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Abstract— This paper introduces the normalized and signed
gradient dynamical systems associated with a differentiable
function. Extending recent results on nonsmooth stability anal-
ysis, we characterize their asymptotic convergence properties
and identify conditions that guarantee finite-time convergence.
We discuss the application of the results to the design of multi-
agent coordination algorithms, paying special attention to their
scalability properties. Finally, we consider network consensus
problems and show how the proposed nonsmooth gradient flows
achieve the desired coordination task in finite time.

I. INTRODUCTION

Problem statement: Let f : R
d → R, d ∈ N, be a dif-

ferentiable function. Consider the gradient dynamical system

ẋ = − grad(f)(x) .

It is well known (see e.g. [1]) that the minima of f are stable
equilibria for this system, and that, if the level sets of f are
bounded, then the trajectories converge asymptotically to the
set of critical points of f . (A point x∗ ∈ R

d is a critical
point of f if the gradient of f evaluated at x∗ vanishes).
Gradient dynamical systems are employed to solve problems
in a wide range of applications, including optimization,
distributed parallel computing, motion planning and control.
In robotics, potential field methods are used to autonomously
navigate a robot in a cluttered environment. Gradient al-
gorithms enjoy many important features: they are naturally
robust to perturbations and measurement errors, amenable to
asynchronous implementations, and admit efficient numerical
approximations.

In this note, we provide an answer to the following
question: how could one modify the gradient vector field
above so that the trajectories converge to the critical points
of the function in finite time? - as opposed to over an
infinite-time horizon. There are a number of settings where
finite-time convergence is a desirable property. We study
this problem with the aim of designing gradient coordination
algorithms for multi-agent systems that achieve the desired
task in finite time.

Our answer to the question above is the dynamical systems

ẋ = −
grad(f)(x)

‖ grad(f)(x)‖2
,

ẋ = − sgn(grad(f)(x)),

where ‖ · ‖2 denotes the Euclidean distance and sgn(x) =
(sgn(x1), . . . , sgn(xd)). Using tools from nonsmooth sta-
bility analysis, we show in this note that, under some
assumptions on f , both systems are guaranteed to achieve
the set of critical points in finite time.
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Literature review: Guidelines on how to design dy-
namical systems for optimization purposes, with a special
emphasis on gradient systems, are described in [2]. The
book [3] thoroughly discusses gradient descent flows in
distributed computation in settings with fixed-communication
topologies. Nonsmooth analysis studies the notion and com-
putational properties of the generalized gradient [4]. Tools
for establishing stability and convergence properties of non-
smooth dynamical systems are presented in [5], [6], [7].
Finite-time discontinuous feedback stabilizers for a class
of planar systems are proposed in [8]. Finite-time stability
of continuous autonomous systems is rigorously studied
in [9]. The reference [10] develops finite-time stabilization
strategies based on time-varying feedback. Previous work on
motion coordination of multi-agent systems has proposed
cooperative algorithms based on gradient flows to achieve
a variety of tasks, including cohesiveness [11], [12], [13],
consensus [14], and deployment [15], [16]. The distributed
algorithms proposed in these papers achieve the desired co-
ordination task asymptotically over an infinite-time horizon.

Statement of contributions: In this paper, we introduce
the normalized and signed gradient descent flows associated
to a differentiable function. We characterize their conver-
gence properties via nonsmooth stability analysis. We also
identify general conditions under which these flows attain
in finite time the set of critical points of the function. To do
this, we extend recent results on the stability and convergence
properties of general nonsmooth dynamical systems via lo-
cally Lipschitz and regular Lyapunov functions. In particular,
we develop two novel results involving second-order infor-
mation about the evolution of the Lyapunov function along
solutions of the system to establish finite-time convergence.

We explore the application of the results on nonsmooth
gradient flows to the design of multi-agent coordination
algorithms. Consider a coordination algorithm defined via
the gradient of an aggregate objective function that encodes
a desired task. We analyze the algorithms designed via the
normalized and signed versions of the gradient, and charac-
terize their scalability properties via the notion of spatially
distributed map. We also show how network consensus prob-
lems fit nicely into this scheme. We propose two coordination
algorithms based on the Laplacian of the communication
graph that are guaranteed to achieve consensus in finite time.
The normalized gradient descent of the Laplacian potential is
not distributed over the communication graph and achieves
average-consensus, i.e., consensus at the average of the initial
agents’ states. The signed gradient descent of the Laplacian
potential is distributed over the communication graph and
achieves average-max-min-consensus, i.e., consensus at the
average of the maximum and the minimum values of the
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initial agents’ states. Because of length constraints, we refer
the interested reader to [17] for the proofs of all the results
presented here.

Organization: Section II introduces differential equa-
tions with discontinuous right-hand sides and presents var-
ious nonsmooth tools for stability analysis. In particular,
we develop two novel results involving second-order infor-
mation and finite-time convergence. Section III introduces
the normalized and signed versions of the gradient descent
flow of a differentiable function and characterizes their
convergence properties. Conditions are given under which
these flows converge in finite time. Section IV discusses
the application of the results to coordination algorithms for
multi-agent systems paying special attention to distributed
implementations and network consensus problems. Finally,
we gather our conclusions in Section V.

Notation: The set of positive natural numbers is denoted
by N. For d ∈ N, we let e1, . . . , ed be the standard
orthonormal basis of R

d. For x ∈ R
d, we denote by

‖x‖1 and ‖x‖2 the 1-norm and the Euclidean norm of x,
respectively. We denote by v · w the inner product of the
vectors v, w ∈ R

d, and by v′ the transpose of v ∈ R
d. For

x ∈ R
d, we let sgn(x) = (sgn(x1), . . . , sgn(xd)) ∈ R

d.
We define the vector 1 = (1, . . . , 1)′ ∈ R

d. For S ∈ R
d,

we let co(S) denote its convex closure. We also define
diag((Rd)n) =

{
(p, . . . , p) ∈ (Rd)n | p ∈ R

d
}

for n ∈ N.
Given a positive semidefinite matrix A, let H0(A) ⊂ R

d

denote the eigenspace corresponding to the eigenvalue 0 (if
A is positive definite, then we set H0(A) = {0}). We denote
by πA : R

d → H0(A) the orthogonal projection onto H0(A).
We denote by λ2(A) the smallest non-zero eigenvalue of A,
i.e. λ2(A) = min {λ | λ > 0 and λ eigenvalue of A}. It is
not difficult to see that for any u ∈ R

d, one has

u′Au ≥ λ2(A) ‖u − πH0(A)(u)‖2
2. (1)

II. NONSMOOTH STABILITY ANALYSIS

This section introduces differential equations with dis-
continuous right-hand sides and presents various nonsmooth
tools to analyze their stability properties. We present two
novel results on the second-order evolution of locally Lip-
schitz functions along the solutions of the system and on
finite-time convergence.

A. Differential equations with discontinuous right-hand sides

For differential equations with discontinuous right-hand
sides we understand the solutions in terms of differential
inclusions following [6]. Let F : R

d → 2R
d

be a set-valued
map. Consider the differential inclusion

ẋ ∈ F (x) . (2)

A solution to this equation on an interval [t0, t1] ⊂ R is
defined as an absolutely continuous function x : [t0, t1] →
R

d such that ẋ(t) ∈ F (x(t)) for almost all t ∈ [t0, t1].
Now, consider the differential equation

ẋ(t) = X(x(t)) , (3)

where X : R
d → R

d is measurable and locally essentially
bounded [6]. We understand the solution of this equation in
the Filippov sense. For x ∈ R

d, consider the set

K[X](x) =
⋂
δ>0

⋂
µ(S)=0

co{X(Bd(x, δ) \ S)} , (4)

where µ denotes the usual Lebesgue measure in R
d. A

Filippov solution of (3) on an interval [t0, t1] ⊂ R is defined
as a solution of the differential inclusion

ẋ ∈ K[X](x) . (5)

Since the set-valued map K[X] : R
d → 2R

d

is upper
semicontinuous with nonempty, compact, convex values and
locally bounded, the existence of Filippov solutions of (3)
is guaranteed (cf. [6]). A set M is weakly invariant (re-
spectively strongly invariant) for (3) if for each x0 ∈ M ,
M contains a maximal solution (respectively all maximal
solutions) of (3).

B. Stability analysis via nonsmooth Lyapunov functions

Let f : R
d → R be a locally Lipschitz function. From

Rademacher’s Theorem [4], we know that locally Lipschitz
functions are differentiable a.e. Let Ωf ⊂ R

d denote the set
of points where f fails to be differentiable. The generalized
gradient of f (cf. [4]) is defined by

∂f(x) = co
{

lim
i→+∞

df(xi) | xi → x , xi �∈ S ∪ Ωf

}
,

where S can be any set of zero measure. Note that if f

is continuously differentiable at x ∈ R
d, then ∂f(x) =

{df(x)}.
Given a locally Lipschitz function f : R

d → R, the set-
valued Lie derivative of f with respect to X at x (cf. [5],
[15]) is defined as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that

ζ · v = a , ∀ζ ∈ ∂f(x)}.

For each x ∈ R
d, L̃Xf(x) is a closed and bounded interval

in R, possibly empty. If f is continuously differentiable at x,
then L̃Xf(x) = {df · v | v ∈ K[X](x)}. If, in addition, X is
continuous at x, then L̃Xf(x) corresponds to the singleton
{LXf(x)}, the usual Lie derivative of f in the direction of
X at x. The next result, taken from [5], states that the set-
valued Lie derivative allows us to study the evolution of a
function along the Filippov solutions.

Theorem 2.1: Let x : [t0, t1] → R
d be a Filippov solution

of (3). Let f be a locally Lipschitz and regular function. Then
t 
→ f(x(t)) is absolutely continuous, d

dt
(f(x(t))) exists a.e.

and d
dt

(f(x(t))) ∈ L̃Xf(x(t)) a.e.
In some cases, we can also look at second-order infor-

mation for the evolution of a function along the Filippov
solutions. This is what we prove in the following result.

Proposition 2.2: Let x : [t0, t1] → R
d be a Filippov

solution of (3). Let f be a locally Lipschitz and regular
function. Assume that L̃Xf : R

d → 2R is single-valued,
i.e., it takes the form L̃Xf : R

d → R, and assume it is a
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Lipschitz and regular function. Then d2

dt2
(f(x(t))) exists a.e.

and d2

dt2
(f(x(t))) ∈ L̃X(L̃Xf)(x(t)) a.e.

The following result is a generalization of LaSalle princi-
ple for differential equations of the form (3) with nonsmooth
Lyapunov functions. The formulation is taken from [5], and
slightly generalizes the one presented in [7].

Theorem 2.3: (LaSalle Invariance Principle): Let f :
R

d → R be a locally Lipschitz and regular function. Let
x0 ∈ S ⊂ R

d, with S compact and strongly invariant for (3).
Assume that either max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅ for all
x ∈ S. Let

ZX,f =
{

x ∈ R
d | 0 ∈ L̃Xf(x)

}
.

Then, any solution x : [t0,+∞) → R
d of (3) starting from

x0 converges to the largest weakly invariant set M contained
in ZX,f ∩S. Furthermore, if the set M is a finite collection
of points, then the limit of all solutions starting at x0 exists
and equals one of them.

The following result is taken from [15].
Proposition 2.4: (Finite-time convergence with first-order

information): Under the same assumptions of Theorem 2.3,
further assume that there exists a neighborhood U of ZX,f∩S

in S such that max L̃Xf < −ε < 0 a.e. on U \ (ZX,f ∩ S).
Then, any solution x : [t0,+∞) → R

d of (3) starting at
x0 ∈ S attains ZX,f ∩ S in finite time.

Often times, first-order information is inconclusive to
assess the finite-time convergence of an specific flow. The
next result makes use of second-order information to arrive
at a satisfactory answer.

Theorem 2.5: (Finite-time convergence with second-order
information): Under the same assumptions of Theorem 2.3,
further assume that

(i) the function x ∈ R
d 
→ L̃Xf(x) is single-valued,

Lipschitz and regular;
(ii) there exists a neighborhood U of ZX,f ∩ S in S such

that max L̃X(L̃Xf) > ε > 0 a.e. on U \ (ZX,f ∩ S).

Then, any solution x : [t0,+∞) → R
d of (3) starting at

x0 ∈ S attains ZX,f ∩ S in finite time.

III. NONSMOOTH GRADIENT FLOWS WITH FINITE-TIME

CONVERGENCE

In this section, we formally introduce the normalized and
signed gradient dynamical systems associated with a differ-
entiable function. We characterize their general asymptotic
convergence properties. Building on the novel results of the
previous section, we identify conditions on the differentiable
function under which convergence is reached in finite time.

Consider the following dynamical systems on R
d

ẋ = −
grad(f)(x)

‖ grad(f)(x)‖2
, (6a)

ẋ = − sgn(grad(f)(x)) . (6b)

Clearly, both differential equations in (6) have discontinuous
right-hand sides. Therefore, we understand their solutions
in the Filippov sense. The following result describes their
associated set-valued maps.

Lemma 3.1: The Filippov set-valued maps associated with
the discontinuous vector fields of equations (6a) and (6b) are
described by

K
[ grad(f)

‖ grad(f)‖2

]
(x) =

co
{

lim
i→+∞

grad(f)(xi)

‖ grad(f)(xi)‖2

∣∣ xi → x, grad(f)(xi) �= 0
}
,

K
[
sgn(grad(f))

]
(x) ={

v ∈ R
d | vi = sgn(gradi(f)(x)) if gradi(f)(x) �= 0 and

vi ∈ [−1, 1] if gradi(f)(x) = 0, for i ∈ {1, . . . , d}
}
.

Note in particular that K
[

grad(f)
‖ grad(f)‖2

]
(x) = grad(f)(x)

‖ grad(f)(x)‖2
if

grad(f)(x) �= 0.

The proof of this result follows from the definition (4) of
the operator K and the particular forms of the vector fields
in equations (6a) and (6b).

For a differentiable function f , let Critical(f) ={
x ∈ R

d | grad(f)(x) = 0
}

denote the set of its critical
points. The next result establishes the general asymptotic
properties of the flows in (6).

Proposition 3.2: Let f : R
d → R be a differentiable

function. Let x0 ∈ S ⊂ R
d, with S compact and strongly

invariant for (6a) (respectively, for (6b)). Then each solution
of equation (6a) (respectively equation (6b)) starting from x0

asymptotically converges to Critical(f).
Let us now discuss the finite-time convergence properties

of the vector fields (6). Note that Proposition 2.4 cannot be
applied to these flows. Indeed, one has

max L̃
− grad(f)

‖ grad(f)‖2

f(x) = −‖ grad(f)(x)‖2 ,

max L̃− sgn(grad(f))f(x) = −‖ grad(f)(x)‖1 ,

and infx∈U\Critical(f)∩S ‖ grad(f)(x)‖2 = 0 and
infx∈U\Critical(f)∩S ‖ grad(f)(x)‖1 = 0, for any
neighborhood U of Critical(f) ∩ S in S. Therefore,
the hypotheses of Proposition 2.4 are not verified by either
the flow (6a) or the flow (6b).

Under some additional conditions on the function f , one
can establish stronger convergence properties of the solutions
of equations (6). We show this in the following result.

Theorem 3.3: Let f : R
d → R be a second-order differ-

entiable function. Let x0 ∈ S ⊂ R
d, with S compact and

strongly invariant for (6a) (respectively, for (6b)). Assume
there exists a neighborhood V of Critical(f)∩S in S where
either one of the following conditions hold:

(i) for all x ∈ V , the Hessian Hess(f)(x) is positive
definite; or

(ii) for all x ∈ V \ (Critical(f) ∩ S), the Hessian
Hess(f)(x) is positive semidefinite, the multiplicity of
the eigenvalue 0 is constant, and grad(f)(x) is orthog-
onal to the eigenspace of Hess(f)(x) corresponding to
the eigenvalue 0.

Then each solution of equation (6a) (respectively equa-
tion (6b)) starting from x0 converges in finite time to a
critical point of f .

6378



Corollary 3.4: Let f : R
d → R be a second-order differ-

entiable function. Let x0 ∈ S ⊂ R
d, with S compact and

strongly invariant for (6a) (respectively, for (6b)). Assume
that for each x ∈ Critical(f) ∩ S, the Hessian Hess(f)(x)
is positive definite. Then each solution of equation (6a)
(respectively equation (6b)) starting from x0 converges in
finite time to a minimum of f .

IV. APPLICATIONS TO COORDINATION ALGORITHMS FOR

MULTI-AGENT SYSTEMS

Here we discuss the application of the results on the
proposed nonsmooth gradient dynamical systems to the
design of multi-agent coordination algorithms. We start by
presenting the notion of proximity graphs from compu-
tational geometry and of spatially distributed map. Given
a coordination algorithm defined via the gradient of an
aggregate objective function, these concepts will allow us
to characterize the scalability properties of the coordination
algorithms designed via the normalized and signed versions
of the gradient. We end the section illustrating our results in
network consensus problems.

A. Proximity graphs and spatially-distributed maps

We introduce some concepts regarding proximity graphs
for point sets in R

d. We assume the reader is familiar with
the standard notions of graph theory as defined in [18,
Chapter 1]. We begin with some notation. Given a vector
space V, let F(V) be the collection of finite subsets of V.
Accordingly, F(Rd) is the collection of finite point sets in
R

d; elements of F(Rd) are of the form {p1, . . . , pm} ⊂ R
d,

where p1, . . . , pm are distinct points in R
d. Let G(Rd) be

the set of undirected graphs whose vertex set is an element
of F(Rd). Finally, let iF : (Rd)n → F(Rd) be the natural
immersion, i.e., iF(P ) is the point set that contains only the
distinct points in P = (p1, . . . , pn) ∈ (Rd)n. Note that the
cardinality of iF(p1, . . . , pn) is in general less than or equal
to n.

A proximity graph function G : (Rd)n → G(Rd) as-
sociates to a tuple P ∈ (Rd)n an undirected graph with
vertex set iF(P) and edge set EG(P ), where EG : (Rd)n →
F(Rd × R

d). In other words, the edge set of a proximity
graph depends on the location of its vertices. Examples
of proximity graphs include the complete graph, the r-
disk graph, the Euclidean Minimum Spanning Three, the
Delaunay graph, etc. see [19], [20], [16]. To each proximity
graph G, one associates the set of neighbors map NG :
(Rd)n → (F(Rd))n, defined by

NG,i(P ) = {pj ∈ iF(P ) | j �= i and (pi, pj) ∈ EG(P )} .

Note that any standard directed graph G with vertex set
{1, . . . , n} and edge set E ⊂ {1, . . . , n} × {1, . . . , n} can
be seen as a proximity graph where, for each P ∈ (Rd)n,
(pi, pj) ∈ EG(P ) if and only if (i, j) ∈ E. In this case,
NG,i(P ) = NG,i = {j ∈ {1, . . . , n} | (i, j) ∈ E}.

Given a set Y and a proximity graph function G, a map
T : (Rd)n → Y n is spatially distributed over G if there exist

a map T̃ : R
d × F(Rd) → Y , with the property that, for all

(p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj denotes the jth-component of T . In other
words, the jth component of a spatially distributed map
at (p1, . . . , pn) can be computed with only the knowledge
of the vertex pj and the neighboring vertices in the graph
G(p1, . . . , pn).

B. Gradient coordination algorithms

There are a number of gradient-following algorithms
proposed in the literature to optimize aggregate objective
functions encoding various coordination tasks. Examples
include the deployment algorithms in [16], the consensus
algorithm in [14] and the cohesiveness algorithms in [11],
[12], [13].

The general idea is the following: consider a network
composed of n agents with sensing, computing, communi-
cation, and motion control capabilities. The state of the ith
agent, denoted by pi ∈ R

d, might correspond, depending on
the specific problem, to the location of the agent in space,
or to other physical quantities like attitude, temperature,
or voltage. This state pi evolves according to a first-order
continuous dynamics of the form

ṗi(t) = ui. (7)

Here, the control ui takes values in a bounded subset of R
d.

Additionally, the communication topology of the network is
described by a proximity graph G. Specifically, the ith agent
is capable of transmitting information to the jth agent if and
only if pj ∈ NG,pi

(P). Typical proximity graphs employed
are the r-disk graph (where two agents are neighbors if they
are at a distance at most r ∈ R+ from each other) or the
visibility graph (where two agents are neighbors if they are
visible to each other), see [16].

The last ingredient is an aggregate objective function
H : (Rd)n → R with two important properties: (i) its critical
points correspond to the network configurations where the
desired coordination task is achieved, and (ii) its gradient
grad(H) : (Rd)n → (Rd)n is spatially distributed over the
proximity graph G. One then sets up the gradient coordina-
tion algorithm

ṗi(t) = −
∂H

∂pi

(p1(t), . . . , pn(t)), i ∈ {1, . . . , n}, (8)

which is spatially distributed over G.
Following equations (6), consider the normalized and

signed versions of the gradient coordination algorithm (8)

ṗi = −
∂H
∂pi

(p1(t), . . . , pn(t))

‖∂H
∂P

(p1(t), . . . , pn(t))‖2

, (9a)

ṗi = − sgn
(∂H

∂pi

(p1(t), . . . , pn(t))
)

. (9b)

Although both vector fields enjoy similar convergence prop-
erties (as established by Proposition 3.2), there is a funda-
mental difference between them, as the next result states.
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Proposition 4.1: Let G be a proximity graph other than the
complete graph. Let H : (Rd)n → R such that grad(H) :
(Rd)n → (Rd)n is spatially distributed over G. Then

(i) the coordination algorithm in (9a) is not spatially
distributed over G;

(ii) the coordination algorithm in (9b) is spatially dis-
tributed over G.

Remark 4.2: A different approach to the design of motion
coordination algorithms consists of identifying a meaningful
local objective function for each agent (i.e., defined with the
information provided by its neighbors), whose optimization
helps the network achieve the global task, and following its
gradient. (e.g. the rendezvous strategies in [21], and the basic
interaction laws in [15]). The finite-time convergence proper-
ties of the gradient flows (6a) and (6b) can be invaluable in
characterizing the asymptotic convergence of the resulting
coordination algorithm. In both cases, the algorithms are
naturally spatially distributed with respect to the selected
proximity graph.

C. Network consensus problems

Here we focus on consensus problems. Let G =
({1, . . . , n}, E) be an undirected graph with n vertices.
The graph Laplacian matrix L associated with G (see, for
instance, [18]) is defined as L = ∆ − A, where ∆ is the
degree matrix and A is the adjacency matrix of the graph.
The Laplacian matrix has the following relevant properties:
it is symmetric, positive semidefinite and has λ = 0 as an
eigenvalue with eigenvector 1. More importantly, the graph
G is connected if and only if rank(L) = n − 1, i.e., if the
eigenvalue 0 has multiplicity one. This is the reason why the
eigenvalue λ2(L) = min {λ | λ > 0 and λ eigenvalue of L}
is termed the algebraic connectivity of the graph G.

In this setting, the agents’ states pi, i ∈ {1, . . . , n}, evolve
in R, pi ∈ R. The variable pi does not necessarily refer to
physical variables such as spatial coordinates or velocities.
Two agents pi and pj are said to agree if and only if
pi = pj . A meaningful function that quantifies the group
disagreement in a network is the so-called disagreement
function or Laplacian potential ΦG : R

n → R+ associated
with G (see [14]), defined by

ΦG(p1, . . . , pn) =
1

2
P ′LP =

1

2

∑
(i,j)∈E

(pj − pi)
2,

with P ′ = (p1, . . . , pn) ∈ R
n. Clearly ΦG(p1, . . . , pn) = 0

if and only if all neighboring nodes in the graph G agree. If
the graph G is connected, then all nodes in the graph agree
and a consensus is reached. Therefore, we want the network
to reach the critical points of ΦG. Assume G is connected.
The Laplacian potential is smooth, and its gradient is

grad(ΦG)(P ) = LP ,

which is clearly spatially distributed over the proximity graph
induced by G. The gradient coordination algorithm

ṗi = −
∂ΦG

∂pi

=
∑

j∈NG,i

(pj − pi), i ∈ {1, . . . , n} (10)

asymptotically converges to the critical points of ΦG, i.e.,
asymptotically achieves consensus. Actually, since the sys-
tem is linear, the convergence is exponential. Additionally,
the fact that 1 · (LP ) = 0 implies that

∑n
i=1 pi is constant

along the solutions. Therefore, each solution of (10) is
convergent to a point of the form (p∗, . . . , p∗), with p∗ =
1
n

∑n
i=1 pi(0) (this is called average-consensus).

Now, consider the discontinuous differential equations
corresponding to (6), for i ∈ {1, . . . , n},

ṗi =

∑
j∈NG,i

(pj − pi)

‖LP‖2
, (11a)

ṗi = sgn
( ∑

j∈NG,i

(pj − pi)
)
. (11b)

Before analyzing the convergence properties of these flows,
let us identify a conserved quantity for each one of them.

Proposition 4.3: Define g1 : R
n → R, g2 : R

n → R by

g1(p1, . . . , pn) =

n∑
i=1

pi,

g2(p1, . . . , pn) = max
i∈{1,...,n}

{pi} + min
i∈{1,...,n}

{pi}.

Then g1 is constant along the solutions of (11a) and g2 is
constant along the solutions of (11b).

The following theorem completely characterizes the
asymptotic convergence properties of the flows in (11).

Theorem 4.4: Let G = ({1, . . . , n}, E) be a con-
nected undirected graph. Then, the flows in (11) achieve
consensus in finite time. More specifically, for P0 =
((p1)0, . . . , (pn)0) ∈ R

n,
(i) the solutions of (11a) starting from P0 converge in

finite time to (p∗, . . . , p∗), with p∗ = 1
n

∑n
i=1(pi)0

(average-consensus);
(ii) the solutions of (11b) starting from P0

converge in finite time to (p∗, . . . , p∗), with
p∗ = 1

2

(
maxi∈{1,...,n}{(pi)0}+mini∈{1,...,n}{(pi)0}

)
(average-max-min-consensus).

Remark 4.5: An interesting observation regarding the
flow (11b) is the following. From Theorem 4.4, the network
achieves average-max-min-consensus. From its evolution,
one can deduce that the convergence time is given by

1

2

(
max

i∈{1,...,n}
{(pi)0} − min

i∈{1,...,n}
{(pi)0}

)
.

In particular, if the network agents had the capability to
decide exactly when convergence has been achieved (for
instance, by running in parallel another consensus algo-
rithm), then this information together with the consen-
sus value will serve them to compute both the values of
maxi∈{1,...,n}{(pi)0} and mini∈{1,...,n}{(pi)0}. •

Remark 4.6: It is also possible to consider networks with
switching communication topologies and establish a result
similar to Theorem 4.4 (see [17] for a detailed discussion).•

Fig. 1 illustrates the evolution of the differential equa-
tions (10), (11a) and (11b). As stated in Theorem 4.4, the
agents evolving under (11a) achieve average-consensus in
finite time, and the agents evolving under (11b) achieve
average-max-min-consensus in finite time.
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Fig. 1. From top to bottom, evolution of (10), (11a) and (11b) for 10 agents
starting from a randomly generated initial confi guration with pi ∈ [−7, 7],
i ∈ {1, . . . , 10}. The graph G = ({1, . . . , 10}, E) has edge set E =
{(1, 4), (1, 10), (2, 10), (3, 6), (3, 9), (4, 8), (5, 6), (5, 9), (7, 10), (8, 9)}.
The algebraic connectivity of G is λ2(L) = 0.12.

V. CONCLUSIONS

We have introduced the normalized and signed versions
of the gradient descent flow of a differentiable function.
We have characterized the general asymptotic convergence
properties of these nonsmooth gradient flows, and identified
suitable conditions on the differentiable function that guar-
antee that convergence to the critical points is achieved in
finite time. We have discussed the application of these results
to gradient coordination algorithms for multi-agent systems,
and, in particular, to consensus problems.

Future work will be devoted to explore (i) the development
of tight upper bounds on the (finite) convergence time of
the proposed nonsmooth flows. These results promise to
be useful in assessing the (time) complexity of distributed
coordination algorithms; (ii) the application of the results
to distributed sensor fusion algorithms based on consensus
(e.g. [22], [23]), coordination problems such as formation
control, deployment and rendezvous, and other problems
where gradient systems play an important role; (iii) the iden-
tification of more nonsmooth distributed algorithms based on
gradient information with similar convergence properties.
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