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Abstract— A particle filter based method for nonlinear
system fault detection and isolation is proposed in this paper.
It is applicable to quite general stochastic nonlinear dynamic
systems in discrete time. The main result consists of a new
particle filter algorithm, derived from the basic bootstrap
particle filter, and capable of rejecting a subset of the faults
possibly affecting the considered system. Fault isolation is then
achieved by the evaluation of the estimated likelihoods related
to the designed filters.

Index Terms— fault detection and isolation, stochastic non-
linear system, particle filter.

I. INTRODUCTION

Due to the increasing complexity of engineering systems,
fault detection and isolation (FDI) are becoming an im-
portant issue for the design of fault tolerant systems and
for maintenance optimization. Early studies on FDI have
been mainly focused on linear systems [1], [2], [3], [4],
[5]. Recently, nonlinear system FDI have become an active
research topic, mainly concerning deterministic approaches
based on the techniques of nonlinear observers and differ-
ential algebra. See, e.g., [6], [7], [8], [9], [10].

In this paper, stochastic nonlinear dynamic systems are
considered. The proposed FDI method is based on a new
particle filter algorithm (see [11] for a general introduction
to particle filters), applicable to quite general nonlinear
dynamic systems in a stochastic framework. Stochastic
uncertainties are naturally addressed by particle filters.
Moreover, unknown disturbances can also be rejected with
the proposed new particle filter algorithm. More formally,
let us consider stochastic nonlinear dynamic systems in
discrete time subject to faults, in the form of

xk+1 = f(xk, uk) + vx
k +

nf∑
i=1

ψi(xk, uk)qi
k (1a)

ηk = g(xk, uk) + vη
k (1b)

where xk ∈ X ⊂ R
nx is the state vector, uk ∈ R

nu the input
vector, ηk ∈ R

nη the output vector, vx
k ∈ R

nx and vη
k ∈

R
nη are state and output noises, and the terms ψi(xk, uk)qi

k

represent faults affecting the system. The noises vx
k and vη

k

are assumed to be white with known probability density
functions (PDF) px(vx

k ) and pη(vη
k). The PDF of the initial

state x0 is assumed to be p0(x). The assumptions about the
nonlinear functions f and g will be stated in Section III-B.
The sequence qi

k ∈ R is zero when the i-th fault is absent,
and it is an arbitrary unknown non zero sequence when the

fault has occurred. The nonlinear functions ψi(xk, uk) ∈
R

nx structurally specify the assumed faults.

The problem of fault detection is to detect the presence
of any faults ψi(xk, uk)qi

k from the available input-output
signals uk and ηk. This is a relatively easy task, since for
a filter designed by ignoring all the faults ψi(xk, uk)qi

k,
any anomaly in its functioning reveals the violation of
the fault-free hypothesis. The main difficulty of FDI is
in the step of fault isolation: decide which subset of the
possible faults is likely to be present. This problem is known
as the “fundamental problem of residual generation” for
residual based FDI approaches, originally defined for linear
systems [12].

The problem formulated above is similar to the one
considered in [8], apart from the differences between conti-
nuous time and discrete time and also between deterministic
and stochastic systems. A solution based on the deter-
ministic approach has been presented in [8], whereas the
particle filter based method proposed in the present paper
is proposed in a stochastic framework with more general
structural assumptions.

Remark that, in this paper, each fault is assumed to be
an arbitrary unknown sequence qi

k. This assumption has
the advantage to be general, embracing different practical
situations. However, this property is at the price of an
important sensor requirement: in order to completely isolate
all the considered faults, the number of output sensors nη

must be greater than or equal to the number of faults
nf . This sensor requirement can be weakened if some
specific assumption is made about the fault profiles. For
instance, when faults are modeled as parametric changes
(rare jumps of constant parameter values), a particle filter
based approach with weaker sensor requirement has been
developed in [13].

The application of particle filters to change detection
problems has been studied by some authors. The compu-
tation of generalized likelihood ratio (GLR) tests with the
aid of particle filters has been reported in [14] which is also
reviewed in [15]. A statistic for slow change detection has
been proposed in [16]. These works do not consider fault
isolation, which is the main topic of the present paper.

The paper is organized as follows. A short introduction
to the basic particle filter is given in Section 2. The new
particle filter algorithm for fault isolation is presented in
Section 3. A numerical example is given in Section 4. Some
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conclusions are drawn in Section 5.

II. SHORT INTRODUCTION TO THE BASIC BOOTSTRAP

PARTICLE FILTER ALGORITHM

This section gives a brief informal introduction to the
basic particle filter algorithm, also known as bootstrap filter
[17], applicable to the fault-free system considered in this
paper. It is intended for readers not familiar with particle
filters. For more complete and general presentations, the
readers are referred to [11], [18].

Let us consider system (1) in the fault-free case which is
rewritten as

xk+1 = f(xk, uk) + vx
k (2a)

ηk = g(xk, uk) + vη
k (2b)

Denote by Dk the input-output data observed up to the
time instant k:

Dk = {(ui, ηi) : i = 1, . . . , k}
The filtering problem is to estimate the distribution of the
state vector at each instant k, based on the data observed up
to instant k, or more precisely, to estimate the conditional
PDF p(xk|Dk). In general, no accurate finite dimensional
filter exists for nonlinear systems, even if the noises are
assumed to be Gaussian. The basic idea of particle filters
is to approximate the PDF of xk at each instant k with the
sum of (a large number of) Dirac functions, and to make
them evolve at each time instant based on the latest observed
data. Each Dirac function used in the PDF approximation
is called a particle.

To start the particle filter at the initial instant k = 0,
randomly draw M points in R

nx following the assumed
PDF p0(·) of the initial state vector. Let us denote these M
points with the vectors ξj

0 ∈ R
nx , j = 1, . . . , M , then p0(·)

is approximated by

p(x0|D0) ≈ 1
M

M∑
j=1

δ(x0 − ξj
0)

Recursively, at each instant k ≥ 0, with

p(xk|Dk) ≈ 1
M

M∑
j=1

δ(xk − ξj
k)

already estimated, the distribution of xk+1 is first predicted
with the state equation (2a), leading to an approximation
of the PDF p(xk+1|Dk). For this purpose, each particle
ξj
k, for j = 1, . . . , M , is propagated following the state

equation (2a) to the position f(ξj
k, uk) and perturbed by

a random vector γj
k drawn following the state noise PDF

px(·), yielding

ξj
k+1|k = f(ξj

k, uk) + γj
k

Then

p(xk+1|Dk) ≈ 1
M

M∑
j=1

δ(xk+1 − ξj
k+1|k)

Now the data observed at instant k+1 is used to estimate
p(xk+1|Dk+1). According to the Bayes rule, each particle
ξj
k+1|k is weighted by its likelihood wj

k+1 based on the
output equation (2b):

wj
k+1 = pη

(
ηk+1 − g(ξj

k+1|k, uk)
)

Sk+1 =
M∑

j=1

wj
k+1

p(xk+1|Dk+1) ≈ 1
Sk+1

M∑
j=1

wj
k+1δ(xk+1 − ξj

k+1|k)

In order to approximate p(xk+1|Dk+1) with M equally
weighted particles, randomly draw M points following the
discrete probability distribution

P (x = ξj
k+1|k) =

wj
k+1

Sk+1
, j = 1, . . . , M

The resulting points, noted as ξj
k+1 ∈ R

nx for j =
1, . . . , M , is then used to make the approximation

p(xk+1|Dk+1) ≈ 1
M

M∑
j=1

δ(xk+1 − ξj
k+1)

The algorithm then goes to the next iteration with k
increased by 1.

Summary of the algorithm:

Particle initialization. Draw M points ξj
0 ∈ R

nx for j =
1, . . . , M following the initial state PDF p0(·).
Particle propagation. At each instant k ≥ 0, draw M
points γj

k ∈ R
nx following the state noise PDF px(·) and

compute

ξj
k+1|k = f(ξj

k, uk) + γj
k

Particle weighting. Compute the likelihood of each particle
ξj
k+1|k and their sum:

wj
k+1 = pη

(
ηk+1 − g(ξj

k+1|k, uk)
)

Sk+1 =
M∑

j=1

wj
k+1

Particle Resampling. Draw M points ξj
k+1 ∈ R

nx follow-
ing the discrete probability distribution

P (x = ξj
k+1|k) =

wj
k+1

Sk+1
, j = 1, . . . , M
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and make the approximation

p(xk+1|Dk+1) ≈ 1
M

M∑
j=1

δ(xk+1 − ξj
k+1)

III. PARTICLE FILTER FOR FAULT ISOLATION

For the purpose of fault isolation, the method proposed
in this paper is to design several particle filters, each
assuming a different subset of the possible faults formulated
in system (1), while ignoring the complementary subset
of faults. These particle filters then work in parallel. By
evaluating the estimated likelihood associated to each filter,
the subset of faults most likely present in the system is
decided, accomplishing the fault isolation task.

A. Basic idea

The key issue is thus how to design a particle filter with
an assumed subset of faults present in the system. For the
sake of simplicity in our presentation, let us assume a single
fault ψi(xk, uk)qi

k . The designed filter then should detect all
the possible faults, except the i-th one. Such a filter is said
to be rejecting the i-th fault. The generalization to filters
rejecting more faults is straightforward.

Remark that each term ψi(xk, uk)qi
k in system (1) can

either represent a fault or an unknown disturbance. In the
latter case, the designed filter rejecting qi

k allows to make
fault detection robust to the unknown disturbance. The
numerical example given in Section IV is such a robust
fault detection problem.

For fault isolation to make sense, there must be at least
two possible faults. The number of output sensors must be
greater than or equal to the number of faults for complete
fault isolation, therefore nη ≥ 2.

Note on notations. Let yk ∈ R denote a chosen component
of ηk, and zk its complementary part. In other words, when
the components of ηk are appropriately arranged,

ηk =
[
yk

zk

]

The index i in the term ψi(xk, uk)qi
k will be dropped for

lighter notation.

With these new notations, the problem of designing a
particle filter rejecting the fault ψ(xk, uk)qk is considered
for the system

xk+1 = f(xk, uk) + vx
k + ψ(xk, uk)qk (3a)

yk = g(xk, uk) + vy
k (3b)

zk = h(xk, uk) + vz
k (3c)

The noises vy
k and vz

k are assumed independent of each other
and have respectively the PDF py(v

y
k) and pz(vz

k).
Now the problem is to design a particle filter capable

of estimating the conditional PDF p(xk|Dk), despite the
presence of the fault ψ(xk, uk)qk . It is similar to the

unknown-input observer in the deterministic framework.
See, e.g., [5].

When trying to apply the basic particle filter algorithm
recalled in the previous section to the present case, the tricky
point is the Particle propagation step, due to the presence
of ψ(xk, uk)qk in the state equation (3a).

If some knowledge about the statistic distribution of the
fault qk is available, the fault can be treated in a way
similar to the state noise vx

k , then the application of the basic
particle filter algorithm is relatively trivial. In this paper, no
statistic distribution of the fault qk is assumed. In this case,
one can still try to apply the basic particle filter algorithm by
assuming uniform distribution of qk over a large range, but
it will lead to poor results because of the largely scattered
particles generated by the particle propagation step with
the large uniform distribution of qk. In order to avoid this
problem, the idea of this paper is to use part of the output
equation, say (3b), to compensate the lack of knowledge
about the fault qk in the state equation.

More precisely, at instant k, in order to propagate the
particle ξj

k to ξj
k+1|k, after having drawn vx

k ∈ R
nx follow-

ing px(·) and vy
k+1 ∈ R following py(·), it is possible to

solve the nx + 1 equations

ξj
k+1|k+ = f(ξj

k, uk) + vx
k + ψ(ξj

k, uk)qk (4)

yk+1 = g(ξj
k+1|k+, uk+1) + vy

k+1 (5)

for the nx+1 unknowns ξj
k+1|k+ ∈ R

nx and qk ∈ R. Notice

that in the above equations the notation of ξj
k+1|k+ is used

instead of ξj
k+1|k , because its computation requires uk+1

and yk+1 (but not zk+1).

If this solution is successful, then the resulting particles
ξj
k+1|k+ can be weighted with the remaining output ob-

servation zk+1, as if they were the particles ξj
k+1|k in the

basic particle filter algorithm. However, the equations (4)
and (5) may not allow to solve for ξj

k+1|k+, because the
output equation (5) may not carry the information missing
in the state equation (4). Let us illustrate this problem with
a simple linear system example.

Consider the linear system

xk+1 = Axk + vx
k + ψqk (6a)

yk = c xk + vy
k (6b)

with nx = 2, ψ = [0 1]T and c = [1 0]. The fault qk

affects the second state equation only. For this example,
the equations (4) and (5) become

ξj
k+1|k+ = Aξj

k + vx
k +

[
0
1

]
qk (7)

yk+1 = [1 0] ξj
k+1|k+ + vy

k+1 (8)

The first component of ξj
k+1|k+ can be easily computed,

since qk does not affect the first state equation. The problem
is how to compute its second component. Obviously, equa-
tion (8) does not provide any information about the second
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component of ξj
k+1|k+. It is thus impossible to solve these

equations for ξj
k+1|k+.

When such a problem occurs, a solution may exist by
making use of observations at instant k +2 or even later, if
the extra delay of the filter1 is acceptable in practice. Let
us still use the above linear system example to illustrate the
idea.

The fact that equation (8) does not provide useful infor-
mation is due to the equality c ψ = 0. It follows from the
system model (6) that

yk+2 = c xk+2 + vy
k+2

= cAxk+1 + cvx
k+1 + vy

k+2 + c ψqk+1

With randomly drawn values of vx
k+1 and vy

k+2, equation (8)
can be replaced by

yk+2 = cAξj
k+1|k+ + c vx

k+1 + vy
k+2 + c ψqk+1 (9)

Apparently, now there is a new unknown qk+1 in equa-
tion (9). Remind that it is the equality c ψ = 0 that made
equation (8) useless. Fortunately, if c ψ = 0, the unknown
qk+1 is not really involved in equation (9), which can indeed
be used with equation (7) to solve for ξj

k+1|k+, if cAψ �= 0.

If cAψ = 0 and in the case of nx > 2, the same
operation can be repeated by making use of yk+3, and so
on. If the matrix pair (A, c) is assumed observable, then the
observability matrix is of full rank. Then there must exist
an integer i < nx such that cAiψ �= 0. Notice that here the
observability is a sufficient, but not necessary condition.

B. Assumptions

Now let us more formally state the conditions required
by the proposed particle filter algorithm for FDI.

Assumption 1: Consider the system equations (3). At any
instant k, there exists an integer i ≥ 0 such that, for any
given value of the state xk ∈ X, and for any given values
of vx

j , vy
j with j = k, . . . , k + i + 1, the value of xk+1 ∈ X

can be uniquely determined from the observations uj, yj

and vx
j , vy

j with j = k, . . . , k + i + 1. �
The uniqueness of xk+1 ∈ X is assumed for presentation

simplicity. It could be relaxed to a finite number of values.

Assumption 1 ensures the particle propagation from ξj
k to

ξj
k+1|k+, as intended in (4), and thus the applicability of the

proposed FDI algorithm. However, this assumption is not
easy to check, because of its generality. The following more
restrictive assumption is easier to check and yet covers a
large class of nonlinear dynamic systems.

Roughly speaking, if the state noise vx
k was neglected,

the following assumption means that the composite
functions g, g ◦ f , g ◦ f ◦ f , etc., up to i − 1 levels of
composition, are independent of ψT x, and that the i-th

1Strictly speaking, it is no longer a filter, because observations later than
k + 1 are used for the estimation of the state distribution at instant k + 1.

composition depends on ψT x in an invertible manner. The
formal statement is given in the following.

Assumption 2: Consider the case of constant ψ(xk, uk),
simply denoted as ψ ∈ R

nx , then the system model is
rewritten as

xk+1 = f(xk, uk) + vx
k + ψqk (10a)

yk = g(xk, uk) + vy
k (10b)

zk = h(xk, uk) + vz
k (10c)

The functions f(x, u) and g(x, u) are differentiable in x.
Define the notations

sk = ψT xk (11)

S = {s|s = ψT x, x ∈ X} (12)

where X is the domain of xk. For any instant k, assume
that there exists an integer i ≥ 0 such that

∂yk+i+1

∂sk+i+1−j
= 0 for j = 0, 1, . . . , i − 1 (13)

∂yk+i+1

∂sk+1
�= 0 (14)

hold for all sk+i+1−j ∈ S, j = 0, 1, . . . , i, with constant
sign of ∂yk+i+1/∂sk+1. �

This new assumption can be easily checked in practice
with equations (10a) and (10b). Notice that condition (13)
means the independence of yk+i+1 on sk+i+1−j . This
assumption ensures the applicability of the proposed FDI
algorithm, as well as Assumption 1. This fact is stated in
the following proposition.

Proposition 1: Assumption 2 implies Assumption 1. �

Proof of Proposition 1. Some notations need to be
introduced first for the proof.

Let µl be the collection of the history of uk, vx
k , vx

k up to
instant l.

Define

g0(xl, µl) � g(xl, ul) + vy
l

and, recursively, for j = 1, 2, 3, . . . ,

gj(xl−j , µl) � gj−1

(
f(xl−j , ul−j) + vx

l−j , µl

)

Let Φ ∈ R
nx×(nx−1) be a matrix of full column rank

such that ΦT ψ = 0. Remind sl−j = ψT xl−j as defined
in (11), therefore the information about xl−j can be fully
recovered from sl−j and ΦT xl−j . Since these two “parts”
of xl−j need to be distinguished in the following, let us
define the new notation g̃j(·, ·, ·) such that

gj(xl−j , µl) = g̃j(sl−j , ΦT xl−j , µl)

Now the preparation of notations is ready.
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With the above defined notations, the goal of the proof
below is to show

yk+i+1 = gi(xk+1, µk+i+1)

which would be combined with (10a) to solve for xk+1.
This equation would exactly provide the information miss-
ing in (10a), as ensured by condition (14).

By time shifting, equation (10b) is rewritten as

yk+i+1 = g(xk+i+1, uk+i+1) + vy
k+i+1

which, following the definition of g0, trivially leads to

yk+i+1 = g0(xk+i+1, µk+i+1)

Now the question is if yk+i+1 = g1(xk+i, µk+i+1) holds,
and similarly yk+i+1 = g2(xk+i−1, µk+i+1), and so on.

Recursively, assume that

yk+i+1 = gj(xk+i+1−j , µk+i+1) (15)

holds for some j < i, then let us prove the case of j + 1.

In (15), when xk+i+1−j is replaced by

f(xk+i−j , uk+i−j) + vx
k+i−j + ψqk+i−j

the key issue is to show that the term ψqk+i−j is not really
involved. For this purpose, the assumed equation (15) is
rewritten as

yk+i+1 = g̃j(sk+i+1−j , ΦT xk+i+1−j , µk+i+1)

Remind that j < i. Due to condition (13), yk+i+1 does
not depend on sk+i+1−j . Let us mark this fact in the
last equation by replacing sk+i+1−j with ∅. Replace also
ΦT xk+i+1−j with

ΦT xk+i+1−j = ΦT [f(xk+i−j , uk+i−j) + vx
k+i−j + ψqk+i−j ]

= ΦT [f(xk+i−j , uk+i−j) + vx
k+i−j ]

where the equality ΦT ψ = 0 has been used. It then yields

yk+i+1 = g̃j

(∅, ΦT [f(xk+i−j , uk+i−j) + vx
k+i−j ], µk+i+1

)

which, according to the definition of g̃j , is rewritten as

yk+i+1 = gj(f(xk+i−j , uk+i−j) + vx
k+i−j , µk+i+1)

= gj+1(xk+i−j , µk+i+1)

where the last equality follows the recursive definition of
gj . In the case j = i − 1, the equality

yk+i+1 = gi(xk+1, µk+i+1) (16)

is exactly the expected one. It can then be combined
with (10a) to solve for xk+1, as ensured by condition (14).

C. Algorithm

The following particle filter algorithm rejecting the fault
qk is stated under Assumption 2 for its easy notations. Its
generalization to the case of Assumption 1 is straightfor-
ward.

Particle initialization. Draw M points ξj
0 ∈ R

nx for j =
1, . . . , M following the initial state PDF p0(·).
Particle propagation. At each instant k ≥ 0, assume that
g0, . . . , gi−1 are independent of ψT x and that gi is invertible
with respect to ψT x. For each particle ξj

k, randomly draw
vx

k , vx
k+1, . . . , v

x
k+i−1 and vy

k+i+1, solve the equations

ξj
k+1|k+ = f(ξj

k, uk) + vx
k + ψqk

yk+i+1 = gi(ξ
j
k+1|k+, µk+i+1)

for ξj
k+1|k+ ∈ X, where gi is as in (16), µk+i+1 is

filled with vx
k , vx

k+1, . . . , v
x
k+i−1 and vy

k+i+1. Store the noise
realization vx

k+1, . . . , v
x
k+i−1 for use in the next iteration.

Particle weighting. Compute the likelihood of each particle
ξj
k+1|k+ and their sum:

wj
k+1 = pz

(
zk+1 − h(ξj

k+1|k+, uk)
)

Sk+1 =
M∑

j=1

wj
k+1

Particle Resampling. Draw M points ξj
k+1 ∈ R

nx follow-
ing the discrete probability distribution

P (x = ξj
k+1|k+) =

wj
k+1

Sk+1
, j = 1, . . . , M

and make the approximation

p(xk+1|Dk+1+) ≈ 1
M

M∑
j=1

δ(xk+1 − ξj
k+1)

where the notation p(xk+1|Dk+1+) means the PDF of xk+1

conditioned by Dk+1 and yk+1+i.

D. FDI through estimated likelihood

For the purpose of FDI, several particle filters must run
in parallel, each rejecting a different subset of the faults
qi
k assumed in system (1). If one of them works “poorly”,

then it is decided that the faults ignored by this filter has
occurred. The “poorness”, or rather, “goodness” of each
filter is evaluated by the likelihood corresponding to the
filter, which is estimated at each time instant k by

Lk ≈ 1
M

M∑
j=1

wj
k

The estimated likelihood values can be combined inside a
sliding time window for more smooth decisions.
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IV. NUMERICAL EXAMPLE

Let us borrow the point mass satellite example from [8]
with their notations. The point mass system has 4 state
variables: the polar coordinates ρ, ϕ, the radial velocity v
and the angular velocity ω, governed by the state equations

ρ̇ = v

v̇ = ρω2 − θ1
1
ρ2

+ θ2u1 + w

ϕ̇ = ω

ω̇ = −2vω

ρ
+ θ2

u2

ρ
+ θ2

m

ρ

where θ1, θ2 are known constant parameters, u1, u2 are
radial and tangential thrust controls, m represents the the
tangential thrust actuator fault, w is an unknown disturbance
(which could also model the radial thrust actuator fault).
Let us assume two output sensors measuring ρ and ϕ
with additive Gaussian noises (In [8] one more sensor
measuring ω is also assumed). The system is simulated in
continuous time in Simulink with θ1 = 0.1, θ2 = 0.2, the
initial state vector [2.97,−0.07, 1.81, 0.47]T , the constant
inputs u1 = −3, u2 = −1, and the disturbance w(t) =
0.5

∑9
j=5 sin(j0.1t). Two scenarios are simulated, the fault-

free case (m(t) ≡ 0) and the total tangential actuator fault
case with m(t) jumps from 0 to 1 at t = 10. In each case the
input-output signals are sampled with the sampling period
Ts = 0.02 and with white Gaussian noises of standard
deviation 0.001 added to each output.

The differential equations are discretized with the simple
Euler method. A particle filter rejecting the disturbance w
is then designed, with y corresponding to r and z to ϕ.
For this example, Assumption 2 is satisfied with i = 1. The
estimated likelihood Lk with M = 100 particles is depicted
in Figure 1 for each of the two simulated scenarios. In the
fault-free case, the likelihood is quite stationary, whereas in
the faulty case, after the occurrence of the fault at t = 10,
the likelihood clearly goes toward zero.

V. CONCLUSION

A particle filter based method has been presented in this
paper for FDI. Compared to existing deterministic meth-
ods, this method naturally deals with stochastic nonlinear
dynamic systems, is conceptually simple, and is applicable
to quite general nonlinear systems. This generality is at
the price of intensive numerical computation, like in most
particle filter applications.
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