der Pol modification in successive
simulation runs to effectively determine these parameters.
Appropriate numerical values of the parameters, carried out
in the simulations, were presented in Subsection IV.B.

E. Simulation results

We used Simnon to produce our simulation experiments
for the Variable Structure Swinging/Stabilizing Controller,
proposed in Subsection 4.D. The initial conditions of the
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Fig. 3. Phase portrait of the zero dynamics.
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Fig. 4. MORS of the Pendubot under permanent disturbances: plots of
shoulder position q1 and elder position q2.

Pendubot position and that of the modified Van der Pol
oscillator, selected for simulations, were q1(0) = 3.14 Rad,
q2(0) = 3.14 Rad, and x(0) = 0.011 Rad, whereas all the
velocity initial conditions were set to zero.

Following the numerical procedure, described in Sub-
section 4.D, the time instant ts = 11.4 sec was chosen
for switching from the swinging controller to the locally
stabilizing controller. Quite impressive simulation results
were thus obtained for the Pendubot to swing up and be
stabilized by the developed variable structure controller.

To better demonstrate attractive features of the proposed
synthesis the Pendubot motion, enforced by the variable
structure controller with the pre-specified switching time
instant, was perturbed with the permanent input disturbance
w1(t) = 0.1 N-m. Simulation results for the feedback stabi-
lization of the Pendubot, operating under the permanent input
disturbance, are depicted in Figures 4-6. From these figures
good performance of the perturbed closed-loop system is
concluded.

The controller performance was additionally tested in an
experimental study of a Pendubot model installed in the
control laboratory of the CICESE research center. Because of
space limitations the experimental results are not presented
here to be published elsewhere.
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Fig. 5. MORS of the Pendubot under permanent disturbances: plot of the
outer-loop controller u.
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Fig. 6. MORS of the Pendubot under permanent disturbances: plot of the
input torque τ1.

V. CONCLUSIONS

Orbital stabilization of a Pendubot, presenting a simple
underactuated (two degrees-of-freedom, one actuator) manip-
ulator, is under study. Since underactuated systems cannot
be stabilized by means of smooth feedback, a solution to
the problem is proposed within switched control methods.
The quasihomogeneity-based synthesis is utilized to design
a switched controller that drives the Pendubot to its zero
dynamics in finite time and maintains it there in sliding
mode.

The controller proposed is such that the Pendubot zero
dynamics is generated by a modified Van der Pol oscillator,
viewed as a reference model. Since this modification still
possesses a stable limit cycle the proposed synthesis consti-
tutes the MORS of the Pendubot. The developed approach
is hoped to suggest a practical framework for orbital stabi-
lization of underactuated manipulators.

Capabilities of the approach and its robustness features
are illustrated in a simulation study of the swing up control
problem of moving the Pendubot from its stable downward
position to the unstable inverted position and stabilizing it
about the vertical.
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