
Zero-Sum Ergodic Stochastic Games
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Abstract— Zero-sum stochastic games with Borel state spaces
satisfying a generalized geometric ergodicity condition are
considered. The main objective of this paper is to establish
a minimax theorem for a class of ergodic stochastic games with
the Feller transition probabilities.

I. INTRODUCTION

This paper deals with zero-sum Borel state space stochas-
tic games under the average payoff criterion and are based on
[14]. We make certain stochastic stability assumptions on the
transition structure of the game which imply the so-called V -
uniform geometric ergodicity of the Markov chains governed
by stationary strategies of the players. Such conditions are
inspired by the works of Kartashov [15], Meyn and Tweedie
[18], [19], and some recent results concerning Markov con-
trol processes, see [7], [8] and the references cited therein.
Other related papers on stochastic games are [9], [11], [12],
[17], [23], [27]. A common feature of the aforementioned
works is the assumption that the transition probabilities
are strongly continuous in actions of the players. Such
a restriction is often not satisfied in applications. Weakly
continuous transition probabilities are in some situations (e.g.
dynamic programming problems or stochastic games) much
more natural, see [6] for a relevant example. The aim of this
paper is to establish a new minimax theorem for a class of
ergodic zero-sum stochastic games with the Borel state space
and Feller transition (i.e. weakly continuous) probability
function. To our best knowledge no results of this type are
known in the existing literature. Nevertheless, one can refer
to [13] for a related result in the context of dynamic program-
ming (one person games). Futhermore, we also study the so-
called optimality or Shapley equation for the games under
consideration. We show that stationary strategies obtained
from this equation are strong average optimal. The proof
makes use of the vanishing discount factor approach. In order
to overcome some difficulties (compared with earlier papers)
we need to use Michael’s theorem on continuous selections
[20] and a version of Serfozo’s extension of Fatou’s lemma
for varying probability measures.

The ergodicity assumptions which are made in our paper
are crucial and may be regarded as quite restrictive. However,
they allow us to prove the existence of optimal (or even
strong optimal) strategies for a very large class of stochastic
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games. It is worth mentioning that many optimization mod-
els and dynamic games in engineering and economics are
ergodic, [3], [5], [16], [18].

II. MODEL AND ASSUMPTIONS

Let Y be a Borel space, i.e., a non-empty Borel subset
of a complete separable metric space. By B(Y ), we denote
the σ-algebra of all Borel subsets of Y . Let P (Y ) be the
space of all probability measures on B(Y ), endowed with
the weak topology (see p. 124 in [2]). This topology, for any
Borel space Y, can be characterized in terms of convergent
sequences (Proposition 7.21 in [2]). Namely, a sequence
{pn} converges to some p ∈ P (Y ) in the weak topology
if and only if∫

Y

u(y)pn(dy) →
∫

Y

u(y)p(dy)

for every u ∈ C(Y ). Here C(Y ) denotes the space of
all bounded continuous functions on Y, endowed with the
supremum metric.

For the reader’s convenience, we recall some basic results
which we shall be using later on. If Y is compact, then
P (Y ) is compact as well (see Proposition 7.22 in [2]). If
Y is Borel, then P (Y ) is Borel too (see Corollary 7.25.1 in
[2]).

Let X and Y be Borel spaces. By a Borel measurable
transition probability from X to Y we mean a function φ :
B(Y )×X �→ [0, 1] such that, for each B ∈ B(Y ), φ(B|·) is
a Borel measurable function on X, and φ(·|x) ∈ P (Y ) for
each x ∈ X. It is well-known that every Borel measurable
mapping g : X �→ P (Y ) induces a transition probability by
setting φ(·|x) := g(x)(·) (see Proposition 7.25 in [2]). If g
is continuous (with respect to the weak topology on P (Y )),
then the corresponding transition probability is called weakly
continuous or Feller.

Let M : X �→ B(Y ) be a set-valued mapping. For any
D ⊂ Y, define

M−1(D) := {x ∈ X : M(x) ∩ D �= ∅}.
If M−1(D) is a closed [an open] subset in X for each closed
[open] subset D of Y, then M is said to be upper [lower]
semicontinuous. A mapping M : X �→ B(Y ) is called
continuous if it is both lower and upper semicontinuous. For
a further discussion of semicontinuous set-valued mappings
consult [25].

Let Φ : X �→ B(P (Y )) be the set-valued mapping defined
by Φ(x) := P (M(x)), x ∈ X.

Lemma 1.1: (Theorem 3 in [10]). If M is non-empty
compact valued and continuous, then Φ is also continuous
and compact-valued.
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The next lemma concerns continuous selections for lower
semicontinuous set-valued mappings and is essentially due
to Michael [20].

Lemma 1.2. Assume that M is non-empty compact-valued
and continuous. Let x0 ∈ X and ν0 ∈ Φ(x0). Then Φ
admits a continuous selection whose graph contains the
point (x0, ν0), that is, there exists a continuous mapping
φ : X �→ P (Y ) such that φ(x) ∈ Φ(x) for each x ∈ X
and φ(x0) = ν0.

Note that Ψ(x) := Φ(x) for x �= x0 and Ψ(x0) := {ν0} is
lower semicontinuous and compact convex valued. The proof
of Lemma 1.2 relies on showing that Ψ has a continuous
selection and follows along the same lines as that of Theorem
(1.5)∗ in [25], which in turn is a modification of Michael’s
proof (see [20]) given for lower semicontinuous set-valued
mappings with closed convex values in a Banach space.

A zero-sum stochastic game is described by the following
objects:

(i) S is the set of states for the game and is assumed to
be a Borel space.

(ii) A and B are the action spaces for players 1 and 2,
respectively, and are also assumed to be Borel spaces.

(iii) A(s) ⊂ A and B(s) ⊂ B are non-empty compact
sets of actions available to players 1 and 2, respectively,
in state s ∈ S. It is assumed that the set-valued mappings
s �→ A(s) and s �→ B(s) are continuous. Let

K = {(s, a, b) : s ∈ S, a ∈ A(s) and b ∈ B(s)}

and

K̄ = {(s, ν, ρ) : s ∈ S, ν ∈ P (A(s)) and ρ ∈ P (B(s))}.

It is obvious that K is a closed subset of S×A×B. By Lemma
1.1, K̄ is a closed subset of the Borel space S×P (A)×P (B).

(iv) q is a Borel measurable transition probability from K
to S, called the law of motion among states. If s is a state
at some stage of the game and the players select actions
a ∈ A(s) and b ∈ B(s), then q(·|s, a, b) is the probability
distribution of the next state of the game.

(v) r : K �→ R is a Borel measurable (daily) reward
function for player 1 (cost function for player 2).

Strategies for player 1 are denoted by π = {πn} whereas
for player 2 by γ = {γn} and are defined in an usual way.
By Π [Γ] we denote the class of all strategies for player 1
[player 2]. Let F [G] be the set of all stationary strategies
for player 1 [player 2].

Let H = K×K×K×· · · be the space of all infinite histories
of the game endowed with the Borel σ-algebra. For any
π ∈ Π and γ ∈ Γ, every initial state s0 = s ∈ S a probability
measure Pπγ

s and a stochastic process {sm, am, bm} are
defined on H in a canonical way, where the random variables
sm, am and bm describe the state and the action chosen by
players 1 and 2, respectively, on the m-th stage of the game
(see Ionescu-Tuclcea’s Theorem in Chapter 7 in [2] for a
formal construction). Thus, for each initial state s0 = s ∈ S,
any strategies π ∈ Π, γ ∈ Γ and any finite horizon n, the

total expected n-stage reward to player 1 is

Jn(s, π, γ) = Eπγ
s

[
n−1∑
m=0

r(sm, am, bm)

]
,

where Eπγ
s means the expectation operator with respect to

the probability measure Pπγ
s with s = s0. (The assumptions

imposed on r and q below guarantee that all expectations
considered in the sequel are well-defined.) If β is a fixed
real number in (0, 1), called the discount factor, then the
expected discounted reward to player 1 is

Jβ(s, π, γ) = Eπγ
s

[ ∞∑
m=0

βmr(sm, am, bm)

]
.

The expected average reward per unit time to player 1 is
defined as

J(s, π, γ) = lim inf
n→∞

Jn(s, π, γ)
n

.

For any initial state s ∈ S, define

L(s) := sup
π∈Π

inf
γ∈Γ

J(s, π, γ)

and
U(s) := inf

γ∈Γ
sup
π∈Π

J(s, π, γ).

Then L (U ) is called the lower (upper) value, respectively,
in the average payoff stochastic game. It is always true that
L(s) ≤ U(s) for s ∈ S. If L(s) = U(s) for all s ∈ S, then
this common function is called the value of the stochastic
game and is denoted by ξ.

Suppose that the average reward stochastic game has a
value ξ. A strategy π∗ ∈ Π is called optimal for player 1 in
the average payoff stochastic game iff

inf
γ∈Γ

J(s, π∗, γ) = ξ(s)

for all s ∈ S, and a strategy γ∗ ∈ Γ is called optimal for
player 2 in the average payoff stochastic game iff

sup
π∈Π

J(s, π, γ∗) = ξ(s)

for all s ∈ S. Of course, the value and optimal strategies are
defined similarly for the β-discounted and n-stage stochastic
games.

We impose the following continuity assumptions.
C1: r : K �→ R is continuous.
C2: q : K �→ P (S) is weakly continuous.
C3: There exists a continuous function V : S �→ [1,∞) such
that |r(s, a, b)| ≤ V (s) for every (s, a, b) ∈ K.
C4: The function

(s, a, b) �→
∫

S

V (y)q(dy|s, a, b)

is continuous on K.
The following assumption has been recently made in the

theory of Markov control processes and stochastic games [7],
[8], [13], [27]. Some special cases were considered in [9],
[11], [12].
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C5: (1) There exist a Borel function δ : K �→ [0, 1] and a
probability measure ϕ on S such that

q(B|s, a, b) ≥ δ(s, a, b)ϕ(B)

for any Borel set B ⊂ S and s ∈ S.
(2)

∫
S

infa∈A(s) infb∈B(s) δ(s, a, b)ϕ(ds) > 0.
(3) ϕ(V ) :=

∫
S

V (s)ϕ(ds) < ∞.
(4) For some λ ∈ (0, 1) and every (s, a, b) ∈ K, it holds∫

S

V (y)q(dy|s, a, b) ≤ λV (s) + δ(s, a, b)ϕ(V ).

By Proposition 7.50 in [2] the function s �→
infa∈A(s) infb∈B(s) δ(s, a, b) is universally measurable.
Therefore, the integral in C5(2) is well-defined.

Let CV (S) denote the subset of all continuous functions
on S for which the so-called V -norm

‖u‖V := sup
s∈S

|u(s)|
V (s)

is finite. The space of Borel measurable functions u on S for
which ‖u‖V < ∞ is denoted by L∞

V (S). Let µ be a finite
signed measure on B(S). The V -norm of µ is defined by

‖µ‖V := sup
‖u‖V ≤1

∣∣∣∣
∫

S

u(s)µ(ds)
∣∣∣∣ =

∫
S

V (s)|µ|(ds),

where |µ| = µ+ + µ− denotes the total variation of µ,
and µ+, µ− stand for the positive and negative parts of
µ, respectively. From C5(3)-(4), it follows that the intergral∫

S
|u(y)|q(dy|s, a, b) is finite for all (s, a, b) ∈ K and each

u ∈ L∞
V (S).

Let s ∈ S, ν ∈ P (A(s)) and ρ ∈ P (B(s)). We define

r(s, ν, ρ) =
∫

A(s)

∫
B(s)

r(s, a, b)ρ(db)ν(da)

and for any Borel set D ⊂ S, we put

q(D|s, ν, ρ) =
∫

A(s)

∫
B(s)

q(D|s, a, b)ρ(db)ν(da).

Thus, for any f ∈ F and g ∈ G, r(s, f(s), g(s)) and
q(D|s, f(s), g(s)) (s ∈ S, D ∈ B(S)) have clear meaning.

An important consequence of C5 is that for any f ∈ F
and g ∈ G, the state process {sn} is a positive recurrent
aperiodic Markov chain with the unique invariant probability
measure (also called stationary distribution), denoted by πfg.
In addition, {sn} is V -uniformly ergodic, that is, there exist
θ > 0 and α ∈ (0, 1) such that

‖qn(·|s, f(s), g(s)) − πfg(·)‖V ≤ V (s)θαn. (1)

From (1), we conclude that

J(f, g) := J(s, f, g) =
∫

S

r(s, f(s), g(s))πfg(ds), (2)

for every f ∈ F and g ∈ G, that is, the expected average
payoff is independent of the initial state.

Let u ∈ L∞
V (S). Define

u′(s, a, b) = r(s, a, b) + β

∫
S

u(y)q(dy|s, a, b)

and

ū(s, ν, ρ) =
∫

A(s)

∫
B(s)

u′(s, a, b)ρ(db)ν(da),

where (s, a, b) ∈ K and (s, ν, ρ) ∈ K̄.

Lemma 2.1: Let C1 through C4 hold. If u is lower [upper]
semicontinuous, then u′ [ū] is lower [upper] semicontinuous
on K [K̄].

To simplify our notation, we shall use the following
(lower) value operators. For each function u ∈ L∞

V (S) and
β ∈ (0, 1], we put

(Tβu)(s) = sup
ν∈P (A(s))

inf
ρ∈P (B(s))

[r(s, ν, ρ) +

β

∫
S

u(y)q(dy|s, ν, ρ)], (3)

where s ∈ S and we set Tu = Tβu when β = 1. We
close this section with some auxiliary results on minimax
selections which are closely related to Theorem 5.1 in [22].
We remind that r is continuous on K and q is Feller.
Moreover, by Lemma 1.1 the set-valued mappings s �→
P (A(s)) and s �→ P (B(s)) are continuous. If u is upper
semicontinuous, then by Lemma 2.1 and Berge’s theorems
(see pp. 115-116 in [1]) Tβu is upper semicontinuous and by
a minimax selection theorem [21], there exists some f ∈ F
such that

(Tβu)(s) = max
ν∈P (A(s))

inf
ρ∈P (B(s))

[r(s, ν, ρ) +

β

∫
S

u(y)q(dy|s, ν, ρ)]

= inf
ρ∈P (B(s))

[r(s, f(s), ρ) +

β

∫
S

u(y)q(dy|s, f(s), ρ)], (4)

for each s ∈ S. Similarly, if u is lower semicontinuous,
then by Lemma 2.1 and Berge’s theorems, Tβu is lower
semicontinuous and by Fan’s minimax theorem [4] and a
measurable selection theorem [21], there exists some g ∈ G
such that

(Tβu)(s) = min
ρ∈P (B(s))

sup
ν∈P (A(s))

[r(s, ν, ρ) +

β

∫
S

u(y)q(dy|s, ν, ρ)]

= sup
ν∈P (A(s))

[r(s, ν, g(s)) +

β

∫
S

u(y)q(dy|s, ν, g(s)], (5)

for each s ∈ S.

Let u ∈ CV (S). Then, by Fan’s minimax theorem [4], (4)
and (5), Tβu ∈ CV (S).
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III. FATOU’S LEMMA FOR VARYING
PROBABILITY MEASURES

Let {wn} be a sequence of functions in L∞
V (S). As in [26],

we consider the following ”generalized liminf (limsup)”:

w∗(s) := inf{lim inf
n→∞ wn(sn) : sn → s} (6)

and
w∗(s) := sup{lim sup

n→∞
wn(sn) : sn → s}. (7)

Lemma 3.1: The function w∗ (w∗) is lower (upper) semi-
continuous.

Lemma 3.2: Let {µn} ⊂ P (S) be converging weakly to
some µ0 ∈ P (S). If {vn} is a sequence of nonnegative Borel
measurable functions on S and v∗ is defined as in (6), then∫

S

v∗(s)µ0(ds) ≤ lim inf
n→∞

∫
S

vn(s)µn(ds), (8)

and if the functions {vn} are nonpositive, then∫
S

v∗(s)µ0(ds) ≥ lim sup
n→∞

∫
S

vn(s)µn(ds) (9)

with v∗ defined as in (7).
Proof: Inequality (8) easily follows Lemma 3.2 in

[26].Obviously, (9) can be easily concluded from (8) by
taking into account the sequence {−vn}. �

Lemma 3.3: Assume that {µn} converges weakly to some
µ0 ∈ P (S) and {wn} is a sequence of functions in CV (S)
such that ‖wn‖V ≤ b for all n and some constant b > 0.
If V is a continuous function and

∫
S

V (s)µm(ds) < ∞ for
every m ≥ 0 and∫

S

V (s)µm(ds) →
∫

S

V (s)µ0(ds) (10)

as m → ∞, then∫
S

w∗(s)µ0(ds) ≤ lim inf
n→∞

∫
S

wn(s)µn(ds), (11)

and ∫
S

w∗(s)µ0(ds) ≥ lim sup
n→∞

∫
S

wn(s)µn(ds). (12)

Proof: Define vn(s) := wn(s)+bV (s) and note that vn ≥
0. For any s ∈ S and arbitrary sequence sn → s as n → ∞,
we have

lim inf
n→∞ vn(sn) = bV (s) + lim inf

n→∞ wn(sn).

Hence v∗(s) = bV (s) + w∗(s), s ∈ S, and consequently∫
S

v∗(s)µ0(ds) = b

∫
S

V (s)µ0(ds) +
∫

S

w∗(s)µ0(ds).

Applying (8) to the sequence {vn} and (10), we easily get

lim inf
n→∞

∫
S

wn(s)µn(ds) + b

∫
S

V (s)µ0(ds)

= lim inf
n→∞

∫
S

vn(s)µn(ds)

≥
∫

S

v∗(s)µ0(ds) =
∫

S

w∗(s)µ0(ds) +

b

∫
S

V (s)µ0(ds)

which immediately gives (11).
Similarly, (12) can be concluded from (9) by taking

vn(s) := wn(s) − bV (s) ≤ 0. �

IV. MAIN RESULTS

Theorem 4.1: Assume (i)–(v), C1-C4, and C5(4). (a) The
finite horizon discounted stochastic game has a value and
both players have optimal Markov strategies. Moreover, if ξk

is the value function for the k-stage game, then ξk ∈ CV (S)
and

ξn+1(s) = (Tβξn)(s) for each s ∈ S, n ≥ 1.

(b) The discounted stochastic game has a value ξβ and
both players have optimal stationary strategies fβ ∈ F and
gβ ∈ G. Moreover, ξβ ∈ CV (S) and

ξβ(s) = (Tβξβ)(s) = r(s, fβ(s), gβ(s)) +

β

∫
S

ξβ(y)q(dy|s, fβ(s), gβ(s))

= max
ν∈P (A(s))

[r(s, ν, gβ(s)) +

β

∫
S

ξβ(y)q(dy|s, ν, gβ(s))]

= min
ρ∈P (B(s))

[r(s, fβ(s), ρ) +

β

∫
S

ξβ(y)q(dy|s, fβ(s), ρ)] (13)

for every s ∈ S.
Proof: For the proof the reader is referred to [14]. �

Theorem 4.2: Assume (i)–(v) and C1-C5. Then the
average payoff stochastic game has a value ξ which is
independent of the initial state and both players have optimal
stationary strategies. Moreover, ξ = lim

β→1
(1 − β)ξβ(s∗) for

any state s∗ ∈ S.
Proof: By Theorem 4.1 the value ξβ of the β-discounted

game and stationary strategies fβ ∈ F, gβ ∈ G exist for
every β ∈ (0, 1). Fix a state s∗ ∈ S and consider a sequence
{βn} of discount factors converging to one. Define

wn(s) = ξβn
(s) − ξβn

(s∗), ξn = (1 − βn)ξβn
(s∗).

Then, from (13), it follows that

ξn + wn(s) = min
ρ∈P (B(s))

max
ν∈P (A(s))

[r(s, ν, ρ) +

βn

∫
S

wn(t)q(dt|s, ν, ρ)] (14)

= max
ν∈P (A(s))

[r(s, ν, gβn(s)) +

βn

∫
S

wn(t)q(dt|s, ν, gβn(s))] s ∈ S.

By an argument given on page 135 in [8], the sequence {ξn}
is bounded and there is no loss of generality to assume that
ξn converges to some real number ξ∗ as n → ∞. Moreover,
by Lemma 10.4.2 in [8], it follows that ‖wn‖V ≤ b for
some constant b. Now, we fix a state s0 ∈ S and consider
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an arbitrary sequence of states {sn} such that sn → s0 as
n → ∞. Then from (14), putting gn := gβn

, we obtain

ξn + wn(sn) = max
ν∈P (A(sn))

[r(sn, ν, gn(sn)) + (15)

βn

∫
S

wn(y)q(dy|sn, ν, gn(sn))].

Let {nk} be a subsequence of positive integers for which

lim inf
n→∞ wn(sn) = lim

k→∞
wnk

(snk
).

Obviously, limk→∞ ξnk
= ξ∗ and

ξ∗ + lim inf
n→∞ wn(sn) = lim inf

n→∞ [ξn + wn(sn)]

= lim
k→∞

[ξnk
+ wnk

(snk
)].

Consequently, from (15), we obtain

ξ∗ + lim inf
n→∞ wn(sn)

= lim
k→∞

max
ν∈P (A(snk

))
[r(snk

, ν, gnk
(snk

)) +

βnk

∫
S

wnk
(y)q(dy|snk

, ν, gnk
(snk

))].

Let FC be the set of all continuous stationary strategies for
player 1. By Lemmas 1.1 and 1.2, FC is non-empty. Choose
any f ∈ FC . Then, we have

ξ∗ + lim inf
n→∞ wn(sn) (16)

≥ lim inf
k→∞

[r(snk
, f(snk

), gnk
(snk

)) +

βnk

∫
S

wnk
(y)q(dy|snk

, f(snk
), gnk

(snk
))].

Note that Z := {s0} ∪ {sn} is compact in S. We know
that the set-valued mapping s �→ P (B(s)) is continuous and
compact-valued. These facts together with Berge’s theorem
(see [1]) imply that

⋃
z∈Z P (B(z)) is compact in P (B).

Therefore, {gnk
(snk

)} has a subsequence converging to
some ρ0 ∈ P (B). Without loss of generality, let gnk

(snk
) →

ρ0, as k → ∞. By the continuity of s �→ P (B(s)), ρ0 ∈
P (B(s0)). On the other hand, f(snk

) → f(s0) ∈ P (A(s0)),
because f ∈ FC . Clearly, q(·|snk

, f(snk
), gnk

(snk
)) →

q(·|s0, f(s0), ρ0) weakly as k → ∞. By (16) and Lemma
3.3, we infer that

ξ∗ + lim inf
n→∞ wn(sn) (17)

≥ lim inf
k→∞

r(snk
, f(snk

), gnk
(snk

)) +

lim inf
k→∞

∫
S

wnk
(y)q(dy|snk

, f(snk
), gnk

(snk
))

≥ r(s0, f(s0), ρ0) +

lim inf
k→∞

∫
S

wnk
(y)q(dy|snk

, f(snk
), gnk

(snk
))

≥ r(s0, f(s0), ρ0) +
∫

S

w̄∗(y)q(dy|s0, f(s0), ρ0),

where w̄∗ is the generalized liminf of the sequence w̄k =
wnk

. Let w∗(s0) be the generalized liminf of {wn} defined

in (6). Then w∗ ≤ w̄∗ and applying this fact to (17), we get

ξ∗ + lim inf
n→∞ wn(sn) ≥ r(s0, f(s0), ρ0) +∫

S

w∗(y)q(dy|s0, f(s0), ρ0).

Furthermore, by the fact that a continuous selector f ∈ FC

can be chosen in such a way that an arbitrary value from
P (A(s)) is assigned to the point s0 (see Lemma 1.2), we
infer that

ξ∗ + lim inf
n→∞ wn(sn)

≥ sup
f∈FC

[r(s0, f(s0), ρ0) +
∫

S

w∗(y)q(dy|s0, f(s0), ρ0)]

= sup
ν∈P (A(s0))

[r(s0, ν, ρ) +
∫

S

w∗(y)q(dy|s0, ν, ρ)].

Since w∗ is lower semicontinuous (see Lemma 3.1), we can
write

ξ∗ + lim inf
n→∞ wn(sn)

≥ min
ρ∈P (B(s0))

sup
ν∈P (A(s0))

[r(s0, ν, ρ) +∫
S

w∗(y)q(dy|s0, ν, ρ)].

By the definition of w∗, see (6), we have

ξ∗ + w∗(s0) ≥ min
ρ∈P (B(s0))

sup
ν∈P (A(s0))

[r(s0, ν, ρ) +∫
S

w∗(y)q(dy|s0, ν, ρ)] (18)

Since s0 was chosen arbitrarily, then (18) holds with s0

replaced by any s ∈ S.
We already know that the function w∗ is lower semicontin-

uous. By (18) and a minimax measurable selection theorem
(see (5)), there exists some g∗ ∈ G such that

ξ∗+w∗(s) ≥ r(s, ν, g∗(s))+
∫

S

w∗(y)q(dy|s, ν, g∗(s)) (19)

for every s ∈ S and ν ∈ P (A(s)). Iterating (19), one can
show in a standard manner (see [8]) that

ξ∗ ≥ sup
π∈Π

J(s, π, g∗) ≥ U(s) (20)

for each s ∈ S.
Now, let fβn

= fn be a stationary optimal strategy to
player 1 in the βn discounted stochastic game. We need to
prove that ξ∗ ≤ L(s). From (14) and Fan’s minimax theorem
[4], it can be easily seen that

ξn + wn(sn) = min
ρ∈P (B(sn))

[r(sn, fn(sn), ρ) +

βn

∫
S

wn(y)q(dy|sn, fn(sn), ρ)].

Assume that sn → s0 and consider the generalized limsup
w∗(s0) (see (7)). Proceeding along similar lines, we take
again a subsequence {nk} of positive integers such that

lim sup
n→∞

wn(sn) = lim
k→∞

wnk
(snk

).
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Then using Lemma 3.3 and (4), we obtain some f∗ ∈ F
such that

ξ∗ + w∗(s) ≤ r(s, f∗(s), ρ) +∫
S

w∗(y)q(dy|s, f∗(s), ρ) (21)

for every s ∈ S and ρ ∈ P (B(s)). Again standard dynamic
programming arguments, based on (21), show that

ξ∗ ≤ inf
γ∈Γ

J(s, f∗, γ) ≤ L(s), (22)

for each s ∈ S. By (20) and (22), we have

ξ∗ = sup
π∈Π

J(s, π, g∗) = inf
γ∈Γ

J(s, f∗, γ)

= J(s, f∗, g∗) = J(f∗, g∗), (23)

that is, the game has a value ξ(s) = ξ∗, and f∗, g∗ are
stationary optimal strategies for players 1 and 2, respectively.
�

V. FINAL REMARKS

Theorem 4.2 is a first result on ergodic stochastic
games with Feller transition probabilities satisfying fairly
general assumptions. All related papers [11], [12], [17],
[23], [27] are based on the strong continuity assumption
on q saying that the mapping (s, a, b) �→ q(D|s, a, b) is
continuous in (a, b) for every Borel subset D of S. The
payoffs and transitions in the mentioned papers need not be
continuous with respect to the state variable. The situation
studied in this paper is somewhat more delicate. Note that
to overcome some technical difficulties we have to use
Michael’s theorem on continuous selections [20], which
plays no part in the proofs given in the aforementioned.
Feller transition probabilities are in some applications more
natural than strongly continuous ones.

REFERENCES

[1] E. Berge, Topological Spaces, MacMillan, New York; 1963.
[2] D.P. Bertsekas and S.E. Shreve, Stochastic Optimal Control: The

Discrete Time Case, Academic Press, New York; 1978.
[3] L.O. Curtat, Markov equilibria of stochastic games with complemen-

tarities, Games Econ. Behavior, vol. 17, 1996, pp 177-199.
[4] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A., vol. 39, 1953,

pp 42-47.

[5] D. Duffie, J. Geanakoplos, A. Mas-Colell and A. McLennan, Station-
ary Markov equilibria, Econometrica, vol. 62, 1994, pp 745-782.

[6] E.A. Feinberg and M.E. Lewis, Optimality of four-treshold policies
in inventory systems with customer returns and borrowing/storage
options, Probab. in Engineering and Informational Science, 2004.
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[25] D. Repovš, and P.V. Semenov, Continuous Selections of Multivalued
Mappings, Kluwer Acad. Publishers, Dordrecht; 1998.

[26] R. Serfozo, Convergence of Lebesgue integrals with varying measures,
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