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Abstract— This paper presents algorithms for the compu-
tation of the set of states that can be robustly steered in a
finite number of steps via state feedback control to a given
target set while avoiding pre–specified zones or obstacles.
The paper therefore extends standard results in (robust) time
optimal control. A general procedure is given for the case when
the system is discrete-time, nonlinear and time-invariant, and
subject to constraints on the state and input. Furthermore,
the paper shows how the necessary set computations may be
performed using polyhedral algebra, linear programming and
computational geometry software, when the system is piecewise
affine with additive state disturbances.

I. INTRODUCTION

The importance of the obstacle avoidance problem is
stressed in a seminal plenary lecture by A.B. Kurzhan-
ski [1], while a more detailed discussion is given in [2]. In
these papers, the obstacle avoidance problem is considered
in a continuous time framework and when the system is
deterministic (disturbance free case). The solution to this
reachability problem is obtained by specifying an equivalent
dynamic optimization problem. The set of states that can
be steered to a given target set, while satisfying state and
control constraints and avoiding obstacles, is characterized
as the set of states belonging to an appropriate level set
of the value function of the dynamic optimization problem
(obtained by solving a Hamilton-Jacobi-Bellman equation).
Additional results related to the time optimal, optimal and
suboptimal obstacle avoidance problem can be found in [3]–
[7]. These papers also provide a set of examples of the
obstacle avoidance problem – including, for example, aircraft
trajectory planning with collision avoidance and robot path
planning. It is remarked in these papers that control under
the avoidance constraints raises interesting problems. Most
existing results treat the deterministic case when external
disturbances are not present. The computational demands
and complexity of the (robust) time optimal control obstacle
avoidance problem are amplified if the system is subject to
additive, bounded disturbances.

The main purpose of this paper is to demonstrate that
the obstacle avoidance problem in the discrete time setup
has considerable structure, even when the disturbances are
present; this structure permits, in some cases, the derivation
of an efficient algorithm based on set computations and
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polyhedral algebra. Our results extend standard ideas in
robust time-optimal control [8]–[12].

This paper is organized as follows. Section 2 is concerned
with preliminaries and necessary computational geometry
tools. Section 3 characterizes the solution for robust time
optimal obstacle avoidance problem. Section 4 provides a set
of specific results for the cases when the controlled system is
piecewise affine discrete time. Section 5 presents a method
for selecting feedback robust time optimal controllers. Sec-
tion 6 gives an interesting example. Finally, Section 7
presents conclusions and indicates possible extensions. A
more detailed exposition of the results stated in this paper
can be found in [13].

NOTATION AND BASIC DEFINITIONS: Let N �

{0, 1, 2, . . .}, N+ � {1, 2, . . .}; for a q ∈ N+ let Nq �

{0, 1, . . . , q} and N
+
q � {1, . . . , q}. Given two sets U and V ,

such that U ⊂ R
n and V ⊂ R

n, the Minkowski (vector) sum
is defined by U⊕V � {u+v | u ∈ U , v ∈ V}, the Pontryagin
(geometric) set difference is: U � V � {x | x ⊕ V ⊆ U}.
Given a set U ⊆ R

n, 2U denotes the power set (set of all
subsets) of U . A polyhedron is the (convex) intersection of a
finite number of open and/or closed half-spaces. A polytope
is a compact (i.e. closed and bounded) polyhedron. A closed
(An open) polygon is the (possibly non-convex) union of a
finite number of polytopes (polyhedra).

II. PRELIMINARIES

A. Problem Formulation and Preliminary Definitions

We consider the discrete-time, time-invariant system:

x+ = f(x, u, w) (1)

where x ∈ R
n is the current state, u ∈ R

n is the current
control input and x+ is the successor state; the bounded
disturbance w is known only to that extent that it belongs
to the compact set W ⊂ R

p that contains the origin in its
interior. The function f : R

n ×R
m ×R

p → R
n is assumed

to be continuous.
The system is subject to hard state and input constraints:

(x, u) ∈ X × U (2)

where X and U are closed and compact sets respectively,
each containing the origin in its interior. Additionally it is
required that the state trajectories avoid a predefined open
set Z introducing an additional state constraint

x /∈ Z. (3)
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The set Z is in general specified as the union of a finite
number of open sets:

Z �
⋃

j∈Nq

Zj , (4)

where q ∈ N is a finite integer, and the sets Zj are open sets.
The problems considered in this paper are: (i) Character-

ization of the set of states that can be robustly steered to a
given compact target set T in minimal time while satisfying
the state and control constraints (2) and (3), for all admissible
disturbance sequences, and (ii) Synthesis of a robust time –
optimal control strategy.

We treat the general case in Section III and then provide a
detailed analysis in Section IV for the case when the system
being controlled is piecewise affine, the corresponding con-
straints sets X, U in (2) are, respectively, closed polygonic
and polytopic set and Z in (3) is an open polygon.

We recall a few standard definitions in the set invariance
theory [14].

Definition 1: A set Ω ⊂ R
n is a robust control invariant

(RCI) set for the system x+ = f(x, u, w) and constraint set
(X, U, W) if Ω ⊆ X and for all x ∈ Ω there exists a u ∈ U

such that f(x, u, w) ∈ Ω for all w ∈ W.
A set Ω ⊂ R

n is a control invariant (CI) set for the system
x+ = f(x, u) and constraint set (X, U) if Ω ⊆ X and for all
x ∈ Ω there exists a u ∈ U such that f(x, u) ∈ Ω.

Given a control law ν : R
n → R

m, let:

Xν � X ∩ {x | ν(x) ∈ U} (5)

Definition 2: A set Ω ⊂ R
n is a robust positively invariant

(RPI) set for system x+ = f(x, ν(x), w) and constraint set
(Xν , W) if Ω ⊆ Xν and f(x, ν(x), w) ∈ Ω, ∀w ∈ W,
∀x ∈ Ω.

A set Ω ⊂ R
n is a positively invariant (RPI) set for system

x+ = f(x, ν(x)) and constraint set Xν if Ω ⊆ Xν and
f(x, ν(x)) ∈ Ω, ∀x ∈ Ω.

We also need the following definition:
Definition 3: The set Ω is robust asymptotically (finite-

time) attractive, for the controlled system x+ =
f(x, ν(x), w), with domain of attraction Ψ if, for all x(0) ∈
Ψ, d(x(i),Ω) → 0 as i → ∞ (there exists a time I such
that x(i) ∈ Ω for all i ≥ I) for all admissible disturbance
sequences.

B. Necessary computational geometry tools

We now present some tools that are required for set
computations with polygons, also used in [12], [15]. For
computation of the set difference of two polyhedra the reader
is referred to [16]. The first two results show how the set
difference of a polygon and a polyhedron (or a polygon)
may be computed:

Proposition 1: Let C �
⋃p

j=1 Cj be a polygon, where all
the Cj , j ∈ N

+
q , are non-empty polyhedra. If A is a non-

empty polyhedron, then C \A =
⋃p

j=1(Cj \A) is a polygon.
Proposition 2: Let the sets C �

⋃p

j=1 Cj and D �⋃q

k=1 Dk be polygons, where all the Cj , j ∈ N
+
p , and

Dk, k ∈ N
+
q , are non-empty polyhedra. If E0 � C and

Ek � Ek−1 \ Dk, k ∈ N
+
q then C \ D = Eq is a polygon.

The reader is referred to [15] for proofs and comments on
computational efficiency.

An efficient algorithm for computing the Pontryagin
(Minkowski (geometric) Set) difference of a polygon and
a polytope is discussed next. If A and B are two subsets
of R

n it is known (see for instance [17], [18]) that A �
B = [Ac ⊕ (−B)]

c. The following algorithm implements
the computation of the Pontryagin difference of a polygon
C � ∪j∈N

+
p
Cj , where Cj , j ∈ N

+
p are polytopes in R

n, and a
polytope B ⊂ R

n.
Algorithm 2.1 (C � B):
1) Input: polygon C, polytope B
2) H = convh(C)
3) D = H� B
4) E = H \ C
5) F = E ⊕ (−B)
6) G = D \ F
7) Output: polygon G
Proposition 3: [12], [19] If the input to Algorithm 2.1 is

a polygon C and a polytope B, then the output is the polygon
G = C � B.

Algorithm 2.1 is illustrated on sample polygons in Fig-
ures 1(a) to 1(f). The Pontryagin set difference C � B is not
necessarily equal to ∪j∈N

+
p
(Cj �B); in general ∪j∈N

+
p
(Cj �

B) ⊆ C � B (equality holds only in a limited number of
cases). Algorithm 2.1 for computation of the Pontryagin
difference is conceptually similar to that proposed in [17],
[18]. However, computing the convex hull in the first step
significantly reduces (in general) the number of sets obtained
at step 3, which in turn results in fewer Minkowski set
additions. Since computation of Minkowski set addition is
expensive, a reasonable runtime improvement is expected.
In principle, computation of the convex hull can be replaced
by computation of any convex set containing the polygon
C. Necessary computations can be efficiently implemented
by using standard computational geometry software such as
[20]–[22].

III. ROBUST TIME OPTIMAL OBSTACLE AVOIDANCE

PROBLEM – GENERAL CASE

The state constraints, specified in (2) – (4) may be
converted in a single, non-convex, state constraint x ∈ XZ

where:
XZ � X \ Z = X \

⋃
j∈Nq

Zj (6)

If Z ⊆ interior(X), XZ is a non–empty and closed set.
Additionally, if the set Z is an open polygon and X is a
closed polygonic set then the set XZ is a closed polygon by
Proposition 2. In this case, it follows by Proposition 2 that
the set XZ can be expressed by:

XZ �
⋃

j∈Nr

XZj , (7)

where r is a finite integer and the sets XZj , j ∈ Nr are
constituent polytopes of the polygon XZ.
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Fig. 1. Graphical Illustration of Algorithm 2.1.

In order to have a well–defined problem we make the
following standing assumption:

Assumption 1: The sets X, T, Z satisfy that (i) Z ⊆
interior(X) and (ii) T ⊆ XZ = X \ Z.
Let π � {µi(·), i ∈ NN−1}, where, for each i ∈ NN−1,
µi(·) : XZ → U, denote a control policy (sequence of
control laws). Also, let φ(i;x, π,w) denote the solution
to (1) at time instant i, given the initial state x (at time
0), control policy π, and an admissible disturbance sequence
w � {w0, w1, w2, . . .} (wi ∈ W,∀i ∈ N).

The robust time–optimal obstacle avoidance problem P(x)
is defined, as usual in robust time–optimal control problems
by:

N0(x) � inf
π,N

{N | (π,N) ∈ ΠN (x) × NNmax
}, (8)

where Nmax ∈ N is an upper bound on the horizon and
ΠN (x), the set of admissible control policies, is defined as
follows:

ΠN (x) � {π | (xi, ui) ∈ XZ × U, ∀i ∈ NN−1,

xN ∈ T, ∀w} (9)

where, for each i ∈ N, xi � φ(i;x, π,w) and ui �

µi(φ(i;x, π,w)). The solution is sought in the class of
the state feedback control laws because of the additive
disturbance. The solution to P(x) is(
π0(x), N0(x)

)
� arg inf

π,N
{N | (π,N) ∈ ΠN (x)×NNmax

}.

(10)
The value function of problem P(x) satisfies N0(x) ∈

NNmax
and, for any integer i, the robust controllable set

Xi � {x | N0(x) ≤ i} is the set of initial states that
can be robustly steered (for all w) to the target set T in i
steps or less while satisfying all state and control constraints,
and avoiding the obstacles, for all admissible disturbance
sequences. Hence N0(x) = i for all x ∈ Xi \ Xi−1.

The robust controllable sets {Xi} and the associated robust
time-optimal control laws κi : Xi → 2U can be computed
by the following standard recursion [23]:

Xi � {x ∈ XZ | ∃u ∈ U s.t. f(x, u, W) ⊆ Xi−1} (11)

κi(x) � {u ∈ U | f(x, u, W) ⊆ Xi−1}, ∀x ∈ Xi (12)

for i ∈ NNmax
with the boundary condition X0 = T and

where f(x, u, W) � {f(x, u, w) | w ∈ W}.
We now introduce the following assumption:
Assumption 2: (i) The set T is a robust control invariant

set for system (1) and constraint set (XZ, U, W).

(ii) The control law ν : XZ → U is such that T is RPI for
system (1) and constraint set (Xν , W), where Xν � XZ∩Xν

and Xν is defined by:

Xν � {x | ν(x) ∈ U}. (13)

The control law ν(·) in Assumption 2(ii) exists by Assump-
tion 2(i).

Since Assumption 2 implies that X0 = T is a RCI set for
system (1) and constraint set (XZ, U, W) we consider the
following time-invariant (and set valued) control law κ0 :
XNmax

→ 2U defined, for all i ∈ NNmax
, by

κ0(x) �

{
κi(x), ∀x ∈ Xi \ Xi−1, i ≥ 1

ν(x), ∀x ∈ X0

(14)

The control law κ0 : XNmax
→ 2U robustly steers any x ∈

Xi to X0 in i steps or less to X0, while satisfying state and
control constraints and avoiding the obstacles, and thereafter
maintains the state in X0. We now recall a standard result
in robust time–optimal control [10]:

Proposition 4: Suppose that Assumption 2 holds and let
X0 � T where T satisfies Assumption 2(i), then the set
sequence {Xi} computed using the recursion (11) is a non-
decreasing sequence of RCI sets for system (1) and constraint
set (XZ, U, W), i.e. Xi ⊆ Xi+1 ⊆ XZ for all i ∈ NNmax

and
Xi is a RCI set for system (1) and constraint set (XZ, U, W)
for all i ∈ NNmax

.

The following property of the set-valued control law κ0(·)
defined in (14) follows directly from the construction of
κ0(·):

Theorem 1: Suppose that Assumption 2 holds and let
X0 � T where T satisfies Assumption 2(i). The target set
X0 � T is robustly finite-time attractive for the closed-loop
system x+ ∈ f(x, κ0(x), W) with a region of attraction
XNmax

.

It is clear that the solution of the robust time optimal
obstacle avoidance problem requires efficient computational
algorithms for performing the set operations in (6), (11)
and (12). A set of necessary computational procedures is
given by propositions 1– 3. Our next step is to demonstrate
that in certain relevant and important cases is possible to em-
ploy standard computational geometry software (polyhedral
algebra) in order to characterize the sets sequence {Xi} and
the corresponding set valued control laws {κi(·)}.
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IV. ROBUST TIME OPTIMAL OBSTACLE AVOIDANCE

PROBLEM – PIECEWISE AFFINE DISCRETE TIME

SYSTEMS

In this section we treat the case when the system defined
in (1) is piecewise affine:

x+ = f(x, u, w) = fl(x, u, w), ∀(x, u) ∈ Pl,

fl(x, u, w) � Alx + Blu + cl + w, ∀l ∈ N
+
t (15)

The function f(·) is assumed to be continuous and the
polytopes Pl, i ∈ N

+
t , have disjoint interiors and cover the

region Y � X × U of state/control space of interest so that⋃
k∈N

+
t

Pk = Y ⊆ R
n+m and interior(Pk)

⋂
interior(Pj) =

∅ for all k �= j, k, j ∈ N
+
t . The set of sets {Pk | k ∈ N

+
q }

is a polytopic partition of Y.
Our assumptions on the constraint sets are that the sets X

and U are polygonic and a polytopic, respectively, and the
disturbance set W is polytopic; each of the sets contains the
origin as an interior point. The set Z is an open polygon.

In this case, the standard recursion for the computation of
the robustly controllable sets {Xi} and the associated robust
time-optimal control laws κi : Xi → 2U (11) and (12) is:

Xi � {x ∈ XZ | ∃u ∈ U s.t. f(x, u, W) ⊆ Xi−1} (16)

κi(x) � {u ∈ U | f(x, u, W) ⊆ Xi−1}, ∀x ∈ Xi (17)

for each i ∈ NNmax
with boundary condition X0 = T.

Our next step is to provide a detailed characterization of
the sets {Xi} under assumption that the set X0 = T is a
polygon:

Xi � {x ∈ XZ | ∃u ∈ U s.t. f(x, u, W) ⊆ Xi−1} (18)

= {x ∈ XZ | ∃u ∈ U s.t. f(x, u, 0) ∈ Xi−1 � W} (19)

In going from (18) to (19) we have used the fact that
f(x, u, w) = f(x, u, 0) + w for the system defined in (15).
We proceed by exploiting the definition of f(·):

Xi =
⋃

l∈N
+
t

{x ∈ XZ | ∃u ∈ U s.t. (x, u) ∈ Pl

fl(x, u, 0) ∈ Xi−1 � W}

=
⋃

l∈N
+
t

{x ∈
⋃

j∈Nr

XZj | ∃u ∈ U s.t. (x, u) ∈ Pl

Alx + Blu + cl ∈ Xi−1 � W}

=
⋃

(j,l)∈Nr×N
+
t

{x ∈ XZj | ∃u ∈ U s.t. (x, u) ∈ Pl

Alx + Blu + cl ∈ Xi−1 � W} (20)

It follows from Proposition 3 that, since Xi, i ∈ NNmax
, is a

polygon (polytope), so is Yi � Xi−1 � W, i ∈ N
+
Nmax

.
Hence, for each i ∈ N

+
Nmax

, Yi � Xi−1 � W may be
expressed in terms of its constituent polytopes Y(i,k), k ∈ Nqi

for some finite integer qi, by Yi =
⋃

k∈Nqi
Y(i,k). Exploiting

this fact, it follows from (20) that:

Xi =
⋃

(j,l)∈Nr×N
+
t

{x ∈ XZj | ∃u ∈ U s.t. (x, u) ∈ Pl,

Alx + Blu + cl ∈ Yi}

=
⋃

(j,l)∈Nr×N
+
t

{x ∈ XZj | ∃u ∈ U s.t. (x, u) ∈ Pl,

Alx + Blu + cl ∈
⋃

k∈Nqi

Y(i,k)}

so that

Xi =
⋃

(j,l,k)∈Nr×N
+
t ×Nqi

{x ∈ XZj | ∃u ∈ U s.t. (x, u) ∈ Pl,

Alx + Blu + cl ∈ Y(i,k)}

=
⋃

(j,l,k)∈Nr×N
+
t ×Nqi

X(i,j,l,k) where

X(i,j,l,k) � {x ∈ XZj | ∃u ∈ U s.t. (x, u) ∈ Pl,

Alx + Blu + cl ∈ Y(i,k)} (21)

and index set (i, j, l, k) ∈ NNmax
× Nr × N

+
t × Nqi

is such
that i indexes time, j indexes the jth constituent polytope of
non–convex state constraints XZ (7), l indexes the polytope
Pl in (x, u) space in which f(x, u, 0) = Alx + Blu + cl

is affine, and (i, k) specifies the kth constituent polytope in
Yi � Xi−1 � W.

A similar argument shows that for all (i, j, l, k) ∈
NNmax

× Nr × N
+
t × Nqi

:

κ(i,j,l,k)(x) ⊆ κi(x), ∀x ∈ X(i,j,l,k), (22)

where

κ(i,j,l,k)(x) � {u ∈ U | (x, u) ∈ Pl,

Alx + Blu + cl ∈ Y(i,k)}, ∀x ∈ X(i,j,l,k),
(23)

with X(i,j,l,k) defined in (21). For every x ∈ Xi let:

Ni(x) � {(j, l, k) ∈ Nr × N
+
t × Nqi

| x ∈ X(i,j,l,k)}, (24)

so that:

κi(x) =
⋃

(j,l,k)∈Ni(x)

κ(i,j,l,k)(x), ∀x ∈ Xi. (25)

We observe that at time i it is necessary to consider
those integer triplets (j, l, k) ∈ Nr × N

+
t × Nqi

for which
X(i,j,l,k) �= ∅. The set X(i,j,l,k) specified by (21) is easily
computed by the standard computational software, since:

X(i,j,l,k) = ProjXZ(i,j,l,k) where

Z(i,j,l,k) � {(x, u) ∈
(
XZj × U

) ⋂
Pl |

Alx + Blu + cl ∈ Y(i,k)} (26)

If the Assumption 2 (with f(·) defined in (15)) holds
the results of Proposition 4 and Theorem 1 are directly
applicable to this relevant case. A final conclusion, for the
case when the considered system is piecewise affine, is that
if the target set T is a RCI polygon, the set sequence {Xi}
is also a RCI sequence of polygons.
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V. SELECTION OF CONTROL LAWS κ(i,j,l,k)(·)

For any i ∈ NNmax
an appropriate selection of the control

laws κ(i,j,l,k)(·) can be obtained by employing the paramet-
ric mathematical programming as we briefly demonstrate
next. For each i ≥ 1, i ∈ NNmax

let V
(p,l)
i (x, u) be any

linear or quadratic (strictly convex) function in (x, u), for
instance:

V
(p,l)
i (x, u) � |Alx + Blu + cl|

2
Q (27)

Consider the piecewise affine case and an appropriate
way of selecting the feedback control law κ(i,j,l,k)(·). Since
Z(i,j,l,k) defined in (26) is a polyhedral set and since

V
(p,l)
i (x, u) is a linear or a quadratic (strictly convex)

function it follows that for each i ≥ 1, i ∈ NNmax
the

optimization problem P
l
i(x):

θ0
(i,j,l,k)(x) � arg inf

u
{V

(p,l)
i (x, u) | (x, u) ∈ Z(i,j,l,k)}

(28)
is a parametric linear/quadratic problem. As is well
know [16], [24]–[26], the solution takes the form of a piece-
wise affine function of the state x; for all x ∈ X(i,j,l,k) =
ProjXZ(i,j,l,k):

θ0
(i,j,l,k)(x) = S(i,j,l,k,h)x + s(i,j,l,k,h), x ∈ R(i,j,l,k,h),

h ∈ Nli (29)

where li is a finite integer and the union of polyhedral
sets R(i,j,l,k,h) partition the set X(i,j,l,k), i.e. X(i,j,l,k) =⋃

h∈Nli

R(i,j,l,k,h).

If we define (i, j, l, k)0(x) by:

(i, j, l, k)0(x) � arg inf
(i,j,l,k)

{i | x ∈ X(i,j,l,k),

(i, j, l, k) ∈ NNmax
× Nr × N

+
t × Nqi

} (30)

it follows that

θ0
(i,j,l,k)0(x)(x) ∈ κ(i,j,l,k)(x) ⊆ κi(x), (31)

for all x ∈ X(i,j,l,k), all i ≥ 1, and all (i, j, l, k) ∈ NNmax
×

Nr × N
+
t × Nqi

.

VI. ILLUSTRATIVE EXAMPLE

Our illustrative example is the second order unstable linear
system:

x+ =

[
1 0
1 1

]
x +

[
1
1

]
u + w (32)

where
w ∈ W � {w ∈ R

2 | |w|∞ ≤ 1}.

The following set of ‘standard’ state and control constraints
is required to be satisfied:

X ={x | |x|∞ ≤ 15},

U ={u | |u| ≤ 4} (33)

The obstacle configuration, state constraints and target set
are shown in Figure 2.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Z1

Z2
Z3Z4

Z5

Z6

Z7
Z8

Z9
Z10

Z11

X

T

Fig. 2. Obstacles, State Constraints and Target Set

The target set is robust control invariant and is computed
by method of [19], [27]. The set X0 is shown together with
the RCI set sequence {Xi}, i ∈ N3, computed by using
equations (20) – (21) (appropriately modified/simplified for
the linear case – for more details see [13]), in Figure 3. In
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Fig. 3. RCI Set Sequence {Xi}, i ∈ N3

Figure 4 we show the sets {Xi}, i ∈ N3 for the case when
W = {0}.
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VII. CONCLUSIONS AND CURRENT RESEARCH

Our results provide an exact solution of the robust obstacle
avoidance problem for constrained discrete time systems.
A complete characterization of the solution is given for
piecewise affine discrete time systems. The basic set structure
employed is a polygon. Complexity of the solution may
be considerable but the main advantage is that, the exact
solution is provided and the resultant computations can be
performed by using polyhedral algebra. The results in this
paper are also applicable to the case when W = {0} and
when system being controlled is linear/affine. The proposed
algorithms can be implemented by using standard computa-
tional geometry software [20], [22].

The results can be extended to address the optimal control
for obstacle avoidance problem with linear/quadratic perfor-
mance index. It is also possible to address the case when
the obstacles are given as a time varying set. An obvious
extension of the results reported in [28], [29] is possible.
This extension would allow for construction of an robust
control invariant tube by solving an appropriately specified
optimal control problem for nominal system with the re-
stricted constraints. The complexity of this problem would
be approximately equal to that required for optimal control
in the deterministic case, i.e. the resultant optimal control
problem could be posed as a mixed integer quadratic/linear
programming problem; a set of preliminary ideas is reported
in [30]. The proposed robust time optimal control scheme
guarantees robust obstacle avoidance at discrete moments;
this constraint should be additionally robustified, when the
scheme is implemented to the continuous-time dynamical
systems.

In conclusion, the robust time optimal avoidance problem
is addressed and a set of computational procedures is derived
for the relevant cases when the system being controlled is
piecewise affine. The method was illustrated by a numerical
example.
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[27] S. V. Raković, D. Q. Mayne, E. C. Kerrigan, and K. I. Kouramas,
“Optimized robust control invariant sets for constrained linear discrete
– time systems,” in Proceedings of the 16th IFAC World Congress IFAC
2005, Praha, Czech Republic, July 2005.

[28] D. Q. Mayne, M. Seron, and S. V. Raković, “Robust model predictive
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