
A Two-Time Scale Design for Detection and Rectification of
Uncooperative Network Flows

X. Fan∗, K. Chandrayana, M. Arcak, S. Kalyanaraman, J. T. Wen
Department of Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract— Existing Internet protocols rely on cooperative
behavior of end users. We present a control-theoretic algorithm
to counteract uncooperative users which change their congestion
control schemes to gain larger bandwidth. This algorithm
rectifies uncooperative users; that is, forces them to comply
with their fair share, by adjusting the prices fed back to them.
It is to be implemented at the edge of the network (e.g. by
ISPs), and can be used with any congestion notification policy
deployed by the network. Our design achieves a separation of
time-scales between the network congestion feedback loop and
the price-adjustment loop, thus recovering the fair allocation
of bandwidth upon a fast transient phase.

I. INTRODUCTION

In a network which does not differentiate among users,
the equilibrium rate for any user is primarily determined by
the congestion control being used [1]. With new software
advancements, however, “uncooperative” users can change
their congestion control schemes to gain more than their
fair share of bandwidth, at the cost of cooperative users.
This uncooperative behavior can lead to TCP unfriendliness,
congestion collapse [2], [3] and, to a traffic-based denial-of-
service to cooperative users [4], [5]. Detecting uncooperative
users, and “rectifying” their flow rates to comply with
cooperative rates, is thus an important emerging problem in
network management.

Among rectification mechanisms proposed in the litera-
ture, the majority are “router-based” that is, they modify the
router algorithm to detect and limit uncooperative flows, e.g.
Active Queue Management (AQM) schemes or scheduling
disciplines [2], [3], [6], [7], [8]. More recently, edge-based
price-adjustment mechanisms have been proposed in [9] and
[10], which manage uncooperative flows only at edge routers.
A significant advantage of this approach is that it does
not require core network upgrades and can be implemented
without performing per flow management at routers. By
estimating each flow’s incoming rate and using it to label
flow’s packet, the Core-Stateless Fair Queueing (CSFQ)
algorithm in [9] computes the forwarding probability from
link fair rate estimation. However, this design only applies
to network in which all nodes implement Fair Queueing. In
[10], the authors manage uncooperative flows by mapping
their utility function to a specified target network behavior

∗Corresponding author. Electrical, Computer and Systems Engineering
Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
Tel.: +1-518-276-8205; fax: +1-518-276-6261.

at the edge. This study, however is restricted to a specific
form of TCP.

In this paper, we develop an edge-based price-adjustment
algorithm using tools from control theory. Rather than ad-
dress a specific protocol, we develop our design within the
optimization framework of Kelly [1], [11], [12], which is
applicable to diverse types of networks, and encompasses
numerous protocols such as TCP Reno, TCP Vegas, FAST
etc. Our algorithm recovers the cooperative share of band-
width prescribed in Kelly’s framework, with a new feedback
loop implemented at the edge router, and, hence, referred to
as the “edge supervisor”. It detects uncooperative users by
comparing their sending rates with “audit” rates calculated
according to an ideal, cooperative, model, and increases their
price feedback. Although in this design edge supervisor does
perform per flow management by this price adjustment loop,
core routers, which are in general more complex than edge
routers, do not perform per flow management, and therefore
the implementation complexity is significantly reduced. Our
algorithm is independent of congestion notification policy
deployed by the network, and thus, can be used with any
Active Queue Management scheme.

We design the price adjustment loop to evolve in a faster
time-scale than the existing price feedback loop from the
links, because, then, uncooperative flows are rectified during
a fast transient phase, after which stability and convergence
properties of the desired cooperative network model is re-
covered. Indeed, using singular perturbations tools [13], we
prove that the fast and slow feedback loops, when combined,
ensure convergence of the sending rates to their cooperative
values. The type of convergence established is “semi-global”
[13], which means that any desired region of attraction can
be achieved by increasing the feedback gain of the price-
adjustment loop.

The paper is organized as follows: Section 2 overviews
Kelly’s primal and dual flow control algorithms. Section 3
studies the primal algorithm and presents our price adjust-
ment design for uncooperative users. Section 4 extends this
design to the dual algorithm. In Section 5, we implement
our price adjustment algorithms in NS-2 and evaluate their
performance for a multi-bottleneck topology. In particular,
we show that given a standard network behavior like TCP-
Friendliness, our algorithm forces uncooperative users to
comply with their fair-share of the bandwidth. Conclusions

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoC14.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 1842

are given in Section 6. In the paper, some proofs are omitted
due to space limitations, please refer to [14] for details.

II. OVERVIEW OF KELLY’S PRIMAL AND DUAL FLOW

CONTROL ALGORITHMS

In Kelly’s framework [1], network flows are modeled
as the interconnection of users and communication links.
Packets from each user (with sending rate xi) are routed
through the links with the aggregate link rate

y = Rfx (1)

where Rf is the forward routing matrix. Each link j has
a fixed capacity cj , and based on its congestion and queue
size, a link price, pj is computed:

pj = hj (yj) , j = 1, · · · , L. (2)

The link price information is then sent back to each source
with the aggregate source price,

q = Rbp. (3)

where Rb = RT
f , since the links only feed back price

information to the users that utilize them.
Kelly formulated the flow control as the combination of a

static optimization and a dynamic stabilization problem. The
static optimization problem computes the desired equilibrium
by maximizing the sum of the source utility functions
Ui (xi), while complying with capacity constraints in the
links:

max
x≥0

N∑
i=1

Ui (xi) subject to Rx︸︷︷︸
y

≤ c. (4)

The dynamic problem is to design the source rate update
law based on the aggregate price, and the link price update
law based on the aggregate rate, to guarantee stability of the
equilibrium. For this problem, Kelly introduced two dynamic
algorithms: The Primal Algorithm consists of a first order
source update law, and a static penalty function for the link
to keep the aggregate rate below its capacity:

ẋi = κi (U ′
i (xi) − qi) , pj = hj (yj) . (5)

The penalty functions hl (yl) are designed to enforce the link
capacity constraints yl ≤ cl, l = 1, · · · , L, i.e., to keep the
aggregate rate yl below its capacity cl.

The Dual Algorithm consists of a static source update and
a first order dynamic price update:

xi = U ′−1

i (qi) , ṗj = γj (yj − cj)
+

pj
. (6)

where the positive projection (·)+ for a general function f (·)
is defined as

(f (x))
+

x :=

{
f (x) if x > 0, or x = 0 and f (x) ≥ 0

0 if x = 0 and f (x) < 0.

From (6), the unique equilibrium for the dual control law is
obtained from the equations

q∗i = U ′
i (x∗

i) , i = 1, · · · , N (7)

p∗l

{
= 0 if y∗

l ≤ cl

≥ 0 if y∗
l = cl

l = 1, · · · , L, (8)

which as shown in [1], correspond to the solution of the
optimization problem (4), in which pl’s play the role of
Lagrange multipliers for the capacity constraints. For the
primal control law (5), the equilibrium obtained from

q∗i = U ′
i (x∗

i) , i = 1, · · · , N (9)

p∗l = hl (y
∗
l) l = 1, · · · , L, (10)

approximates the optimality condition (7)-(8) with the help
of the penalty functions hl (yl). The stability of these two
algorithms and their extensions has been established in [11],
[12], [15], [16].

III. UNCOOPERATIVE USERS IN KELLY’S PRIMAL

ALGORITHM

We now assume that some users, which we call “unco-
operative”, use more aggressive utility functions to increase
their share of bandwidth; that is, instead of Ui (xi) in (5),
they implement Ũi (xi):

ẋi = κi

(
Ũ ′

i (xi) − q̃i

)
. (11)

To rectify these uncooperative users, we propose that the
supervisor at the edge of the network (e.g., internet service
providers) adjust the price feedback from its nominal value
qi to q̃i. An ideal design of q̃i would be

q̃i = qi + Ũ ′
i (xi) − U ′

i (xi) , (12)

which replaces Ũ ′
i (xi) in (11) with the cooperative U ′

i (xi).
However, this design is not implementable because Ũi (xi)
is not known to the supervisor. Instead, in our design, we
obtain an estimate of Ũi (x) with the help of the cooperative
reference model:

˙̂xi = κi (U ′
i (xi) − qi) , x̂i (0) = xi (0) . (13)

The x̂i thus calculated differs from xi by ei := x̂i − xi,
which, from (11)-(13), is governed by

ėi = κi

(
q̃i − qi − Ũ ′

i (xi) + U ′
i (xi)

)
. (14)

This means that, if we design the price adjustment to be

q̃i = qi − ρiei, (15)

with a sufficiently high gain ρi > 0, then the variable
ei evolves in a faster time scale than xi, and reaches the
quasi-steady state ρiei ≈ −Ũ ′

i (xi) + U ′
i (xi). Thus, after a

fast transient, our design (13), (15) approximates the non-
implementable scheme (12). For cooperative users, where
Ũi (xi) = Ui (xi), (13) and (15) yield q̃i = qi, which means
that no price adjustment is applied. Note that Ui in (13) is
not necessarily the same for each user. This means that the
supervisor can intentionally set up different utility functions,
and use this flexibility to only adjust high bandwidth flows
while leaving low bandwidth flows without rectification.

1843

Fig. 1. Price adjustment in Kelly’s primal algorithm.

The algorithm (13), (15) is depicted with a block diagram in
Figure 2. In Theorem 1 below, we use tools from singular-
perturbations theory [13] to prove that (13), (15) achieves
asymptotic stability of the cooperative value x∗ in (9)-(10):

Theorem 1: Consider the network (1)-(3), where some
users implement the uncooperative algorithm (11), rather
than (5). Suppose Ui (xi) : R+ → R are increasing and
sufficiently smooth functions, Ui

′′ (xi) < 0 ∀xi ∈ R+,
and Ui (xi) → −∞ and Ũi (xi) → −∞ as xi → 0 for
i = 1, · · · , N . Then, the price adjustment algorithm (13),
(15) ensures that, for any compact set Ω ⊂ RN

+ of initial
conditions x (0), there exists ρ∗i > 0 such that, if ρi > ρ∗i ,
then x (t) and x̂ (t) remain bounded, and x (t) converges to
the cooperative value x∗ in (9)-(10).
The assumptions of Theorem 1 on the utility functions
Ui (xi) are standard in the literature [1], [18]. In particular,
the assumption Ui (xi) → −∞ as xi → 0 ensures that RN

+

is positively-invariant, i.e., if x is initially in RN
+ , it will

remain in RN
+ for all t ≥ 0. It is satisfied by commonly

used utility functions such as Ui (xi) = − ai

xi
(variant of

TCP Reno) and Ui (xi) = ai log xi (TCP Vegas). For others,

such as Ui (xi) =
√

2

τi
tan−1

(
τixi√

2

)
(TCP Reno), we can

modify Theorem 1 and prove stability by using positive
projection functions as in [12]. It is reasonable to make the
same assumptions for Ũ ′

i (·) as for U ′
i (·), because cheating

users would typically change the parameters of the nominal
utility functions, such as ai in TCP Vegas above. However,
this assumption excludes some traditional unresponsive flows
referred to as UDP or CBR, where users send data at a
constant rate without acknowledging any feedback. �

Proof: To represent the algorithm (11), (13) and (15) in the
standard singularly perturbed form [13], we let

ωi := ρiei (16)

εi =
1

ρi

(17)

and obtain:

ẋi = κi

(
Ũ ′

i (xi) − qi + ωi

)
. (18)

εiω̇i = −κi

(
ωi + Ũ ′

i (xi) − U ′
i (xi)

)
. (19)

An inspection of (18) and (19) shows that the equilibrium
for xi is same as the cooperative x∗

i in (9)-(10), and the
equilibrium for ωi is

ω∗
i = −Ũ ′

i (x∗
i) + U ′

i (x∗
i) . (20)

To shift this equilibrium to 0, we define

�i := ωi + Ũ ′
i (xi) − U ′

i (xi) (21)

and rewrite (18)- (19) as

ẋ = K
(
U ′ (x) − RT h (Rx) + �

)
ε�̇=−K

⎛
⎝�− ε

∂
(̃
U ′ (x)−U ′ (x)

)
∂x

(
U ′ (x)−RT h (Rx)+�

)⎞⎠
(22)

where we use the vector notation x =[
x1 x2 · · · xN

]T
, � =

[
�1 �2 · · · �N

]T
.

K = diag {κi} and ε = diag {εi} are diagonal matrixes of
the source controller gains κi > 0 and εi > 0, i = 1, · · · , N ,
and U ′ (x) ∈ RN is a vector whose ith component is the
derivative U ′

i (xi) of the utility function Ui (xi). Likewise,
h (y) ∈ RL and Ũ ′ (x) ∈ RN consist of the penalty
functions hl (yl) and uncooperative utility functions Ũ ′

i (xi).
To prove asymptotic stability of (x, �) = (x∗, 0) we use

the Lyapunov function

V =

N∑
i=1

(− (Ui (xi) − Ui (x∗
i)) + q∗i (xi − x∗

i))

+

L∑
l=1

(∫ yl

y∗

l

(hl (σ) − hl (y
∗
l)) dσ

)
+

1

2
�T K−1�

(23)

in which, the first and the second terms, are identical to the
Lyapunov function used in [1], [12] for the proof of the
stability of Kelly’s Primal algorithm, while the third term
is a quadratic Lyapunov function for the dynamics of �
subsystem. This Lyapunov function is positive definite and
radially unbounded in RN

+ , and yields the derivative

V̇ ≤− f1 (x)
T

Kf1 (x) − �T ε−1�

+ �T
∂

(
Ũ ′ (x) − U ′ (x)

)
∂x

� + �T f2 (x) ,

(24)

where
f1 (x) := U ′ (x) − RT h (Rx) , (25)

f2 (x) :=
∂

(
Ũ ′ (x) − U ′ (x)

)
∂x((

U ′ (x)−RT h (Rx)
)
+K

(−U ′ (x)+RT h (Rx)
))

.
(26)

We show in Lemma 1 below that, on any compact set of
(x, �) that includes (x∗, 0), we can choose ε small enough
to ensure V̇ is negative definite. The conclusion of Theorem
1 follows from this lemma because, from x̂ (0) = x (0), we
have ω (0) = 0 and, thus � (0) = −Ũ ′ (x (0)) + U ′ (x (0)),
which means that for any set Ω as in the statement of the

1844

theorem, we can find a corresponding region of attraction
in (x, �) coordinates, which does not depend on ε. Since
V is also independent of ε, we can select a level set of V
that encompasses this region of attraction, and design ε from
Lemma 1 to render V̇ negative definite in this level set. �

Lemma 1: Let the assumptions of Theorem 1 hold, and let
f1 (x) and f2 (x) be defined as in (25)-(26). Then, for any
compact set Λ of (x, �) that includes (x∗, 0), there exists
ε∗ > 0 such that if εi ∈ (0, ε∗] for all i = 1, · · · , N , then
V̇ (x) given in (24) is negative definite on Λ.

In Theorem 1, we require that the edge supervisor set x̂ (0)
equal to x (0). However, it is not difficult to show that the
proof holds true for small errors between x̂ (0) and x (0).

IV. PRICE ADJUSTMENT FOR KELLY’S DUAL ALGORITHM

We next study Kelly’s dual algorithm where uncooperative
users implement, instead of (6),

xi = Ũ ′−1

i (q̃i) . (27)

We assume Ũ ′−1

i (s) ≥ U ′−1

i (s), ∀s ≥ 0, which means that
the uncooperative sending rate is larger than the cooperative
rate. To counteract such uncooperative users, the supervisor
must replace the nominal price feedback qi with

q̃i = Ũ ′
i ◦ U ′−1

i (qi) , (28)

which, when substituted in (27), results in the cooperative
rate (6). Because a direct solution of (28) would require the
knowledge of Ũ ′

i (·), which is not available to the supervisor,
we propose the dynamic algorithm

q̃i = qi + ωi, (29)

ω̇i = ρi

(
xi − U ′−1

i (qi)
)
, ωi (0) = 0, ρi > 0, (30)

depicted in Figure 3. The equilibrium of (30) is achieved
when

xi = U ′−1

i (qi) , (31)

which indeed coincides with the cooperative rate (6). We
achieve asymptotic stability of this equilibrium, again, by
designing the adaptation gain ρi to be sufficiently high:

Fig. 2. Price adjustment for uncooperative users in Kelly’s dual algorithm.

Theorem 2: Consider the network (1)-(3), (6) and (27),
where Ui (xi) and Ũi (xi) are as in Theorem 1, and
Ũ ′−1

i (s) ≥ U ′−1

i (s), ∀s ∈ R+. Then, the price adjustment
algorithm (27), (30), ensures that, for any compact set Ω ⊂
RN

+ of initial conditions p (0), there exists ρ∗i > 0 such that,
if ρi > ρ∗i , then p (t), x (t) and q̃ (t) remain bounded, and
x (t) and p (t) converge to the cooperative values x∗ and p∗

in (7)-(8).

V. IMPLEMENTATION AND SIMULATIONS

We have implemented the uncooperative framework pre-
sented in this paper in the Network Simulator (NS-2).
While we have studied both dynamic (Section III) and
static (Section IV) users, in simulations we implement the
method of Section III because of the prevalence of TCP,
which is dynamic and can be modeled as in (11) (see
[1]). We added an edge-based supervisor, which adjusts
the price feedback according to (15). The implementation
of this feedback adjustment depends upon the congestion
notification policy deployed in the network. We note that,
unlike the static link assumption in Section III, AQM and
Drop-Tail in simulations make use of queue length and,
hence, are dynamic algorithms. An extension of the proof of
dynamic-source dynamic-link algorithms would be possible,
but lengthy. The stability properties observed in simulations
are indeed consistent with those predicted by Theorem 1.

Due to space limitations, we only present part of our
simulation results for multi-bottleneck topologies, depicted
in Figure 3. All the access links are configured to have a
capacity equal to four times that of bottleneck links. The
bottleneck links capacity and delay is fixed at 0.8Mbps
and 20ms respectively unless specifically stated. For all
simulations reported in this paper, rate (or throughput) mea-
surements are taken every 0.5 seconds. Each router has a
buffer equal to one bandwidth delay product. In setups where
the bottleneck routers have Random Early Drop (RED) buffer
management policy deployed, the corresponding maximum
and minimum threshold are set at 0.8 × B and 0.3 × B
where B is the total buffer length; the queue weight was
set to 0.002 and the maximum dropping probability to 0.1.
In the topology, the flow between source S1 and destination

Fig. 3. Topologies used in simulations.

D1 is referred to as a long flow, while the flows [S2-D2] and
[S3-D3] are referred to as short flows.

Since almost 90% of the traffic carried on the Internet
uses TCP, we chose TCP-Friendliness as our definition

1845

of conformant flows. For those flows, which under same
operating conditions, get more rate than TCP, we refer them
as selfish flows. In this paper all transport protocols are
rate based. Thus, all TCP-Friendly schemes use equation
based rate control scheme (TCP Friendly Rate Control -
TFRC) presented in [20] and all selfish schemes are variants
of TFRC which have conservative decrease algorithms, i.e.
upon congestion they decrease more slowly than TCP.

In the simulation, RED is deployed on the routers, the
TCP-Friendly long-flow with U(x) = −1/x, competes for
bandwidth against the two uncooperative short-flows. Figure
4 a) shows the result where both the long and short flows
use TCP-Friendly rate control scheme. Figure 4 b) shows
the result for the setup where we replace the TCP-Friendly
short flows with uncooperative rate control schemes (U(x) =
−1/

√
x). We see that, the uncooperative flows almost force

a traffic volume based denial of service attack. When we
employ our edge-based supervisor, with ρ = 2.5× 10−5, we
recover the ideal bandwidth sharing of bottleneck links, as
shown in Figure 4 a). The value of ρ is comparatively large,
because dropping or marking probability is less than 1 and
so is the price adjustment ρ × e.

A. Higher Flow Multiplexing with Background Traffic and
Reverse Path Congestion

To further present the efficiency and the robustness of our
scheme we increase the number of competing flows, and
add HTTP sources to the persistent flows and also short
TCP-Friendly flows to the reverse paths. The capacity of
the bottleneck links is set to 8Mbps and that of access links
to 80Mbps. The bottleneck buffer is set to one bandwidth
delay product. Figure 5 shows the results for the scenario
where 5 TFRC flows compete for bandwidth against selfish
flows. On each bottleneck there were 5 selfish short flows.
To these persistent flows, we added short web transfers
which occupied 10% of the bottleneck bandwidth. On each
bottleneck in the reverse path there were 5 flows and thus
creating congestion on the reverse path. Figure 5 shows the
throughput of one flow from each group: TFRC Long flows,
selfish short flows from Group 1 which go over the first
bottleneck only; and, finally, the selfish short flows from
Group 2 which go over the last bottleneck only.

Figure 5 a) shows the ideal sharing of the bottleneck when
the short flows are also TCP-Friendly. Figure 5 b) shows that
in the absence of any policing the uncooperative flows get
more share of the bandwidth at the expense of TFRC flows.
With our rectification algorithm (ρ as 2.5 × 10−5) the fair
share of the TFRC flows is restored; see Figure 5 c).

B. Effect of Gain ρ on Rectification of Selfish Users

The performance of our edge-based rectification algorithm
depends on the gain ρ in equation (15). As detailed below,
simulation studies indicate that too small or too large values
of this ρ may deteriorate the performance. Indeed, Theorem
1 disallows small values of ρ because, otherwise, the desired
two-time-scale behavior is not achieved. Although Theorem

1 allows arbitrarily large values for ρ, in practice, such high-
gain leads to saturation of dropping or marking schemes,
which violate the ”small marking probability” approximation
in Equation (3). We see in the following simulations that
large ρ might result in “over-penalization”, which means that
uncooperative flows receive even less than their fair share.

In Figure 4 we presented simulations with ρ = 2.5 ×
10−5. In Figure 6 we compare this result with ρ = 10−5

(Figure 6 a)) and with ρ = 10−4 (Figure 6 c)). We note
that a high value of ρ may result in “over-penalization”, and
uncooperative flows may receive even less than their fair
share. Similarly, with a very small value of ρ the selfish users
are not sufficiently penalized and they continue to get more
share of the bottleneck link(s) at the expense of cooperative
users. However, for intermediate values, such as ρ = 2.5 ×
10−5 in Figure 6 b), we recover the ideal shares for the
uncooperative and the cooperative users.

For all the results reported in this paper we have found
that the ideal range of ρ lies between the interval 10−4 to
10−5. We also extensively evaluated the edge-based recti-
fication model for different value of selfishness, i.e. users
chose different values of U(x), and found observation on ρ
consistent with those reported above.

VI. CONCLUSIONS

We have presented a price adjustment algorithm for both
Kelly’s primal and dual network flow control models, and
tested it on the Network Simulator. This algorithm is to be
implemented at the edge of the network and, thus, does not
require costly hardware upgrades in the entire network. It
is independent of congestion notification policy deployed
by the network, and thus, can be used with any Active
Queue Management scheme, as well as Drop Tail queueing.
Although a suitable range for the gain ρ in our algorithm
was determined by simulations, a judicious choice of this
gain deserves further investigation. An on-line adaptation for
ρ may be possible, and is being investigated by the authors.

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability, Journal
of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[2] A. Akella, S. Seshan, R. Karp, S. Shenker and C. Papadimitriou.
Selfish Behavior and stability of the Internet: A Game Theoretic
Analysis of TCP. Proceedings of ACM Sigcomm, Aug 2002.

[3] S. Floyd and K. Fall. Promoting the Use of End-to-end Congestion
Control in the Internet. IEEE/ACM Transactions on Networking,
7(4):458-472, 1999.

[4] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial of
Service Attacks (The Shrew vs. the Mice and Elephants). Proceedings
of ACM SIGCOMM, Aug 2003.

[5] S. Gorinsky, S. Jain, H. Vin and Y. Zhang. Robustness to Inflated
Subscription in Multicast Congestion Control. Proceedings of ACM
SIGCOMM, Aug 2003.

[6] D. Lin and R. Morris. Dynamics of Random Early Detection, Pro-
ceedings of ACM SIGCOMM, Augutst, 1997.

[7] W. Feng et. al. Stochastic Fair Blue: A Queue Management Algorithm
for Enforcing Fairness. Proceedings of INFOCOM, April 2001.

[8] R. Mahajan and S. Floyd. Controlling High-Bandwidth Flows at the
Congested Routers. In ICNP 2001.

[9] I. Stoica, S. Shenker and Hui Zhang.Core-Stateless Fair Queueing: A
Scalable Architecture to Approximate Fair Bandwidth Allocations in
High Speed Networks. SIGCOMM’98.

1846

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120 140

TFRC Short Flow 2

TFRC Short Flow 1

TFRC Long Flow

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20 40 60 80 100 120 140

TFRC Long Flow

Selfish Short Flow 1

Selfish Short Flow 2

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120 140

Selfish Short Flow 2
Selfish Short Flow 1

TFRC Long Flow

(a) Ideal Sharing (b) Without Rectification (c) With Rectification

Fig. 4. Multi-Bottleneck scenario where (a) shows the ideal bandwidth sharing (b) shows the aggravated unfair sharing in the presence of uncooperative
flows and (c) shows the rectification of uncooperative flows with our edge supervisor.

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

50000

100000

150000

200000

0 20 40 60 80 100 120 140

Selfish Short Flow (Group 2)

Selfish Short Flow (Group 1)

TFRC Long Flow
R

at
e

(B
y

te
s/

se
c)

Time in Seconds

0

50000

100000

150000

200000

0 20 40 60 80 100 120 140

Selfish Short Flow (Group 1)

Selfish Short Flow (Group 2)

TFRC Long Flow

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

50000

100000

150000

200000

0 20 40 60 80 100 120 140

Selfish Short Flow (Group 2)

Selfish Short Flow (Group 1)

TFRC Long Flow

(a) Ideal Sharing (b) Without Rectification (c) With Rectification

Fig. 5. Higher flow multiplexing with background traffic and reverse path congestion in a multi-bottleneck setup.

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100 120 140

Selfish Short Flow 2

Selfish Short Flow 1

TFRC Long Flow

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120 140

Selfish Short Flow 2
Selfish Short Flow 1

TFRC Long Flow

Time in Seconds

R
at

e
(B

y
te

s/
se

c)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 20 40 60 80 100 120 140

Selfish Short Flow 2

Selfish Short Flow 1

TFRC Long Flow

a) ρ = 10−5 b) ρ = 2.5 × 10−5 c) ρ = 10−4

Fig. 6. Effect of gain ρ on the steady state rates of uncooperative and TFRC flows with our edge supervisor.

[10] K. Chandrayana and S. Kalyanaraman. Uncooperative Congestion
Control. Proceddings of ACM SIGMETRICS 2004.

[11] S. Low and D. Lapsley, Optimization flow control - I: basic algorithm
and convergence, IEEE/ACM Transaction on Networking, vol. 7, no.
6, pp. 861-874, 1999.

[12] J. Wen and M. Arcak, A unifying passivity framework for network
flow control, IEEE Transactions on Automatic Control, vol. 49, no. 2,
pp. 162–174, 2004.

[13] H.K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ,
third edition, 2002.

[14] X.Fan, K. Chandrayana, M. Arcak, Shiv Kalyanaraman and J. T. Wen,
A Two-Time-Scale Design for Edge-Based Detection and Rectification
of Uncooperative Flows, Submitted to IEEE/ACM Transactions on
Networking, 2005.

[15] F. Paganini, A global stability result in network flow control, Systems
and Control Letters, vol. 46, pp. 165-172, 2002.

[16] S. Deb and R. Srikant, Global stability of congestion controllers for
the Internet, University of Illinois, Urbana, IL, Internal Report, Feb.
2002.

[17] On the Stability of End-to-end Congestion Control for the Internet.

Univ. of Cambridge Tech Report CUED/F-INFENG/TR.398, Decem-
ber 2000.

[18] R. Srikant. The Mathematics of Internet Congestion Control.
Birkhauser, 2004.

[19] G. H. Hardy, J. E. Littlewood and G. Polya. Inequalities. Cambridge
University Press, second edition, 1988.

[20] S. Floyd, M. Handley, J. Padhye and J. Widmer. Equation-Based
Congestion Control for Unicast Applications. Proceedings of ACM
SIGCOMM 2000, Stockholm, Sweden, August 2000.

1847

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

