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Abstract— Let M be a complete oriented 2-dim Riemannian
manifold. We ask the following question. Given any (p1, v1)
and (p2, v2), vi velocity at pi ∈ M , i = 1, 2, is it possible to
connect p1 to p2 by a curve γ with arbitrary small geodesic
curvature such that, for i = 1, 2, γ̇ is equal to vi at pi? In this
paper, we prove that the answer to the question is positive if M
verifies one of the following three conditions: (a) M is compact,
(b) M is asymptotically flat, (c) M has bounded non negative
curvature outside a compact subset.

I. INTRODUCTION

Let (M, m) be a connected, oriented, complete Rieman-
nian manifold and N = UM its unit tangent bundle. Points
of N are pairs (p, v), where p ∈ M and v ∈ TpM , m(v, v) =
1. Given ε > 0, Dubins’ problem consists of finding, for
every (p1, v1), (p2, v2) ∈ N , a curve γ : [0, T ] → M , T ≥ 0,
parameterized by arc-length such that γ(0) = p1, γ̇(0) = v1,
γ(T ) = p2, γ̇(T ) = v2, with geodesic curvature bounded by
ε and T as small as possible (depending on (p1, v1), (p2, v2)).
When the dimension of M is equal to two, Dubins’ problem
can be formulated as the time optimal control problem for
the following control system,

(Dε) : q̇ = f(q) + ug(q) , q ∈ N, u ∈ [−ε, ε] ,

where f is the geodesic spray on N (i.e., f is the infinitesimal
generator of the geodesic flow on M ), g is the smooth vector
field generating the fiberwise rotation with angular velocity
equal to one and the admissible controls are measurable
functions u : J → [−ε, ε], where J is an interval of R.
The trajectories of (Dε) are absolutely continuous curves
γ = γu,q(·), with γ the solution of (Dε) starting at q
and associated with the admissible control u. A trajectory
γ : [0, T ] → N of (Dε) is said to be time optimal if, for every
trajectory γ′ : [0, T ′] → N of (Dε) such that γ′(0) = γ(0)
and γ′(T ′) = γ(T ), we have T ≤ T ′.

Note that, in the statement of Dubins’ problem, the exis-
tence of a curve γ of minimal length is not guaranteed. In
the language of control theory, a controllability issue should
be solved in order to focus on the time optimal problem.
Recall that (Dε) is completely controllable (CC) if, for every
q1, q2 ∈ N , q2 is reachable from q1, i.e., there exists a
trajectory of (Dε) steering q1 to q2. For q ∈ N , let Aq ⊂ N
be the set of points of N reachable from q.

If M is the Euclidean plane, the dynamics defined by
(Dε) represents, in the robotics literature (cf. [1]), the motion
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of a unicycle (or a rolling penny) and the projections of
the trajectories of (Dε) on the plane are planar curves
parameterized by arc-length with curvature bounded by ε.
It is easy to see that (Dε) is completely controllable for
every ε > 0 and, given any pair (p1, v1), (p2, v2) ∈ N ,
there exists a time optimal trajectory of (Dε) connecting
(p1, v1) and (p2, v2). In 1957, Dubins ([2]) determined the
global structure of time optimal trajectories of (Dε) in the
case where M is the Euclidean plane: he showed that such
trajectories are concatenations of at most three pieces made
of circles of radius 1

ε or straight lines. Further restrictions
on the length of the arcs of an optimal concatenation have
been proved by Sussmann and Tang [3].

Dubins’-like problems have been proposed by considering
more general manifolds M . For instance, the case where M
is a two-dimensional manifold of constant Gaussian curva-
ture was investigated in [4], [5], [6], [7], [8] and the case
where M = Rn, Sn, n ≥ 3 was studied in [9], [10], [11].
Another line of generalization consists of considering the
distributional version of (Dε) (cf. [12]). For simplicity, M is
supposed to be two dimensional. The distributional dynamics
can be represented by the two-input control system (DDε) :
q̇ = uf(q)+vg(q) with |u|, |v| ≤ ε. The controllability issue
is trivial since it can be solved infinitesimally: let h = [f, g],
where [., .] denotes the Lie bracket; then the distribution
(f, g) is strongly bracket generating, i.e., for every q ∈ N ,
the triple (f(q), g(q), h(q)) spans TqN .

In this paper, we follow the first path of generalization,
i.e., we assume that M is a two-dimensional connected
Riemannian manifold, oriented and complete (with possibly
non-constant curvature). Our aim is to find geometric or
topological conditions on M , such that, for every ε > 0,
(Dε) is completely controllable. We refer to that property
as the unrestricted complete controllability (UCC) for the
Dubins problem (we still use the word “Dubins” although we
will not consider any optimal control problem). The (UCC)
property can be stated geometrically as follows: for every
(p1, v1), (p2, v2) ∈ N , there exists a curve γ connecting p1

to p2 with prescribed initial and final directions v1 and v2

and with arbitrary small geodesic curvature.
To establish (CC) of (Dε), ε > 0, we use a standard

reduction (cf., for instance, [5]): we will show that (Dε)
is completely controllable if and only if (Dε) is weakly
symmetric i.e., for every q = (p, v) ∈ N , q− = (p,−v) ∈
Aq . For instance if M = R2, then a control strategy which
shows that (Dε) is weakly symmetric can be given by u
so that the resulting trajectory is a teardrop of size 1

ε . (See
Figure 1).

Let Φ : M̃ → M be a Riemannian covering and (D̃ε) be
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Figure 1: The teardrop trajectory of size 1
ε .

the Dubins problem on M̃ ; then Φ∗ maps trajectories of (D̃ε)
onto trajectories of (Dε). Therefore, if the (CC) property
holds for (D̃ε), then it also holds for (Dε). Equivalently, if
(D̃ε) is weakly symmetric, then also (Dε) is. For instance,
if M is flat, then a controllability strategy for M is obtained
by projecting the one of the Euclidean plane, seen as the
universal covering of M . This simple idea of applying
strategies which are valid on a Riemannian covering of
the manifold (not necessarily a universal covering) will be
repeatedly exploited in the paper.

The first condition ensuring (UCC) which we obtain is
purely topological: if M is compact, then, by means of
a Poisson stability argument, (UCC) turns out to hold for
Dubins’ problem. Thus, let us assume that M is non-
compact.

The geometric quantity which plays a crucial role in
the characterization of controllable Dubins’ problems is the
Gaussian curvature of M , denoted by K . The curvature ap-
pears quite soon in the study of the Lie bracket configuration
of the problem and, therefore, for local controllability issues:
indeed, for every q ∈ N ,

[f, [f, g]](q) = −K(π(q))g(q) ,

where π : N → M denotes the bundle projection. The
importance of K in characterizing (UCC) is again suggested
by the following example: if M is the Poincaré half-plane
(K ≡ −1), then (Dε) is completely controllable if and only
if ε > 1 (cf. [4], [6]). Roughly speaking, this happens be-
cause the negativeness of K not only prevents the geodesics
to have conjugate points but actually is an obstacle for the
controlled turning action to overcome the spreading of the
geodesics. When |u| ≤ ε ≤ 1, the effect of u on g is not
strong enough and (CC) fails to hold.

It is therefore natural to formulate necessary conditions for
(UCC) in terms of the Gaussian curvature K . For instance,
an extension of the case K ≡ 0 is given by the situation
in which M is asymptotically flat, i.e., K tends to zero
at infinity. Under this hypothesis, we are able to prove
the (UCC) property: the control strategy is based on the

possibility of tracking a teardrop loop in a covering domain
over a piece of M at infinity. We will see that a suitable
covering manifold can be globally described by a single
appropriate geodesic chart.

Bearing in mind the previous example of non control-
lability, it is reasonable to study the situation where the
curvature is non negative. In that case, there is no more local
spreading effect due to the drift term to compensate. A result
by Cohn–Vossen (cf. [13]) implies that, if K ≥ 0 and K
is not identically equal to 0, then M is homeomorphic to
a plane and, more importantly for the controllability issue,∫

M KdA ≤ 4π, where dA is the surface element in M . In
particular, for any fixed radius R > 0, the total curvature on
the disk centered at p with radius R tends to zero as p tends
to infinity. The same is true under the relaxed hypothesis
that K is non-negative outside a compact subset of M .
The integral decay of K to zero can be interpreted as a
kind of asymptotic flatness condition and it suggests that
(Dε) should be completely controllable for every ε > 0.
We are able to confirm that intuition under the additional
assumption that K is bounded over M , i.e., K∞ = supM K
is finite. The existence of a control strategy which allows
to track a teardrop loop at infinity is much more delicate
to prove than in the asymptotically flat case. The key step
is the identification of a simply connected covering domain
on which the teardrop strategy can be applied. The covering
domain D is not anymore described by one single chart, as
in the asymptotic flat case, but by gluing rectangular strips,
each of them obtained by one regular geodesic chart. There
are O(1

ε ) such strips and each of them has width proportional
to 1√

K∞
. Then, using these strips, one is able to mesh D by

geodesic quadrilaterals Pj,k with edge of length proportional
to 1√

K∞
. The tracking operation is now decomposed in O( 1

ε )
steps: we design a discrete approximation of the teardrop,
by fixing a sequence of O( 1

ε ) points on the edges of the
polygons Pj,k and by associating with each of them a
corresponding direction. After that, we solve the problem of
connecting pairs of subsequent points of the approximating
sequence by an admissible trajectory, being tangent to the
associated directions. Each elementary problem of this kind
can be formulated in a single coordinate strip. Intuitively,
its solution is based on the topological description of small
time attainable sets for non-degenerate single-input control-
affine three dimensional systems, due to Lobry ([14]): the set
of points which are reachable from q0 ∈ N in small time,
is given by the region enclosed by two surfaces, obtained
as union of all small-time bang-bang trajectories from q0

with one switch. What we do in practice, is to estimate the
coordinate expression of such surfaces and to check whether
they enclose the final state of the elementary problem.

The paper is organized as follows: in section II, we gather
the notations used in the paper, we describe the general
construction of local covering domains, we establish basic
properties for the Dubins problem and, finally, we study the
case where M is compact. Section III simply contains an
argument in the case M were asymptotically flat. As for the
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case where M has non negative sectional curvature outside a
compact subset, the proof is deferred in the complete version
of the paper ([15]).

II. BASIC NOTATIONS AND FIRST RESULTS

A. Differential geometric notions

Let (M, m) be a complete, connected, oriented, two-
dimensional Riemannian manifold. Denote by K its Gaus-
sian curvature and by N the unit tangent bundle UM . Let
π :N → M be the canonical bundle projection of N onto M .
We will usually denote by p a point in M and by q = (p, v)
one in N , where p = π(q) and v ∈ TpM , m(v, v) = 1. Given
v ∈ TpM , we write v⊥ for its counterclockwise rotation
in TpM of angle π/2. For every q = (p, v) ∈ N , we set
q⊥ = (p, v⊥) and q− = (p,−v).

Given p1, p2 ∈ M , d(p1, p2) denotes the geodesic distance
between p1 and p2. When no confusion is possible, we
simply write ‖p‖ (respectively, ‖q‖) to denote the distance
d(p, p0) (respectively, d(π(q), p0)) from a fixed point p0 ∈
M .

Let f : TM → T (TM) be the geodesic spray on TM
(i.e., the vector field on TM which generates the geodesic
flow). The restriction of f to N (still denoted by f ) is a well
defined vector field on N . Recall that f is characterized by
the following property: p(·) is a geodesic on M if and only if
(p(·), ṗ(·)) is an integral curve of f . In particular, f satisfies
the relation π�(f(q)) = q.

Denote by g the smooth vector field on N , whose cor-
responding flow at time t is the fiberwise rotation of angle
t. We write etf (respectively, etg) to denote the flow of f
(respectively, g) at time t.

For x0 ∈ (X, d0), metric space and ρ > 0, Bρ(x0) denotes
the open ball of center x0 and radius ρ. Given a subset Y
of X , Clos(Y ) and Int(Y ) are, respectively, the closure and
the interior of Y .

In the sequel of the paper, we will systematically use
as local coordinates the geodesic ones, whose definition is
recalled below. Its construction has a crucial role in the
present exposition, since it allows to define a wide class of
local covering domains of M .

Given q ∈ N , consider the map φq : R2 −→ M ,
(x, y) �−→ π(eyfe

π
2 gexf (q)). Fix R = [x1, x2] × [y1, y2] ⊂

R2 and assume that the origin (0, 0) belongs to R. If φq

is a local diffeomorphism at every point of R, then R can
be endowed with the Riemannian structure lifted from M ,
in such a way that φq becomes a local isometry. If this
happens, we denote by R(q) the manifold with boundary
which is obtained. The segment [x1, x2]×{0}, which is the
support of a geodesic in R(q), is called the base curve of
R(q). The Gaussian curvature of R(q) at a point (x, y) is
given by K(φq(x, y)), and, where no confusion can arise,
will be denoted by K(x, y). If R is a neighborhood of (0, 0)
and φq|R is injective, then φq|R is a geodesic chart on
M . In the coordinates (x, y), m has the form m(x, y) =

B2(x, y)dx2 + dy2, where B :R → R is the solution of

(SB) : Byy + KB = 0 ,

B(x, 0) ≡ 1 ,

By(x, 0) ≡ 0 ,

where the index y appearing in By, Byy stands for the partial
differentiation with respect to y. Notice that, for every point
q ∈ N and every small enough rectangular neighborhood R
of (0, 0), φq|R is a geodesic chart on M . In general, if B
satisfies (SB) on R with K = K ◦ φq , then R(q) is well
defined if and only if B is everywhere positive on R. We
find it useful to define on R(q) a real-valued function F as
follows

F (x, y) =
By(x, y)
B(x, y)

. (1)

The unit bundle UR(q) is identified with{
(x, y, vx, vy) ∈ R4

∣∣ (x, y) ∈ R, B2(x, y)v2
x + v2

y = 1
}

.

Equivalently, a set of coordinates in UR(q) is given by
(x, y, θ) ∈ R × S1, with the identification

Bvx = cos θ, vy = sin θ . (2)

In geodesic coordinates, f and g turn out to be given by

f(x, y, θ) =
(

cos θ

B(x, y)
, sin θ, F (x, y) cos θ

)T

,

g(x, y, θ) = (0, 0, 1)T .

Notice that, in the Euclidean case, geodesic and Euclidean
coordinates coincide. From (SB) and (1) one gets B ≡ 1
and F ≡ 0. The coordinate expression for the flat Dubins
problem is, therefore,

ẋ = cos θ , ẏ = sin θ , θ̇ = u ,

that is, the standard one.
The pair of vector fields (f, g) define a contact distribution

on N , i.e., the vectors (f(q), g(q) and [f, g](q)) span TqN
for every q ∈ N , where [·, ·] stands for the Lie bracket. The
Lie-algebraic structure of the contact distribution {f, g} is
characterized by the relations

(i) [f, g] = h , (ii) [g, h] = f , (iii) [h, f ] = Kg ,
(3)

where h, defined by (i), can be represented in geodesic
coordinates as

h(x, y, θ) =
(

sin θ

B(x, y)
,− cos θ, F (x, y) sin θ

)T

. (4)

A proof of (3) can be obtained, for instance, by using the
expressions of f and g in geodesic coordinates. Equivalently,
(3) could have been derived from the structure equations
arising from the moving frame approach (see [4]).

A metric m̃ on N can be introduced by requiring that
(f(q), g(q), h(q)) is an m̃-orthonormal basis of TqN , for
every q ∈ N . Such m̃ is called the Sasaki metric inherited
from m and endows N with a complete Riemannian struc-
ture. (See [16] for instance.)
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B. The control system

Recall that, for every ε > 0, (Dε) denotes the control
system q̇ = f(q) + ug(q), q ∈ N and u ∈ [−ε, ε]. By defi-
nition, an admissible control is a measurable function u(·),
defined on some interval of R, with values in [−ε, ε]. The
solutions of (Dε) corresponding to admissible controls are
called admissible trajectories. It follows from the definition
of g that, for every admissible trajectory q : [0, T ] → N
of (Dε), d(π(q(0)), π(q(T ))) ≤ T . Therefore, M being
complete, for every control function u :R → [−ε, ε], the non-
autonomous vector field f + u(t)g is complete, that is, with
any initial condition q0 ∈ N we can associate a solution q(·)
of (Dε), defined on the whole real line, such that q(0) = q0.
In other words, the control system (Dε) is complete. For
every q ∈ N and T > 0, the attainable set from q within time
T is the set AT

q consisting of the endpoints of all admissible
trajectories starting from q and defined on a time interval
of length T . Similarly, the attainable set from q is the set
Aq consisting of the endpoints of all admissible trajectories
starting from q. The control system (Dε) is called completely
controllable if Aq = N for every q ∈ N .

Definition 1: We say that the Dubins problem on M has
the unrestricted complete controllability (UCC) property if,
for every ε > 0, (Dε) is completely controllable.
In local geodesic coordinates, (Dε) can be written as follows,

ẋ =
cos θ

B
, (5)

ẏ = sin θ, (6)

θ̇ = u + F cos θ. (7)

More intrinsically, we can rewrite system (5 – 7) in the form{
ṗ = v ,
∇vv = uv⊥,

(8)

which accounts for a clear geometric interpretation of the
unrestricted controllability property: The Dubins problem on
M is unrestrictedly completely controllable if and only if, for
every (p1, v1), (p2, v2) ∈ N , for every ε > 0, there exists a
curve p : [T1, T2] → M with geodesic curvature smaller than
ε such that p(Ti) = pi, ṗ(Ti) = vi, i = 1, 2.

The fact that f and g define a contact distribution on N
has the important consequence that, for every 0 < t < T and
q ∈ N , etf(q) belongs to Int(AT

q ). This follows, for instance,
from the description of small-time attainable sets for single-
input non degenerate three dimensional control systems given
by Lobry in [14].

From the viewpoint of control theory, the property that
the distribution defining (Dε) has a contact structure implies
that (Dε) is bracket generating, i.e., such that the iterated Lie
brackets of f and g span the tangent space to N at every
point.

Remark 1: If q : [0, T ] → N is a trajectory of (Dε) cor-
responding to some admissible control u : [0, T ] → [−ε, ε],
then the trajectory q(T −·)− obtained from q(·) by reflection
and time-reversion is itself an admissible trajectory of (Dε)
and steers q(T )− to q(0)−. Its corresponding control function

is given by −u(T − ·), which is admissible. Therefore, for
every q, q′ ∈ N , q′ belongs to Aq if and only if q− belongs
to A(q′)− .

Remark 2: Assume that, for every q in N , q− ∈ Aq , i.e.,
that (Dε) is weakly symmetric. Then, due to Remark 1, q′ ∈
Aq if and only if Aq = Aq′ . It follows that, for every q ∈ N
and every q′ ∈ Aq , q′ ∈ Int

(
Ae−tf (q′)

)
= Int (Aq′ ) =

Int (Aq), where t > 0 and the first inclusion follows from
the previously quoted Lobry’s result. Therefore, {Aq}q∈N is
an open partition of N . Since N is connected, then (Dε) is
completely controllable.

Thanks again to Remark 1, we obtain the following
equivalence: (Dε) is completely controllable if and only if,
for every q ∈ N , there exists q′ ∈ Aq such that (q′)− ∈ Aq′ .

A sufficient condition for unrestricted complete controllabil-
ity is the compactness of M . This fact is a consequence of a
more general result on controllability on compact manifolds
of bracket generating systems made of conservative vector
fields due to Lobry ([17]). Lemma 1 gives a stronger for-
mulation of Lobry’s result, adapted to the specific control
system (Dε), which implies also that every attainable set is
unbounded when M is open. The proof is a variation on the
classical one of Poincaré’s theorem on volume preserving
flows.

Lemma 1: If q ∈ N exists such that Aq is relatively
compact in N , then M is compact and Aq = N .

Proof of Lemma 1: Fix q ∈ N and assume that G =
Clos(Aq) is compact in N . As already remarked, for every
t > 0 and every q′ ∈ N , etf (q′) ∈ Int(A2t

q′ ). The
compactness of G and the continuous dependence of A2

q′ on
q′ imply that there exists ρ > 0 such that, for every q′ ∈ G,

Bρ(ef (q′)) ⊂ Aq′ . (9)

We want to prove that ∂Aq is empty (and so Aq = G =
M ). Let, by contradiction, r ∈ ∂Aq. A well-known theorem
by Krener ([18]) states that any attainable set of a bracket
generating system is contained in the closure of its interior.
Therefore, V = Aq ∩ Bρ(r) has nonempty interior and, in
particular, its volume is strictly positive. Since ef is a volume
preserving diffeomorphism of N (see, for instance, [16]) and
Aq has finite volume (it is bounded), then {enf(V )}n∈N

cannot be a disjoint family, being enf (V ) ⊂ Aq for every
n ∈ N. Therefore, there exist n1 < n2 such that en1f (V ) ∩
en2f (V ) is not empty. Equivalently, there exists a point in
e(n2−n1−1)f (V ) whose image by ef lies in V . Due to (9),
it follows that r ∈ Int(Aq) and the contradiction is reached.

Proposition 1: Let M be a complete, connected, oriented,
two-dimensional Riemannian manifold. Assume, in addition,
that M is compact. Then Dubins’ problem is unrestrictedly
completely controllable.

For the rest of the paper, we deal with the case M non-
compact.
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III. ASYMPTOTICALLY FLAT MANIFOLDS

Throughout this section, we assume that M is asymptoti-
cally flat, that is,

lim
‖p‖→∞

K(p) = 0 . (10)

For every L > 0, let QL = [0, 2L] × [−L, L]. According
to the notation introduced in section II-A, if the map φq0 ,
q0 ∈ N , is a local diffeomorphism at every point of QL, then
QL(q0) denotes the Riemannian manifold (with boundary)
obtained endowing QL with the Riemannian structure lifted
from M .

Let us characterize values of L for which the construction
of QL(q0) can be carried out. Let B be the solution of (SB)
on QL, with K = K ◦ φq0 . Set δ = maxQL |K ◦ φq0 |.

By Sturm–Liouville theory, we can compare B with the
solution of (SB) corresponding to K constantly equal to δ.
We obtain that, if

√
δ|y| ≤ π

2 , then B(x, y) ≥ cos(
√

δy) ≥ 0
for every x ∈ [0, 2L]. Thus, if L < π

2
√

δ
, then QL(q0) is well

defined.
In particular, since M is asymptotically flat, then, for

every L > 0 and every q0 outside a compact subset of N
(depending, in general, on L), QL(q0) is well defined.

Together with m, also the control problem (Dε) is lifted
from N to UQL(q0). Let us stress the trivial, but crucial,
property that every admissible trajectory of the lifted control
system is projected by φq0 to an admissible trajectory of
(Dε). In the coordinates (x, y, θ) of UQL(q0), the dynamics
of the lifted system is described by (5 – 7). Due to Remark 2,
the proof of the complete controllability of (Dε) reduces to
show that q−0 ∈ Aq0 if δ is small enough. This will be done
by designing an admissible trajectory for the lifted control
problem on UQL(q0), steering (0, 0, 0) to (0, 0, π).

Fix q0 ∈ N , L > 0 and assume that
√

δ ≤ π
3L .

Sturm–Liouville theory, together with the well definedness
of QL(q0), implies that

cos(
√

δy) ≤ B(x, y) ≤ cosh(
√

δy) , (11)

|F (x, y)| =
∣∣∣∣By(x, y)
B(x, y)

∣∣∣∣ ≤ √
δ
sinh(

√
δ|y|)

cos(
√

δy)
, (12)

for every (x, y) ∈ QL(q0). An upper bound for |F | in

QL(q0) is given by
√

δ sinh(
√

δL)

cos(
√

δL)
. Then, we can assume that

maxQL(q0) |F | ≤ ε
2 , by taking

√
δ ≤ ε

4 sinh(π
3 ) . Consider

now the control system (Dε/2) on the unit bundle of the Eu-
clidean plane. Let u(·) be the control function corresponding
to the trajectory whose projection on R2 is a teardrop of size
2/ε which leaves the origin horizontally and arrives at the
origin with the opposite direction. Thus, u(·), is piecewise
constant, taking alternately the values −ε/2 and ε/2. Denote
the coordinates of the teardrop trajectory in R2×S1 by x(·),
y(·) and θ(·). It follows from straightforward computations
that (x(·), y(·)) takes values in the rectangle [0, 2(

√
3 +

1)/ε] × [−2/ε, 2/ε] and that the teardrop has length 14π
3ε .

Fix L = 3
ε . The idea is to apply to the lifted system the

time-variant feedback control

u(t) = u(t) − F (x, y) cos θ , (13)

which is admissible, as long as the corresponding trajectory
stays in UQL(q0).

Consider the solution γ(·) = (x(·), y(·), θ(·)) of (5 –
7) corresponding to u(·), with initial condition γ(0) =
(x0, 0, 0). As long as (x(t), y(t)) stays in QL, we have
y(t) = y(t) and θ(t) = θ(t). Therefore,

|x(t) − x(t) − x0| ≤
∫ t

0

| cos(θ(s))|
∣∣∣∣ 1
B(x(s), y(s))

− 1
∣∣∣∣

≤ 14π

3ε
max

QL(q0)

∣∣∣∣ 1
B

− 1
∣∣∣∣ .

It follows from (11) that, for every α ∈ (
0, π

2

)
, if

√
δL ≤ α,

then

max
QL(q0)

∣∣∣∣ 1
B

− 1
∣∣∣∣ ≤ cosh(α) − 1

cos(α)
.

Therefore, it is possible to fix α, independent of ε, such that,
whenever δ satisfies

√
δL ≤ α.

14π

3ε
max

QL(q0)

∣∣∣∣ 1
B

− 1
∣∣∣∣ ≤ 1

4ε
.

Fix x0 = 1
4ε . Then γ(·) is defined for the entire time

duration of u(·). At its final point its coordinates are of the
type (x1, 0, π). Concatenating γ with two trajectories corre-
sponding to control equal to zero, we obtain an admissible
trajectory for the Dubins problem lifted to UQL(q0), steering
(0, 0, 0) to (0, 0, π). We proved the following theorem.

Theorem 1: Let M be a complete, connected, oriented,
two-dimensional Riemannian manifold. Assume, in addition,
that M is asymptotically flat. Then, Dubins’ problem is
unrestrictedly completely controllable.
Actually, from the nature of the above argument, a stronger
result follows.

Proposition 2: There exists a universal constant µ > 0
such that, if lim sup‖p‖→∞ |K(p)| ≤ µε2, then (Dε) is
completely controllable.

REFERENCES

[1] R.N. Murray, Z.X. Li, and S.S. Sastry, A mathematical introduction
to robotic manipulation, CRC Press, Boca Raton, FL; 1994.

[2] L.E. Dubins, On curves of minimal length with a constraint on
average curvature and with prescribed initial and terminal positions
and tangents, Am. J. Math., vol. 79, 1957, pp 497-516.

[3] H.J. Sussmann and G. Tang, Shortest paths for the Reeds–Shepp car:
a worked out example of the use of geometric techniques in nonlinear
optimal control, Rutgers Center for Systems and Control Technical
Report 91-10, 1991.

[4] Y. Chitour, Applied and theoretical aspects of the controllability of
nonholonomic control system, PhD Thesis, Rutgers University, 1996.

[5] V. Jurdjevic, Geometric control theory, Cambridge Studies in Adv.
Math., vol. 52, Cam. Univ. Press, Cambrdige; 1997.

[6] D. Mittenhuber, “Dubins’ problem in the hyperbolic plane using the
open disc model”, in Geometric control and non-holonomic mechanics
(Mexico City, 1996), CMS Conf. Proc., vol. 25, Amer. Math. Soc.,
Providence, RI, 1998, pp 115-152.

[7] U. Boscain and Y. Chitour, Time optimal synthesis for left-invariant
control systems on SO(3), preprint, 2003.

[8] F. Monroy-Perez, Non-Euclidean Dubins’ problem: A control theoretic
approach, PhD thesis, University of Toronto, 1995.

[9] H.J. Sussmann, “Shortest 3-dimensional paths with a prescribed cur-
vature bound”, in Proc. IEEE CDC, New Orleans, LA, 1995, pp 3306-
3312.

1443



[10] D. Mittenhuber, Dubins’ problem is intrinsically three-dimensional,
ESAIM Control Optim. Calc. Var., vol. 3, 1998, pp 1-22.

[11] F. Monroy-Perez, “Three-dimensional non-Euclidean Dubins’ prob-
lem”, in Geometric control and non-holonomic mechanics (Mexico
City, 1996), CMS Conf. Proc., vol. 25, Amer. Math. Soc., Providence,
RI, 1998, pp 153-181.

[12] U. Boscain and Y. Chitour, On the minimum time problem for driftless
left-invariant control systems on SO(3), Commun. Pure Appl. Anal.,
vol. 1, 2002, pp 285-312.

[13] S. Cohn–Vossen, Kürzeste Wege und Totalkrümmung auf Flächen,
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