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Abstract— In this paper we study nonstationary consistency
of subspace methods for eigenstructure identification, i.e., the
ability of subspace algorithms to converge to the true eigen-
structure despite nonstationarities.

I. INTRODUCTION

In 1985, Benveniste and Fuchs [6] proved that the Instru-
mental Variable method and what was called the Balanced
Realization method for linear system eigenstructure identifi-
cation are consistent for certain classes of nonstationary sys-
tems. Since this paper, the family of subspace algorithms has
been invented [14], [19], [22], [23], [24] and has expanded
rapidly. Therefore, we felt it was timely revisiting the results
of [6] and generalizing them to subspace methods. To this
end, paper [6] had first to be restructured to show up an
important intermediate result, which had not been noticed
explicitly. Having done this, we show how this key result
can be applied in various situations.

There are a number of convergence studies on subspace
methods in a stationary context in the literature, see [11],
[3], [4], [5], [9], [10] to mention just a few of them. These
papers provide deep and technically difficult results including
convergence rates. They typically address the problem of
identifying all system matrices or the transfer matrix, i.e.,
both the pole and zero parts of the system. In contrast, the
nonstationary consistency property that we study here holds
for the eigenstructure (the pole part) only and does not apply
to the zero part. It is definitely different from the problem
considered in [21].

The paper is organized as follows. The problem of non-
stationary consistency is stated in Section II. Section III
collects the key results of our approach. In Section III-A
we show that nonstationary consistency follows if we can
construct matrix estimators having the almost factorized form
Ri(N) = CAiG(N) + o(1), where A and C are the state
transition matrix and observation matrix for identification,
and o(1) → 0 when the sample size N goes to infinity.
Historically, subspace algorithms originated from Instrumen-
tal Variable methods; we show in Section III-C that it is in
turn useful to associate instruments to subspace algorithms.
Since limit theorems exist for martingales regardless of
stationarity, our approach to dealing with nonstationarity is
based on martingale arguments; this is treated in Section
III-D. These results allow us to reformulate the design of
subspace algorithms ensuring nonstationary consistency for
eigenstructure estimation as the quest for suitable instru-
ments, for linear systems; this is explained in Section III-E.
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Finally, in Section IV, by using the so developed toolbox of
theorems and lemmas, we prove nonstationary consistency
of some representative subspace algorithms.

Due to space limitations, we focus in this paper on
so-called covariance based subspace algorithms. Projection
based ones are not covered. The interested reader is referred
to the full paper [1] for the treatment of both families of
algorithms.

II. PROBLEM SETTING

Consider the following linear system{
xk = Axk−1 + Buk + vk

yk = Cxk−1 + Duk + wk
(1)

where k ∈ Z, x is the R
n-valued state, u is the R

m-valued
observed input, v and w are unobserved input disturbances,
and y is the R

q-valued observed output.
The key point of this work is that the unobserved input

disturbances can be nonstationary. For instance, they can
be white noises having unknown time-varying covariance
matrices. For this case, we should rather reformulate system
(1) in the following form, which enlightens that yk itself is
nonstationary in a nontrivial way:{

xk = Axk−1 + Buk + K(k)νk

yk = Cxk−1 + Duk + L(k)νk
(2)

where
[

K(k)
L(k)

] [
KT (k) LT (k)

]
is the time-varying co-

variance matrix of the excitation noise in (1), and νk is a
stationary standard white noise. Note that the zero part of
the transfer matrix [uk νk] �→ yk is time-varying in this case,
so that consistency makes sense only w.r.t. the pole part.

The problem we consider is the identification of the pair
(C, A) up to a change of basis in the state space of system
(2). Equivalently, we identify the pairs (λ, Cϕλ), where λ
ranges over the set of eigenvalues of A (the poles of system
(2)) and ϕλ are a corresponding set of eigenvectors. In words,
we consider the problem of eigenstructure identification.

Our objective is to show that subspace methods pro-
vide consistent estimators of the eigenstructure, also for
nonstationary cases as above. Of course, none of the ma-
trices A, B, C, D, K(k), and L(k), are known. Matrices
B, D, K(k), and L(k), are regarded as nuisance and are not
for identification in this paper.

III. BASIC THEOREMS FOR NONSTATIONARY

CONSISTENCY

Throughout this paper, for tN a nondecreasing sequence
of positive real nombers, o(tN ) generically denotes a
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matrix-valued sequence MN , of fixed dimensions, such that
MN/tN → 0 when N tends to infinity.

Also, throughout this paper, we distinguish Conditions
from Assumptions. Assumptions will refer to hypothesized
properties of the system or its inputs; Assumptions may
or may not hold. In contrast, Conditions can be enforced;
enforcing them will be typically part of the process of
designing the subspace algorithms.

A. From Hankel matrices to eigenstructure

Consider an observable pair (C, A) of matrices, where C
is q × n and A is n × n. Throughout this paper, p denotes
an integer large enough such that

rank(Op) = n, where Op
∆=

⎡⎢⎢⎣
C
CA
...

CAp−1

⎤⎥⎥⎦ (3)

For i = 1, . . . , p and N > 0, consider a family Ri(N) of
q × r-matrices, satisfying the following assumption:

Condition 1: The matrices Ri(N), N > 0, decom-
pose as Ri(N) = CAi−1G(N) + o(1). Furthermore,
the sequence of n × r-matrices G(N), N > 0, satisfies
lim infN→∞ σn (G(N)) > 0, where σn(M) denotes the n-th
largest singular value of matrix M .

Generic subspace algorithm: The following generic
algorithm is considered throughout this paper. It assumes a
finite family of matrices Ri(N) as above and returns a pair
(C(N), A(N)). The sentence

“Ri(N) provides consistent estimators for (C, A)”
that we use throughout this paper means that, when provided
with the sequence Ri(N), this generic algorithm yields
consistent estimators (C(N), A(N)) for the pair (C, A), see
Theorem 1 below. Consider the matrix Hp(N) defined by

Hp(N) ∆=

⎡⎢⎢⎣
R1(N)
R2(N)
...

Rp(N)

⎤⎥⎥⎦ (4)

and SVD-decompose it as:

Hp(N) =
∑min(pq,r)

i=1 σiuivT
i

=
∑n

i=1 σiuivT
i +

∑min(pq,r)
i=n+1 σiuivT

i

= U diag(σ1, . . . , σn)VT +
∑min(pq,r)

i=n+1 σiuivT
i

Partition the above defined pq × n matrix U into its p
successive q-block rows U1, . . . ,Up and set

U↑ ∆=

⎡⎣ U2

...
Up

⎤⎦ and U↓ ∆=

⎡⎣ U1

...
Up−1

⎤⎦
Using these notations, set

C(N) ∆= U1

A(N) ∆= least-squares solution of U↑ = U↓A
(5)

Theorem 1: [6] Under Condition 1, (C(N), A(N)) de-
fined by (4–5) is a consistent estimator of (C, A) in
the following sense: there exists a sequence of matrices
T (N), with T (N) and T−1(N) uniformly bounded w.r.t.
N , such that limN→∞ T−1(N)A(N)T (N) → A, and
limN→∞ C(N)T (N) → C.

Proof: It is found in [6], second part of Section III-C,
dealing with the Balanced Realization algorithm. Besides the
fact that reference [6] speaks (H, F, G) and not (A, B, C),
the only slight change is that matrix G(N) in Condition (1)
replaces the controllability matrix C(F, GS) of [6], where S
is the sample length. �
B. Notations

For X and Y two matrices of compatible dimensions,
define:

〈X, Y 〉 ∆= XY T

‖X‖2 ∆= Tr 〈X, X〉
E(X | Y ) ∆= 〈X, Y 〉〈Y, Y 〉†Y

E(X | Y ⊥) ∆= X − E(X | Y ) ,

(6)

where Tr denotes the trace and superscript † denotes the
pseudo inverse. For (yk)k∈Z a R

q-valued data sequence and
N > 0 a window length, define

Yi(N) ∆=
[

yi+N−1 . . . yi+1 yi

]
and write simply Yi if N is understood. For (xk)k∈Z and
(zk)k∈Z two data sequences of compatible dimensions, we
write:

〈Xi, Zj〉N ∆= 〈Xi(N), Zj(N)〉 ,

and

EN (Xi | Zj)
∆= E(Xi(N) | Zj(N)) .

Finally, we shall make use of the following data Hankel
matrices:

Y+
i,M (N) ∆=

⎡⎢⎢⎣
Yi+M

...
Yi+2

Yi+1

⎤⎥⎥⎦ , Y−
i,M (N) ∆=

⎡⎢⎢⎣
Yi

Yi−1

...
Yi−M

⎤⎥⎥⎦ ,

and

Yi,M (N) ∆=

[ Y+
i,M

Y−
i,M

]
.

The above notations are introduced because, depending
on the considered algorithms, the data set is indexed
as yN , . . . , y1 (when only “future” data are needed), or
yN , . . . , y1, y0, . . . , y−N (when data are split into future and
past). Many authors use rather y1, . . . , yN , yN+1, . . . , y2N ,
or variants thereof. Clearly, the difference is only notational.
Also, we have taken identical index M in Y+

i,M and Y−
i,M

when building Yi,M . Of course, we could take different
indices M+ and M− whithout impairing the validity of what
follows.
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Finally in order to refer to the different algorithms in
a systematic way in the sequel, we shall superscript the
referred Ri(N) with the index of the corresponding equation.
For example,

R
(12)
i (N) denotes Ri(N) as specified by (12). (7)

C. Instruments

In this section, we revisit the old concept of “instrument”
and use it in our context. Unlike in Section II where our prob-
lem was stated, we do not distinguish here between observed
and unobserved inputs. In the following system, vector ξ
collects all inputs of the system considered throughout this
section: {

xk = Axk−1 + B′ξk

yk = Cxk−1 + D′ξk
(8)

In (8), k ∈ Z, x is the R
n-valued state, ξ is the R

m-valued
input, and y is the R

q-valued observed output. Fix a window
length N . With the notations of Section III-B, system (8)
rewrites as follows, for i = 1, . . . , p:{

Xi = AXi−1 + B′Ξi

Yi = CXi−1 + D′Ξi
(9)

In the following lemma we introduce instruments as the key
tool in our analysis:

Lemma 1: (instruments) Let (zk)k∈Z be an R
M -valued

data sequence and (sN )N>0 an R+-valued sequence such
that

for j ∈ {1, . . . , i} : 〈Ξj , Z0〉N = o(sN ) (10)

lim inf
N→∞

σn

(
1

sN
〈X0, Z0〉N

)
> 0 (11)

Then,

Ri(N) ∆=
1

sN
〈Yi, Z0〉N (12)

satisfies Condition 1. In the sequel, we call instrument a
signal (zk) satisfying (10) and (11) for some sequence sN .

Proof: The following decompositions hold, for i > 0:

yk+i = CAi−1xk +
∑i−1

j=1 CAi−1−jB′ξk+j + D′ξk+i,

with the convention that
∑0

1 = 0, and∑N−1
k=0 yk+iz

T
k =

CAi−1
∑N−1

k=0 xkzT
k +∑i−1

j=1 CAi−1−j
∑N−1

k=0 B′ξk+jz
T
k +

∑N−1
k=0 D′ξk+iz

T
k

(13)

Equation (13) rewrites as follows:

〈Yi, Z0〉N
= CAi−1〈X0, Z0〉N+∑i−1

j=1 CAi−1−jB′〈Ξj , Z0〉N + D′〈Ξi, Z0〉N ,
(14)

which proves that R(12)(N) satisfies Condition 1, thanks to
(10) and (11). �
Lemma 1 and Theorem 1 together ensure that R(12)(N)
provides consistent estimators for the pair (C, A) (see (7)
for the notational convention used here).

Applying Lemma 1 to system (1) with its combined ob-
served and unobserved inputs can be (tentatively) performed
via the following substitutions:[

B′

D′

]
ξk =

[
B
D

]
uk +

[
vk

wk

]
(15)

Of course, if input ξk is observed, i.e., vk = wk = 0
in (15), then one can chose instrument zk in such a way
that 〈Ξj , Z0〉N = 0 exactly. This is no longer feasible if
unobserved inputs exist, since Ξj is no longer observed in
this case. Therefore, additional work is needed for analysing
system (1) with its combined observed/unobserved inputs.
The next section addresses this missing point.

D. A martingale argument

Let us discuss the key conditions allowing us to apply
Lemma 1 and Theorem 1 to system (1), taking the unob-
served inputs v and w into account.

Suppose first that there is no unobserved input disturbance,
i.e., v = w = 0 in (1). Then, the observed values for the
Ui’s can be used while constructing instrument zk in Lemma
1, since these are known—this is exactly what happens in
the so-called “deterministic” subspace methods [19], where
Ξj = Uj holds and 〈Uj , Z0〉N = 0 is enforced. Note that no
assumption of stochastic nature is required for this reasoning.

Next, consider the opposite case in which there is no
observed input, i.e., B = D = 0 in (1). Since input
disturbances are not observed, the actual values of Ξj are
unknown when applying Lemma 1 and therefore cannot be
used while constructing the instrument zk.

This problem, however, can be solved by using stochastic
knowledge about unobserved input disturbances. To this end,
we now introduce the needed probabilistic setting.

Lemma 2: Let (vk)k≥0 and (zk)k≥0 be two sequences of
square integrable vector valued random variables defined
over some probability space (Ω,G, P) and let (Gk)k≥0 be
an increasing family of sub-σ-algebras of G such that:

supk≥0 E‖vk‖2 ≤ K < ∞ ,

limN→∞
∑N

k=0 ‖zk‖2 = +∞ w.p.1 ,
vk and zk are Gk-measurable, and

E(vk | Gk−1) = 0 .

(16)

Then limN→∞ MN∑ N
k=0 ‖zk‖2 = 0 holds w.p. 1, where MN

∆=∑N
k=j vkzT

k−j for j > 0.

Nota: In formula (16), the conditional expectation
E(. | Gk−1) should not be confused with our matrix projec-
tion operator E(. | .) in (6).

Proof: It is a mild variation of the argument of [6],
Section III-A. We repeat it here for the sake of completeness.
Since we can reason on each entry of matrix MN separately,
we can, without loss of generality, assume that vk and zk are
both scalar signals. By the second condition of (16), we know
that (Mk)k≥0 is a square integrable scalar martingale w.r.t.
(Gk)k≥0. By (16), we have E((Mk − Mk−1)2 | Gk−1) =
E(v2

k | Gk−1)z2
k−j = E(v2

k)z2
k−j ≤ Kz2

k−j . The proof is
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then completed by using Theorem 2 below, which can be
found in [13], [17]. �

Theorem 2: ([13], [17]) Let (Mk)k≥0 be a locally square
integrable martingale w.r.t. (Gk)k≥0, such that M0 = 0. Set

[M, M ]k =
k∑

l=1

E((Ml − Ml−1)2 | Gl−1) .

Then, w.p.1, we have Mk

[M,M ]k
→ 0 on the set

{limk→∞ [M, M ]k = +∞} , and limk→∞ Mk exists and
is finite on the set {limk→∞ [M, M ]k < +∞}.

E. Analysing covariance based algorithms

In this section we combine the results from Sections
III-C and III-D to handle system (1) with its combined
observed/unobserved inputs. We repeat again system (1) for
convenience:{

xk = Axk−1 + Buk + vk

yk = Cxk−1 + Duk + wk
(17)

where k ∈ Z, y is the R
q-valued observed output, x is the

R
n-valued state, u is the R

m-valued observed input, (v, w)
is an unobserved input disturbance.

To be able to use stochastic information on the unobserved
inputs v, w we assume that all variables arising in system
(17) are defined over some probability space (Ω,F , P).

Available information is captured by the following σ-
algebras:

Fk
∆= σ (uj : j ∈ Z)︸ ︷︷ ︸

Fu

∨ σ (yl, vl, wl : l ≤ k)︸ ︷︷ ︸
Fy,v,w

k

Fo
k

∆= σ (uj : j ∈ Z)︸ ︷︷ ︸
Fu

∨ σ (yl : l ≤ k)︸ ︷︷ ︸
Fy

k

σ-algebra Fu is the information provided by the entire
observed input sample; σ-algebra Fy,v,w

k is the information
provided by the unobserved inputs v and w and the output
y up to time k; finally, σ-algebra Fy

k is the information
provided by the only output y up to time k. Regarding the
unobserved inputs, we assume the following:

Assumption 1: [unobserved inputs] Stochastic inputs v
and w satisfy the following conditions:

sup
k≥0

E
(‖vk‖2 + ‖wk‖2

)
< ∞, and for j > 0 :

∀k ≥ 0, E (vk+j | Fk) = 0 and E (wk+j | Fk) = 0 .

Note that these conditions do not request any kind of
stationarity. Assumption 1 involves the joint distribution of
vk, wk, and uk. It is in particular satisfied when observed and
unobserved inputs are independent. Besides Assumption 1,
no condition is required on the statistics of the observed input
uk. Consider the following conditions:

Condition 2: (instruments) Instrument (zk) satisfies the
following conditions:

zk is Fo
k -measurable (18)

lim
N→∞

sN = ∞, where sN
∆=

N−1∑
k=−M

‖zk‖2 (19)〈[
B
D

]
Uj , Z0

〉
N

= o(sN ) for j > 0 (20)

lim inf
N→∞

σn

(
1

sN
〈X0, Z0〉N

)
> 0 (21)

Property (18) guarantees that instrument zk depends only
on observed quantities. Integer M ≥ 0 in (19) is a constant
selected according to each particular instance of the family
Ri(N). Property (19) expresses that instrument (zk) pos-
sesses sustained energy. The following theorem is our first
main result. It provides the analysis of algorithms of the form
(12), i.e., covariance based ones.

Theorem 3: (covariance based subspace) Assume that As-
sumption 1 regarding unobserved inputs, and Condition 2
regarding instruments, are in force. Then, R

(12)
i (N) satisfies

Condition 1.

Therefore, R
(12)
i (N) yields a consistent subspace algorithm,

by Theorem 1.

Proof: Using the notations of Section III-C, system (17)
writes as follows, for i = 1, . . . , p:{

Xi = AXi−1 + BUi + Vi

Yi = CXi−1 + DUi + Wi
(22)

On the other hand, system (17) yields the following de-
composition for yk+i, i > 0 (we use the convention that∑0

1 = 0):

yk+i = CAi−1xk +
∑i−1

j=1 CAi−1−j v̂k+j + ŵk+i

where v̂k
∆= Buk + vk and ŵk

∆= Duk + wk. Using the
notations of Section III-C, this decomposition rewrites as
follows, for i > 0:

Yi = CAi−1X0 +
∑i−1

j=1 CAi−1−j V̂j + Ŵi (23)

where V̂i
∆= BUi + Vi and Ŵi

∆= DUi + Wi. Note that

〈Vj , Z0〉N =
∑N−1

k=0 vk+jz
T
k , (24)

and a similar formula holds with Wj instead of Vj . By (18)
and (19) of Condition 2, instrument (zk) satisfies (16) in
Lemma 2. By Assumption 1, noises vk and wk satisfy (16)
in Lemma 2, with Fk substituted for Gk. Therefore Lemma
2 can be applied with Fk substituted for Gk, which yields,
for any j ∈ {1, . . . , p}:〈[

Vj

Wj

]
, Z0

〉
N

= o(sN ) (25)
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Set

ξk
∆=

[
B
D

]
uk +

[
vk

wk

]
B′ ∆= [ In 0q ]
D′ ∆= [ 0n Iq ]

where the subscripts n and q indicate the dimensions of the
corresponding matrices. Using this change of notation allows
us to rewrite system (17) in the form (8) used in Lemma 1.

Consider now Condition 2. Combining (25) with (20)
shows that system (8) satisfies (10) in Lemma 1. On the
other hand (11) in Lemma 1 is ensured by Property (21)
of Condition 2. Therefore, by Lemma 1 we conclude that
Condition 1 is satisfied. �

Remarks: 1/ In fact our method could accomodate as
well additional “small” perturbations in system (17), i.e.,
additional inputs µk and νk in state and observation equations
respectively, such that 1

sN

∑N−1
k=−M ‖µk‖2 + ‖νk‖2 = o(1).

Transient terms or leakage effects such as considered in [7],
[8] are covered by these additional terms, and therefore do
not impair nonstationary consistency.

2/ Projection based subspace methods, i.e., methods of the
form

Ri(N) ∆= 1
sN

EN (Yi | Z0) (26)

are in fact more popular than covariance based ones, see [20].
They are often referred to as “data based” subspace methods.
Unfortunately, these methods cannot be handled directly by
Theorem 3. In fact, Theorem 1 itself does not apply. The
reason for this is simple: R

(26)
i (N) has dimensions q ×

dim(Z0(N)). So its dimensions vary with N and therefore
Theorem 1 cannot apply. In the full paper [1] a weighting
technique is used to overcome this difficulty.

IV. ANALYSIS OF SOME SUBSPACE ALGORITHMS

In this section we apply our toolbox of theorems and lem-
mas to sample subspace methods. To avoid boring notational
adjustments, we keep our notational conventions and will
therefore sometimes deviate from the original presentations
in this respect.

Key conditions ensuring nonstationary consistency are
Assumption 1 and Condition 2. Assumption 1 involves the
unobserved inputs, we assume it to hold throughout this sec-
tion and will not discuss it any further. In contrast, Condition
2 is a design constraint on the selection of the instruments:
this is the key condition to be verified or enforced when
analysing specific algorithms.

Regarding the details of Condition 2, we shall pay great
attention to verifying that (18) and (20) are satisfied, as these
conditions drive the choice of the instruments. Condition (21)
amounts to requiring that the instrument is well correlated
to the state. In contrast, we shall not discuss the satisfaction
of condition (19); this condition just translates, for each
particular algorithm, into corresponding conditions for the
original system (17).

Finally, checking for consistency requires that proper
normalization is applied. This is the very role of the scaling

factor sN . In practice the algorithms are applied with given
sample length N , and then, scaling is just an irrelevant issue.
Therefore, we shall ignore scaling in this section.

A. Output-only (OO) subspace algorithms

By definition, these algorithms assume B = D = 0 in
(17). Therefore (20) in Condition 2 is trivially satisfied, thus
we essentially need to check the measurability property (18).

Basic OO subspace algorithm: This is the simplest
algorithm to analyse. Introduce the instrument

zk
∆=

⎡⎣ yk

...
yk−M

⎤⎦ (27)

and take

Ri(N) = 〈Yi, Z0〉N . (28)

Instrument (27) satisfies (18) in Condition 2. Hence Theorem
3 applies and proves consistency of R

(28)
i (N). Note that

〈X0, Z0〉N =
[

F (N) AF (N) . . . AMF (N)
]
,

where F (N) = 〈X0, Y0〉N . Hence, (21) can be interpreted
as yk being “uniformly of order n”.

Covariance driven OO subspace algorithm [6], [18],
[2], [12]: This algorithm is a variation of the previous
algorithm, it was however proposed earlier. It consists in
computing, for i = 1, . . . , p:

Ri(N) =
[

r̂i(N) r̂i+1(N) · · · r̂i+M (N)
]

where r̂j(N) = 〈Yj , Y0〉N (29)

With instrument zk as in (27), we have

R
(29)
i (N) − 〈Yi, Z0〉N =

[
δ〈Yi, Y0〉 . . . δ〈Yi, Y−M 〉 ]

where δ〈Yi, Y−k〉 ∆= 〈Yi, Y−k〉N − 〈Yi+k, Y0〉N is such that

‖δ〈Yi, Y−k〉‖ ≤ 2 s∗M,N ,

where

s∗M,N
∆= sup−M≤j≤N−M

∑j+M
l=j ‖yl‖2 .

This implies

‖R(29)
i (N) − 〈Yi, Z0〉N‖ = o(sN ) , (30)

provided that the following assumption holds:

Assumption 2: For M fixed, s∗M,N = o(sN ).

With Assumption 2, (30) holds and therefore instrument zk

defined in (27) satisfies Condition 2. By Theorem 3, we
derive that R

(29)
i (N) yields a consistent subspace algorithm.

B. Input-output (IO) subspace algorithms

We review some representative variants.
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Covariance driven IO subspace algorithms with pro-
jection on the orthogonal of the input [12]: This algorithm
consists in computing (cf. notations (6)):

r̂i(N) = 〈Zi, Z0〉N , where Zi
∆= EN

(
Yi

∣∣U⊥
0,M

)
Ri(N) =

[
r̂i(N) r̂i+1(N) . . . r̂i+M (N)

]
(31)

First, note that 〈Zi, Z0〉N = 〈Yi, Z0〉N . The associated
instrument zk is therefore the sequence of the successive
columns of matrix Z0. Note that zk is Fo

k -measurable.
The rest of the analysis of this algorithm proceeds as for
R

(29)
i (N). Property (21) can be seen as that zk itself being

“uniformly of order n”.

Covariance driven subspace algorithm using projected
past inputs and outputs as instruments [25]: Those methods
encompass the methods also known as IVM, CVA, PO-
MOESP and N4SID in their covariance form [25]. In this
paper, we will focus on the unweighted IV related to Hp

defined as

Hp = 〈Y+
0,p,L−

0,M 〉N , (32)

where L−
0,M is defined by stacking for i = −M, . . . , 0

Li
∆= EN

([
Ui

Yi

] ∣∣∣∣ (
U+

0,M

)⊥)
. (33)

The rest of the analysis of this algorithm proceeds as for
(31).

C. Time– vs. frequency–domain.

For (yk)k∈Z an R
q-valued data sequence and N > 0

a window length, the DFT of Yi(N), denoted by Ŷi(N),
is equal to Ŷi(N) = Yi(N) ∆q

N , where ∆q
N is the N -

DFT matrix. Since matrix ∆q
N is orthogonal, 〈X̂, Ŷ 〉N =

〈X, Y 〉N , and EN (X̂ | Ŷ ) = EN (X | Y ) ∆q
N . Hence, Con-

dition 2 can be considered equivalently in the time domain
or in the frequency domain. Therefore, frequency domain
subspace algorithms corresponding to [15], [16] behave
exactly the same way as their time domain counterparts
regarding nonstationary consistency.

V. CONCLUSION

We have revisited eigenstructure identification via sub-
space methods. We have shown that consistency still holds
in case of nonstationary inputs (in fact, for “nonstationary
zero part”).

Martingale techniques were used to deal with unob-
served inputs—for these, “deterministic” projections based
on observed data cannot be used; they can however be
supplemented by “stochastic” projections using conditional
expectations.

Not surprisingly, transient and leakage effects are not an
issue for nonstationary consistency. And the results equiva-
lently apply to both time- and frequency-domain methods.

The simple techniques developed in this paper are not able
of addressing projection based algorithms. The interested
reader is referred to the full version [1], where all classes
of subspace methods are encompassed.
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