
Abstract—The paper presents new characterizations of the 
uniform global asymptotic stability (UGAS) for nonlinear and 
time-varying discrete-time systems. Under mild assumptions, it 
is shown that weak zero-state detectability (WZSD) is 
equivalent to UGAS for globally uniformly stable systems. On 
the other hand, WZSD is further simplified by employing the 
notion of reduced limiting systems. Then, a second 
characterization of UGAS is proposed in terms of the 
detectability condition of the reduced limiting systems 
associated with the original system. As a result, we derive a 
generalized, discrete-time version of the well-known 
Krasovskii-LaSalle theorem but for time-varying, not 
necessarily periodic, systems.  

I. INTRODUCTION

HE purpose of this paper is to study the uniform global 
asymptotic stability (for short, UGAS) for nonlinear 
time-varying discrete-time systems with or without an 

output-dominant perturbation. Our research is motivated by 
control engineering applications in computer controlled 
systems [2] and, in particular, by sampled-data nonlinear 
control and stabilization of nonlinear discrete-time systems 
(see, for instance, [8]-[10] and numerous references therein). 
Other related but independent work includes recent studies on 
the derivation of stability criteria for nonlinear and 
non-autonomous discrete-time systems [9, 10]. 

In this paper, we exploit the theory of limiting equations 
originally proposed by Arstein [1] for nonautonomous 
ordinary differential equations, and establish a new set of 
stability results for discrete-time systems described by 
nonautonomous ordinary difference equations. Our main 
purpose is to develop two new characterizations of UGAS.

The first characterization of UGAS is based on the finding 
that, under some mild assumptions, weak-zero state 
detectability is equivalent to UGAS for globally stable 
discrete-time systems. The second characterization of UGAS 
says that to test UGAS for a time-varying discrete-time 
system it suffices to verify a detectability condition for its 
reduced limiting systems. It is shown how the first 
characterization of UGAS can serve as a fundamental tool to 
extend the classical Lyapunov Direct Method for stability 
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analysis of discrete-time systems. More interestingly, the 
second characterization of UGAS is a valuable tool for 
practical applications. Through the use of limiting systems, 
the checking UGAS of the original system is reduced down to 
the test of some detectability properties for its reduced 
limiting systems, which are often reminiscent of 
“zero-dynamics” of the original system. To save space, some 
results are only stated without proofs. Readers can contact the 
authors for the detailed proofs.  

II. PRELIMINARIES

In this section, we give several basic notions and results 
that are instrumental for the development of our main results 
in the rest of this paper. Throughout this paper, we denote 

0 ,Z 0 ,mZ n n m ,m Z

2 2 2
1 2 pv v v v , 1 2( , , , ) p

pv v v v  and 
p p

rB x x r  for any 0r . Whenever there is no 

confusion, we simply denote : .p
r rB B

A. Limiting solutions and detectability 

We study an uncertain, nonlinear, time-varying, 
discrete-time system described by

( 1) ( , ( )) ( , ( ))x n f n x n f n x n                       (1) 
( ) ( , ( ))y n h n x n                                            (2) 

where px  is a state vector, qy  is an output vector, 
and f, f and h are all functions defined on pZ  with 

( ,0) ( ,0) 0,  ( ,0) 0,f n f n h n n Z . System (1)-(2) is 
assumed in the output-injection form in the sense that 

( , ) ( ( , )), ,rf n x h n x n Z x r , for any 

0r and some continuous function : [0, )q
r rB  with 

(0) 0.r A function : m px Z  for some m Z  is said 
to be a solution of (1) starting from n m  if 

( 1) ( , ( )) ( , ( ))x n f n x n f n x n , mn Z . To simplify the 
whole discussions, we also assume that h  is continuous at 
every x , uniformly in n, i.e., for each px and each 0 ,
there exists a ( , ) 0x  so that 

( , ) ( , ) ,h n y h n x n Z , y x .
To make our work self-contained, let us first recall some 

definitions of stability. Consider system (1). The origin is said 
to be uniformly stable (US) if, for any 0  there exists a 

( ) 0  such that for all solutions : m px Z  of (1) 

On Uniform Global Asymptotic Stability
Nonlinear Discrete-Time Systems 

T. C. Lee and Z. P. Jiang 

T

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThA09.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 6585



satisfying ( )x m , we have ( ) ,x n n m . It is said 
that the solutions of (1) are globally uniformly bounded 
(GUB) if, for any 0r  there exists a ( ) 0r r r  such that 

for all solutions : m px Z  of (1) satisfying ( )x m r ,

we have ( ) ,x n r n m . Moreover, the origin is said to be 
uniformly globally stable (UGS) when the origin is US and 
all solutions of (1) are GUB. It is said to be uniformly 
globally asymptotically stable (UGAS) if, additionally, it is 
uniformly globally attractive, i.e., for any 0  and 0r
there exists a ( , ) 0T T r  such that every solution 

: m
rx Z B  of (1) satisfies ( ) ,x n n m T .

In the following, we introduce the discrete-time variant of 
the notion of limiting solutions originally introduced for 
continuous-time non-autonomous systems (see, e.g., [1]). In 
essence, it describes the limit behavior of solutions as initial 
time instants approach to infinity.  
Definition 1. A function :x Z X  is called a limiting 
solution of (1) with respect to an unbounded sequence { kt }

in Z , if there exist a 0r and a sequence : kt
k rx Z B

of solutions of (1) such that for each n Z , the associated 
sequence ( )k kx n t  converges to ( )x n .

The following lemma guarantees the existence of limiting 
solutions. It is a direct consequence of Arzela-Ascoli lemma 
[4]. Thus, detailed proofs are omitted.  
Lemma 1. Consider a system of the form (1)-(2). Let r be any 
positive constant. Then, for any unbounded sequence { mt } in 

Z  and any sequence : mt
m rx Z B  of solutions of (1), 

there exist a function : px Z and a subsequence { km }
of { m } such that for each n Z , the sequence 

( )
k km mx n t  converges to ( )x n , i.e., x  is a limiting 

solution of (1) with respect to {
kmt } .                                      

 In the following, let us state a necessary condition for 
UGAS in terms of limiting solutions.  
(C1) lim ( ) 0

n
x n for any limiting solution x  of (1). 

By employing the uniformly attractive property of UGAS, 
it is not difficult to establish the following result which will 
be used in the characterization of UGAS in next section. 
Lemma 2. Consider a system of the form (1)-(2). Then, (C1) 
is a necessary condition of UGAS.                                                

Now, we define a detectability condition in terms of 
limiting solutions. It plays a central role in our new 
characterizations of UGAS in nonautonomous discrete-time 
systems.
Definition 2. System (1)-(2) is weakly zero-state detectable 
(WZSD) if, for any limiting solution x of (1) with respect to 

an unbounded sequence { kt } in Z  that satisfies the 
following equation 

lim ( , ( )) 0, ,kk
h n t x n n Z                                 (3) 

we have
inf ( ) 0.n Z x n                                            (4) 

Remark 1. Notice that under uniform stability, (4) can be 
replaced by lim ( ) 0

n
x n . However, (4) is more convenient in 

practical applications [6].

B. Limiting functions: definition and basic properties 
In this subsection, a definition of limiting functions for 

discrete-time functions will be proposed. First, let us 
introduce the concept of limiting functions associated with a 
discrete-time function.   
Definition 3.  Let ˆ: p pg Z  be a function. An 
unbounded sequence kt  in Z  is said to be an 
admissible sequence associated with g  if there exists a 
function ˆ: p pg Z  such that the associated 

sequence ˆ : ( , ) ( , )k kg n x g n t x  converges pointwise to 

g  on pZ .  The function g  is uniquely determined 
and called as the limiting function of g associated with .   

For simplicity, we denote ( )g  the set of all admissible 
sequences associated with a function g . Recall that a 
function ˆ: p pg Z  is said to be uniformly bounded if, 
for any 0r  there exists a ( ) 0M r  so that ( , )g n x M

for all x r  and all n  in Z . We first give an interesting 
result about the uniformly bounded property. It can be proven 
by employing the connected property of  Euclidean spaces 
and the continuity of g. To save space, a detailed proof is 
omitted.  
Lemma 3. Suppose ˆ: p pg Z  is a function 
continuous at any x, uniformly in n. Suppose ( ,0)g n  is 
bounded. Then, g  is uniformly bounded.                               

In the theory of real analysis, it is well-known that every 
continuous function on p  is also uniformly continuous on 
every compact subset of p  [4]. In the following, we state an 
analog result for the function ˆ: p pg Z continuous at 
any x, uniformly in n. Since the proof is similar, it is omitted 
here. To state such a result, let us say that a function 

ˆ: p pg Z is uniformly continuous on a compact 
pK , uniformly in n, if for any 0 , there exists a 

( , )K  such that for all ˆ,x x K with ˆx x , we have 
ˆ( , ) ( , ) ,g n x g n x n Z .

Lemma 4. Suppose ˆ: p pg Z  is a function 
continuous at any x, uniformly in n. Then, for any compact 

pK , it is uniformly continuous on K, uniformly in n.     
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Now, we would like to show that under the assumption of 
Lemma 3, the function g can be served as a discrete-time 
version of asymptotically almost periodic (AAP) functions 
[6]. More explicitly, the following result can be derived from 
Arzela-Ascoli lemma [4].  

Proposition 1. Suppose ˆ: p pg Z  is a function 
continuous at any x, uniformly in n and ( ,0)g n  is bounded. 
Then, for any unbounded sequence { mt } in Z  there exist a 
subsequence { }km  of }{m  and a function 

ˆ: p pg Z  such that g is a limiting function of g

associated with 
kmt . Moreover, g  is also continuous at any

x, uniformly in n.
The following result is a direct consequence of Proposition 

1.
Corollary 1. Suppose ˆ: pa Z  is a bounded function. 
Then, for any unbounded sequence { mt } in Z  there exists a 

subsequence { km } of { m } such that ( )
kmt a .

Before closing this section, let us propose a simple result 
related to the limiting functions of a composition function. 
The proof follows readily from the continuity property and 
thus is omitted.  
Lemma 5. Let ˆ ˆ: p qF  be a continuous function and 

ˆ: p pg Z  be a function continuous at any x,
uniformly in n and ( ,0)g n  is bounded. Then, the 
composition function F g  of F and g is a function 
continuous at any x, uniformly in n and ( ,0)F g n  is 
bounded. Moreover, for any ( )g , we have ( )F g

and ( )F g F g .

III. MAIN RESULTS

A. First Characterization of UGAS 

In this subsection, we propose a new criterion for UGAS of 
time-varying systems. It is a generalization of the well-known 
Lyapunov theorem. Moreover, certain converse results will 
also be given. This way, a new characterization for UGAS 
can be proposed based on our approaches.

First, let us consider the following condition which, 
roughly speaking, states that the output energy eventually 
approaches to zero as the time goes to infinity.  
(C2) For each k  and each 0r , there exists a 

( , ) kM k r Z  such that, for any 0n Z  and any solution 
0: n

rx Z B  of (1),
0

0

21min ( , ( )) 1/ .m n k

n m nk m M
h n x n k                            (5) 

Based on (C2) and WZSD, we can obtain the following 
result guaranteeing UGAS. 

Proposition 2. Consider a system of the form (1)-(2) where 
h  is continuous at any x, uniformly in n. Suppose the origin 
is uniformly globally stable. Assume further that (C2) holds 
and the system is WZSD. Then, the origin is UGAS.                                   
Proof. The theorem will be proven by contradiction. Suppose 
the origin is not UGAS. Then, there exist a 0 0 and a 

0 0r  such that for each m , there exist some mt Z ,
m

ms Z  (thus, ms m ) and a solution : mt p
mx Z  of (1) 

satisfying 0( )m mx t r and 0( ) .m m mx s t  Since the 
solutions are globally uniformly bounded, there is also a 

0 0r  so that mx  lies within the compact set 
0r

B . Notice that, 

due to the fact 0( ) ,m m mx s t  uniform Lyapunov stability 
of the origin implies that there exists a 0 0( ) 0  such that 

0( )m mx n t  for all m  and all 0 mn s . For each 
k , let 0( , )M k r k  be the positive integer given in (C2). 
Now, choose a subsequence { km } of { m } satisfying 

0( , )km k M k r . In the following, let k be any positive 

integer. By (C2), there exists a kt Z , with 

0( , ),kk t M k r  so that
21

0
21

( , ( ))

min ( , ( )) 1/ .

k k k

mk

k
mk

k
k m m k mn

m t k
mn m tk m M

h n t t x n t t

h n x n k
              (6) 

Let ˆ
kk k mt t t k  and ˆˆ ( ) ( ), k

k

t
k mx n x n n Z . Then, ˆkx

is also a solution of (1) lying within the compact set 
0r

B  and 
(6) can be rewritten as

21

0
ˆ ˆˆ( , ( )) 1/ .

k
k k kn

h n t x n t k                           (7) 

Since 0( , )kt M k r , 0( , )km k M k r  and 
km ks m , we 

have
00 ( , )

kk k mn t k M k r m s , 0 .n k

This results in

0ˆˆ ( ) ( )
k kk k m k mx n t x n t t , 0 ,n k          (8) 

by the choice of 0 . Notice that, k̂t  is an unbounded 

sequence in Z . According to Lemma 1, there exist a 
subsequence mk  of k  and a function : px Z  such 

that for each n Z , the sequence ˆˆ ( )
m mk kx n t  converges 

to ( )x n , i.e., x  is a limiting solution of (1) with respect to 
ˆ{ }

mkt  .  For simplicity, let ˆ
mm kt t  and 

ˆ( ) ( ), , .m
m

t
m kx n x n n Z m  Then, for each m mx

is a solution of (1) lying within the compact set 
0r

B  and mt

is an unbounded sequence in Z . Notice that, for each 
n Z , the inequality 1mk n  holds for large enough m .
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In view of this fact and by using (7), the following 
inequalities can be derived:

2 2

21

0

lim ( , ( )) lim ( , ( ))

ˆ ˆˆlim ( , ( )) lim 1/ 0,m

m m m

m m m m
m m

k
k k k mnm m

h n t x n h n t x n t

h n t x n t k

for each n Z  where the first equality is from the 
assumption that h is continuous at any x, uniformly in n.
According to WZSD, it can be concluded that 
inf ( ) 0.n Z x n  On the other hand, for each n Z , the 

inequality mn k  holds for large enough m . This together 
with (8) shows that 

0
ˆˆ( ) lim ( ) , .

m mk km
x n x n t n Z

We reach a contradiction. Thus, the origin is UGAS and this 
completes the proof of the proposition.                                 

Let us further improve Proposition 1 by considering the 
following condition related to the output function. Roughly 
speaking, it says that the output energy is almost bounded.  

(H1) There exists a continuous function : [0, )q ,
with (0) 0  and ( ) 0v  for all 0v  such that, for each 

0 and each 0r there exists a constant 
( , ) 0M r such that, for all 0n Z  and all solutions 

0: n
rx Z B  of (1),

0

0
[ ( ( , ( ))) ] ( , ),n m

n n
h n x n M r .m          (9) 

Now, (C2) can be replaced by (H1) that is more easily 
verified in practical applications to guarantee UGAS of the 
origin. Particularly, the following result can be proposed.
Proposition 3. Consider a system of the form (1)-(2) where 
h is continuous with respect to x, uniformly in n. Suppose the 
origin is uniformly globally stable. Assume further that (H1) 
holds and the system is WZSD. Then, the origin is UGAS. 
Proof. Define a new output as 

( ( , )) , , py h h n x n Z x . Then, it is not 

difficult to see that h is also continuous in argument x,
uniformly in n. For each k , let 21/(4 )k . By virtue of 

(H1), for each 0r , there exists a positive constant ( , )M r

such that (9) holds. Choose a positive integer k̂  satisfying the 
inequality ˆ2 2 1kM k kM . Then, the following 
inequality can be derived: 

0 0

0 0

ˆˆ ( 1) 1 ( 1) 12

1

ˆ( , ( )) ( ( , ( ))) ( , ) ( 1) ,
n m k n k kk

m n n mk n n

h n x n h n x n M r k k

for any 0n Z  and any solutions 0: n
rx Z B  of (1). By the 

choices of  and k̂ , we have

0

0

( 1) 1 2

2ˆ1,2,...

ˆ 1 1min ( , ( )) ˆ ˆ 4

n m k

m k n n mk

M k k
h n x n

k kk k
 .

Thus, (C2) holds for the new output function h  with 
ˆM k k . Since h is continuous at x, uniformly in n, with 

( ,0) 0, ,h n n Z h  is also uniformly bounded according 

to Lemma 3. Moreover,  is a positive definite continuous 
function. Thus, (3) holds for the original output function h
when it holds for the new output function h h . Hence 

WZSD also holds for the new output function h h .
The proposition follows thus from Proposition 2.                 

In the following, let us show that the converse of Theorem 
1 is also true. First, it is interesting to note that (H1) is a 
necessary condition for UGAS, as stated in the following. 
Lemma 6. Consider the system (1)-(2) where h is continuous 
in argument x, uniformly in n. Then, (H1) holds provided that 
the origin is UGAS. 
Proof. Let : [0, )q  be any continuous function with  

(0) 0  and ( ) 0v  for all 0v . Since  is continuous, 
it is easy to see that h  is also continuous in argument x,
uniformly in n by the assumption of h. Moreover, we have 

( ( ,0)) 0,h n n Z . In particular, for any positive 
constant , there exists a positive constant 0 ( )  such that 

( ( , ))h n x , for all n Z  and all 0x . Since the 
origin is UGAS, it holds that for any 0r , there exist two 
positive constants ( )r r  and ( , )T r Z  so that for all 
solutions : m px Z  of (1) satisfying ( )x m r , we have 

( ) ,x n r n m , and 0( ) ,x n n m T . Since h is
continuous in argument x, uniformly in n, with 

( ( ,0)) 0, ,h n n Z  it is also uniformly bounded 
according to Lemma 3. Let 

sup ( ( , )) ,M h n x n Z x r . Then, for all 

0n Z  and all solutions 0: n
rx Z B of (1), we have: 

0

0
[ ( ( , ( ))) ] , 0 ,n m

n n
h n x n MT m T  and
0

0
[ ( ( , ( ))) ] 0, .n m

n n T
h n x n m T

This implies that (H1) holds with M M T . The proof is 
therefore completed.                                                              
   Notice that (C1) implies (4) in the definition of WZSD. 
Thus, the WZSD condition naturally holds under (C1). 
Particularly, the following result is readable from Lemma 2, 
Proposition 3 and Lemma 6 by showing the implications: 
(1) (2)  (3)  (1).

Theorem 1. Consider a system of the form (1)-(2) where h is
continuous at x, uniformly in n. Suppose the origin is 
uniformly globally stable. Then, the following conditions are 
equivalent.
(1) The origin is UGAS. 
(2) (C1) and (H1) holds. 
(3) The system is WZSD and (H1) holds.                              
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Remark 2.  Theorem 1 can be applied to analyze asymptotic 
stability of cascaded time-varying systems. Previous related 
work can be seen in [7] for autonomous systems and [9] for 
time-varying systems. Particularly, it is possible to show that 
the local Lipschitz assumption (on Lyapunov functions) 
introduced in the recent work [9] can be relaxed by merely 
requiring the continuity. To save space, the detailed will be 
presented in our forthcoming paper.                                    

A direct application of Theorem 1 yields the following 
Lyapunov function based result that generalizes the classical 
Lyapunov Theorem. Its proof is omitted here. 
Proposition 4. Consider a system of the form (1)-(2) where 
h is continuous in argument x, uniformly in n. Let 

: [0, )q be a positive-definite continuous function 
and : [0, )pV Z be a function such that

1 2( ) ( , ) ( )W x V n x W x ,                                 (10) 
( 1, ( , )) ( , ) ( ( , )) 0V n f n x V n x h n x ,             (11) 

for all n Z , all px  where 1 : [0, )pW  and 

2 : [0, )pW  are continuous positive definite functions 
with | | 1lim ( )x W x . Then, the origin is UGAS if and 
only if the system is WZSD.                                                
Remark 3. Consider a special case where 

( , ) , , .ph n x x n Z x  In this case, it is easy to see 
that the system is WZSD and Proposition 4 is reduced to the 
classical Lyapunov theorem.                                                

B. Second characterization of UGAS in terms of reduced 
limiting systems 
In this subsection, the second characterization of UGAS is 

proposed in terms of reduced limiting systems, instead of the 
original system. We use it to obtain a generalization of a 
discrete-time version of Krasovskii-LaSalle theorem. 

First, what is a reduced limiting system is defined as 
follows. Consider a system of the form (1)-(2) given in 
Section II. Throughout this subsection, we assume that f

and h  are both continuous in argument x, uniformly in n.
Consider the extended function ( , )T T Tg f h . Then, g is
also continuous in x, uniformly in n. Moreover, 

( ,0) ( ( ,0), ( ,0)) 0, .T T Tg n f n h n n Z  Thus, for any 
unbounded sequence { mt } in Z  there exists a subsequence 

( )g  of { mt } in view of Proposition 1. Particularly, the 
set ( ) ( ) ( )f h g  is plenty but not empty. Thus, the 
following definition makes sense.  
Definition 4. A reduced limiting system of system (1)-(2) 
associated with ( ) ( )f h is defined as: 

( 1) ( , ( ))x n f n x n                       (12) 
( , ( )).y h n x n                                (13) 

We impose the following simplified detectability 
hypothesis that, roughly speaking, describes a “weak 

zero-state detectability” on reduced limiting system (12)-(13) 
(see [6] for a similar definition in continuous-time systems).   
(H2) For any admissible sequence ( ) ( )f h  and any 

bounded solution : px Z  of reduced limiting system 
(12)-(13) satisfying the equation ( , ( )) 0,h n x n n Z , it 

holds that inf ( ) 0.n Z x n

The main result of this subsection is proposed as follows.  
Theorem 2. Consider a system of the form (1)-(2) where f

and h  are both continuous in argument x, uniformly in n.
Suppose that the origin is uniformly globally stable. Then, the 
origin is UGAS if and only if (H1) and (H2) hold.
Proof. First, let us prove the “if” part. In view of Theorem 1, 
it remains to show that the system is WZSD. Let x  be any 
limiting solution of (1) with respect to an unbounded 
sequence { mt } in Z , satisfying the following equation 

lim ( , ( )) 0, .m
m

h n t x n n Z                              (14) 

By Proposition 1 and the discussion before the theorem, there 
exists a subsequence ( ) ( )

kmt f h  of { mt } and a 

limiting function ( , )T T Tf h  of ( , )T T Tf h  such that
( , ( )) lim ( , ( )) 0, .

km
k

h n x n h n t x n n Z                 (15) 

Since x  is a limiting solution of (1) with respect to { mt },

there exist a 0r and a sequence : mt
m rx Z B  of 

solutions of (1) such that for each n Z , the associated 
sequence ( )m mx n t  converges to ( )x n . By the output 
injection form and (14), we have  

lim ( , ( )) lim ( ( , ( )))

(lim ( , ( ))) 0,
m m m r m m mm m

r mm

f n t x n t h n t x n t

h n t x n
(16)

for all n in Z  and some continuous function 
: [0, )q

r  with (0) 0r where the last equality used 
the fact that h  is continuous in argument x, uniformly in n.
Thus, the following equation can be derived: 

( 1) lim ( 1 ) lim ( , ( ))

lim ( , ( )) ( , ( )), ,
k k k k k

k k k

m m m m mk k

m m mk

x n x n t f n t x n t

f n t x n t f n x n n Z
(17)

where the last equation used the fact that f  is continuous in 
argument x, uniformly in n. That is to say that the limiting 
solution x  is also a solution of (12) satisfying 

( , ( )) 0,h n x n n Z . The WZSD condition follows 
from (H2). Thus, the origin is UGAS by using Theorem 1. 

Now, let us prove the “only if” part. According to Lemma 6, 
it remains to show that (H2) is a necessary condition for 
UGAS. In view of Lemma 2, this is done provided that we 
can show that every solution : px Z  of reduced 
limiting system (12)-(13) satisfying the equation 
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( , ( )) 0,h n x n n Z , must be a limiting solution of (1), 

( ) ( )mt f h . Indeed, let : mt p
mx Z  be a 

sequence of solutions of (1) starting from 
( ) (0), .m mx t x m  Since the solutions are globally 

uniformly bounded by the assumption, there exists a 0r
such that the range of  mx  is contained in rB  for all m in .
Using Lemma 1, there exist a function : px Z and a 
subsequence { km } of { m } such that for each n Z , the 

sequence ( )
k km mx n t  converges to ( )x n , i.e., x  is a 

limiting solution of (1) with respect to {
kmt } . We claim that 

x x . The claim will be proven by induction. First, note that 
(0) lim ( ) (0).

k kk m mx x t x  By induction, assume that 

( ) ( )x n x n . It is shown that the same is true in the case of 
1n . Indeed, by inductive hypothesis, 

( , ( )) ( , ( )) 0.h n x n h n x n  Again using the output 
injection form, we have  

lim ( , ( )) lim ( ( , ( )))

lim ( ( , ( ))) ( ( , ( ))) 0.
k k k k k k

k

m m m r m m mk k

k r m r

f n t x n t h n t x n t

h n t x n h n x n

Thus, the following equation can be derived: 
( 1) lim ( 1 )

lim ( , ( )) lim ( , ( ))

lim ( , ( )) ( , ( )) ( , ( )) ( 1).

k k

k k k k k k

k

m mk

m m m m m mk k

mk

x n x n t

f n t x n t f n t x n t

f n t x n f n x n f n x n x n

Thus, the claim is true by the inductive principle. Particularly, 
every solution : px Z  of reduced limiting system 
(12)-(13) satisfying the equation ( , ( )) 0,h n x n n Z ,
must be a limiting solution of (1). By Lemma 2, 
lim ( ) 0n x n  and hence (H2) holds. This completes the 
proof of the theorem.                                                             
Remark 4. It is natural to ask how to determine limiting 
systems and check their detectability?  In general, a single 
function may yield many limiting functions as in 
continuous-time case [6]. The same conclusion can be 
applied to limiting systems of a system. However, many 
functions from practical systems are in the form described in 
Lemma 5 with g being a pure time-function. Thus, their 
limiting functions have the same form as the original 
functions when we replace the function g by its limiting 
functions. Then, one can impose certain properties like 
persistent excitation condition in continuous-time systems on 
g to guarantee the required detectability condition. Since the 
space is limited, some interesting examples and more 
discussions will be given in our forthcoming paper. Interested 
readers can contact the authors for such examples.               

As a special case, consider a system consisting of 
continuous periodic functions with the same period. In this 
case, it is not difficult to see that f  and h  are both 
continuous in argument x, uniformly in n. Moreover, every 

limiting function is just a time-shifting of the original 
function. Then, (H2) is reduced to the following condition. 

(C3) For any m  and bounded solution : m px Z  of 
( 1) ( , ( ))x n f n x n that satisfies the equation 

( , ( )) 0,h n x n mn Z , it holds that inf ( ) 0.m
nn Z

x n

Now, the following result is a simple consequence of 
Theorem 2. It can be viewed as a generalized 
Krasovskii-LaSalle theorem in discrete-time systems [7]. 
Corollary 2. Consider system (1)-(2) where f  and h  are 
continuous periodic functions with the same period. Suppose 
that the origin is UGS. Then, the origin is UGAS if and if (H1) 
and (C3) hold.
Remark 5. Let us remark that the discrete-time version of the 
well-known Krasovskii-LaSalle theorem can be proposed 
and deduced from Corollary 2 as in the continuous-time case 
[6] by choosing ˆ ˆ ˆ( ) , qy y y , and defining a virtual 
output as ( , ) ( 1, ( , )) ( , )y h n x V n f n x V n x  for all 

n Z , all px , with V being a Lyapunov function.      

IV. CONCLUSION

Two new characterizations of UGAS have been proposed 
for nonlinear and time-varying discrete-time systems, based 
on detectability and limiting equations. They generalize both 
the classical Lyapunov theorem and a discrete-time version of 
Krasovskii-LaSalle theorem. Our future work will be directed 
at nonlinear sampled-data stabilization and tracking control 
of nonholonomic systems based on their exact discrete-time 
models and the achieved new stability results. 
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