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Extension of a result by Moreau on stability of leaderless multi-agent
systems.

David Angeli

Abstract— The paper presents a result which relates connect-
edness of the interaction graphs in a multi-agent systems with
the capability for global convergence to a common equilibrium
of the system. In particular we extend a previously known result
by Moreau by including the possibility of arbitrary bounded
time-delays in the communication channels and relaxing the
convexity of the allowed regions for the state transition map of
each agent.

I. INTRODUCTION

Recent years have witnessed a growing interest in the
study of the dynamical behaviour of the so called multi-
agent systems. Roughly speaking these can be thought of
as complex dynamical systems composed by a high number
of simpler units, the agents. Each of them updates its state
according to some rule, whose Input-Output dynamics are
typically much simpler and much better understood, and
on the basis of the available information coming from the
other agents. All of them, though not necessarily identical,
share in fact some common feature of interest (say for
instance a given output variable) and are coupled together by
communication channels. The focus of the current research
is precisely on how the global behaviour of the system,
(for instance questions concerning the global stability or the
overall synchronization) is influenced by the topology of the
coupling on one hand (this is an analysis problem in many
respects) or the dual question of how to induce a certain
desired property of the ensemble based on some form of local
coupling for the agents. Problems of this nature arise in many
different fields, such as in the theory of coupled oscillators
[7], [13], in neural networks [5], in economics or in the
manouvering of groups of vehicles [8]. For instance in [9]
the so called rendezvous problem is considered, namely how
to design a local updating rule, based on nearest neighbor
interactions, which would ensure convergence of all of the
agents to an unspecified common meeting point. Emergence
of a global behaviour is therefore a consequence of the local
updating rule, without the need for a leader nor of centralized
directions being broadcasted.

Despite the common traits, the most powerful results are
obtained when specializing to systems of a given simple
form. Hereby we take a slightly different approach. The
emphasis is on how the topology of interconnections between
agents (possibly time-varying) affects the convergence of all
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agents to a common equilibrium. This analysis will be carried
out in the presence of limited transmission speed of the
information between the agents. In particular, we propose an
extension of the contributions by Moreau [10], [11], mainly
in two directions:

o« The new setting allows the presence of arbitrary
bounded communication delays.

o A central assumption in the results [10], [11], namely
that the future evolution of the studied system is con-
strained to occur in the convex hull of the agents states,
is removed.

The first aspect comes as a very natural question both from
a practical and a theoretical point of view. Communication
delays are in fact ubiquitous in the “real” world and it is well-
known their potential destabilizing effect in conjunction with
feedback loops, here induced by the graph topology of the
communication channels which need not be of a hierarchical
type. It is therefore remarkable to see how, at least in the
specific set-up we are considering, this destabilizing effect
does not take place and the same global behaviour of the
multi-agent system in terms of convergence to a common
equilibrium follows also in the extended set-up.

The second extension deals with convexity issues; one
of the technical tools used in order to enforce a common
behaviour in systems whose state takes value in Euclidean
space, is to have local evolutions point always inside the
convex hull of all variables. This makes life easier in a
certain respect but it is an unnatural assumption in more
general contexts, for instance when oscillators networks are
considered (these are typically modeled as systems evolving
on a torus) or systems evolving in partially obstructed
Euclidean spaces (for instance on a plane minus a circle).
Relaxing convexity is meant as a first step in the quest for
stability conditions which can work in more general spaces.

Before going on further, we present the main elements of
this construction, developed below. The multi-agent system
under study will be described by a time-dependent graph
4/ (t), describing the transfer of information between the
agents at time ¢, and a set of rules according to which each
agent updates its state at time ¢z + 1. The definition of the
latter is done by the introduction of two types of objects,
which we present now (complete definitions are to be found
in Section II below).

o A set-valued map o, is defined, which associates to the
set of present and past states of the agents a compact
set in the state space common to all the agents. This
map will play the central role of a set-valued Lyapunov
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function for the system.
o It is then necessary to define the rules according to
which the agents update their state, given the (possibly
delayed) information on the position of the other agents
they received. For this, each agent k is attributed a set-
valued map e, which, given the communication graph
4/ (t), defines the set of allowed positions e (7 (¢)). An
important point here is that, whatever the information
received by each agent, the new positions cannot induce
an increase of the set-valued Lyapunov function along
the trajectories.
The definition of the new class of multi-agent systems
studied here is done and commented in Section II. The
stability is studied and the main results are given in Section
III. Complete demonstration of the results presented in this
note may be found in [1]. Last, it is fair to underline the deep
connections of the present work with the results on partially
asynchronous iterative methods presented in [3, Chapter 7].

Notations: As often as possible, we use the notations
introduced by Moreau [10], [11]. Following him, we dis-
tinguish between the inclusion, denoted C, and the strict
inclusion, denoted C. The topological interior of a set is
denoted int.

We study systems with n agents whose position at time
t are written as xi(t),...,x,(f) in the finite-dimensional
space X. In the setting introduced in Moreau’s contribu-
tions, the corresponding overall state variable is x(¢) =
(x1(t),...,x,(¢)) € X". Here, we consider systems with de-
lay smaller than a given integer 4 > 0. In consequence,
the complete state variable of the system is (x(f),x;(r —
D), ooxi(t—h4+1),0x0(8), .. xn(t —h+1)) € X,

We denote % = (xi,...,xp,) an arbitrary element of X"
and, when considering the dynamical system, we write
fk(t) e (xk(t),xk(t — 1),...,xk(t —h+ 1)) for all k e A =
{1,...,n} and %(r) = (%/(¢),...,%,(¢)). We also use the
corresponding decomposition of any element X of X" as
% = (&1,...,%,) (which amounts to identify X" to (X")").
When needed, any %, € X" is decomposed according to
Xt = (Xk05---5Xkn—1), in such a way that for the variables
of the dynamical systems under study xi ;(r) = x(t — j),
ke v, je# ={0,...,h—1}. Similarly we denote by
AN ={1,2,...,hn}. The previous notation is necessary,
in order to distinguish between the delayed and the actual
values of the position of the agents. Coherently with the
notations introduced above, we sometimes abbreviate x;
and write simply x;.

Last, given any & € X" we often need to embed it on
2%, according to the following rule: 7 (%) = {x1,x2,... %, }.
In this way the state of the system is mapped to a finite
collection of points in the X space.

II. A CLASS OF MULTI-AGENT DYNAMICAL SYSTEMS

This section is devoted to the presentation of the dynam-
ical system under study. We study here a special class of
nonlinear difference inclusions with delay, that we write:

xe(t4+1) € er( (1)) (X(1)) - €))

Recall that xi(r) represents the “position” at time ¢ of
the agent k. The evolution of the latter depends upon the
complete system state %(¢) (including delayed components),
through the time-varying map e (<7 (t)). For a trajectory of
(1), we call decision set of agent k at time ¢ the value taken
by ex(</(t))(%(r)). The specificity of the problem lies in
these maps: they depend upon the topology of the inter-agent
communications, modeled by the graph </ (t).

The modeling of the communication network is presented
below in Section II-A. The construction of the decision sets
inside which, given the communication network, each agent
may update the value of its state, is made in Section II-B.
Last, we provide some examples in Section II-C.

A. Inter-agent communications modeling

The first ingredient of the construction is the family of
continuous set-valued maps ey (<) : X" = X taking on
compact values, and defined for k € .4 and any directed
graph o7 . The latter will define, according to the position of
the other agents, in which subset of X agent k is allowed to
choose its future state.

Here, we are concerned by information transfer from the
past to the present. In other words, we need to consider
graphs in X" linking some past and/or present values
xi(t — j) of the states of an agent k to another agent .
Consequently, at each time, the communication graph 7 is
a weighted, directed multigraph defined on the set .4/ of the
nodes, that is a set of ordered couples of nodes (with possible
repetitions), called arcs'. To each of these arcs is associated a
weight, chosen in 7, to be interpreted as the corresponding
information delay®. All the considered graphs will contain
all the loops of zero weight, corresponding to the ability for
each agent to use without delay the knowledge on its own
state. The graphs fulfilling all these conditions will be called
in the sequel admissible graphs.

We shall write ir{% k when an arc of weight j links in
< the node i to the node k (with i,k € 4, j € 7). A node
k € A is said to be connected to a node [ € A if there
exists a path from k to [ in the admissible graph &/ which
respects the orientation of the arcs. Last, given a sequence
of admissible graphs <7 (z), t € N, a node k € .4 is said
connected to a node [ € A on an interval I C N if k is
connected to / for the graph (J,o; /(7).

Figure 1 provides an example of admissible graph. For
the graph represented therein, agents 1 and 2 are mutually
connected and agent 3 is connected to 1 and 2, but neither 1
nor 2 is connected to 3. Notice that generally speaking there
may exist more than one arc between two distinct nodes, and
that a node may be connected to itself (via delayed values).

Definition 1: Consider an admissible graph </ and a
nonempty subset £ C .4". The set Neighbors(.Z,.<7) is the
set of those nodes k € 4\ .Z for which there is [ € .¥
such that (at least) one arc from k to [ exists. When .Z is a

!For details on the basic graph-theoretic notions needed here, the reader
is referred e.g. to [].

Recall that A" ={1,...,n}, # ={0,...,h— 1}, where n is the number
of agents and i — 1 the larger transmission delay.
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Agent 1 Agent 3

Agent 2

Fig. 1. An example of admissible graph for a system with three agents.

singleton {/}, the notation Neighbors(/,.<) is used instead
of Neighbors({l},<). [ |
We impose to the maps ¢, the following assumption.
Assumption A: For all k € ./ and all admissible graph <7,
the set-valued map e; is continuous and takes on compact
values. Moreover,

o el @) (®) = {udif {xj 0 idy k) ={uk
o ()X Crio ({xk}u{xi,j cidy k}) otherwise.
|

The exact meaning and the properties of the set-valued
map ri o are the subject of Section II-B. However, we
may already make some remarks on the form of the right-
hand side of the problem. Clearly, Assumption A implies that
the evolution of each agent depends only upon the possibly
delayed information received from its neighbors. The case
where {x;; : i L, k} = {x} is realized when either the
agent k has no neighbor and the set involved in the formula
is empty, or all the (possibly delayed) positions received from
the neighboring agents are also equal to the present position
x; of agent k; in this case, no motion is allowed. We shall
see below that in the present framework the use by each
agent of the present value of its own position is mandatory
for stability, see counterexample in Example 6.

B. Construction of the decision sets

The second ingredient necessary for the construction of
the dynamical system under study is a set-valued map © :
2X = X, taking on compact values. It has a central role in the
definition of the dynamics, and it will be shown afterwards
(cf. in particular the proof of Theorem 2) that it plays the role
of a “set-valued Lyapunov function” for the studied system.

In order to state the properties that ¢ should fulfil, we have
to introduce beforehand some notions. First of all, define .7,
a set of subsets of X in which ¢ will be compelled to take
on its values, as:

S ={SCX : S compact and 3¢ : X — X, @ bijective,

@, ¢ ! Lipschitz and ¢(S) convex} . (2)

Important consequences will proceed from the fact that o
takes on values in ./, inherited from properties summarized
in the following result.

Lemma 1: Let . be defined by (2).

1) forany S €.7, the function dg(x°,x') : S x § — [0, +o0)
defined as

y(0) = y(1) ="}
is well-defined and continuous. Define y : . — R™:

u(s) =

max dg(xo,xl). 3)
WO xles

Then, for all S €.,
e U(S)=0if and only if S is a singleton.
o 1(S) is at least equal to the (euclidian) diameter
of S, and equal to this value if § is convex.
e U is lower semicontinuous in S, but nowhere
continuous.

2) for any S € ., let ¢ be as in (2) and
ri(8) = ¢ ! (ri(e(s))

where ri(¢@(S)) designates the relative interior? of the
convex set ¢(S). Then, for all S €.,

o ri(S) is independent of the choice of ¢.
e ri(S) =0 if and only if S is a singleton.
e int SCri SCS.
o ri(S) is the relative interior of S if S is convex. l
Lemma 1 permits to measure the distance between points
of a set S € . “along the arcs”. It permits to define extended
notions of diameter and of relative interior, which coincide
with the usual ones for convex subsets of X. By definition,
we call “relative boundary” of sets S in . the following set:

rd(S)=S\ri(S) .

Also, according to the definition of dg in Lemma 1, we
define, for any subsets §',8” of a set S in . the S-distance
from S’ to §" as:

dS(S’,S”) = inf

Wes xles’

ds(x",x") . 4)

We now gather the properties that ¢ must fulfil, and

afterwards comment on their meaning and consequences.

Assumption B: The set-valued map o : 2¥ = X is con-

tinuous with respect to the topology induced by Hausdorff
metric and maps the bounded subsets of X to .¥. Moreover,
the following should hold:

1) §C o(S) with equality if S is a singleton.

2) o(S)=o0o00(S) for all S € 2%,

3) CS = o(S) Co(S) forall §,8 € 2.

4) If S is bounded and not a singleton, for all x € S, there
exists X, C rdo(S) such that X,NS # 0 and x ¢ Z,.
Moreover, if S" C o(S):

a) if ri o(8')NZE, #0, then S’ C X, (and in partic-
ular, x ¢ §").
b) if dg(5)(S',Zy) > 0, then (o (8')) < u(c(S)).

3i.e. its interior when regarded as a topological subspace of its affine hull.
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5) Moo is continuous. |

Remark that at this point, the problem under study is fully
understandable: our goal is to find stability conditions for
systems defined by (1), where the maps e, verify Assumption
A for a given map o fulfilling Assumption B, and where
the meaning of the relative interior ri has been defined
previously by Lemma 1.

Important consequences of Assumptions B.1 to B.5 are
now discussed. We shall see further in Theorem 1, that
Assumptions B.1-B.3 are indeed sufficient to forbid increase
along time of the natural set-valued Lyapunov function of
the system. The additional Assumptions B.4-B.5 induce the
strict decrease of the set-valued Lyapunov function (see
Theorem 2) . We provide in the following lemma a direct
consequence of Assumption B.1.

Lemma 2: Assume Assumption B.1 is fulfilled. Then,
for any bounded S C X, card S > 1 = ri o(S) # 0 and
u(o(s)) >0. [ |

We now come to the central hypothesis, stated in As-
sumption B.4. This Assumption applies to arbitrary (but non
trivial) groups of agents S, which may comprise indifferently
true agents or “virtual” agents, viz. informations relative to
the position of a true agent at previous sampling times.
More closely, for each agent x, there exists a portion of
the boundary of o(S), denoted by X,, whose elements are
irreversibly attracted outside of it when using information
received from any agent not in Z, (such as x itself) according
to the rule edicted in Assumption A. The second part of
Assumption B.4 imposes that such an irreversible escape
from X, comes with a strict decrease of the diameter of
the set-valued Lyapunov function of the system (for convex
sets S,8" C X, §' C S implies u(S") < u(S), but this is not
true for general sets in . defined by (2)).

Generally speaking, the set X, defining a critical part of
the relative boundary of o(S) relative to x, looks like an
union of “faces” of rdo(X) containing an extremity of each
geodesic in 6(S) originating in x and which are maximal
(for the inclusion) among the set of these geodesics. Remark
that sets Z,,X, associated to different points x,y in S may be
equal.

Similarly to what happens within Moreau’s setting, one
has the following result.

Lemma 3: Assume Assumptions B.1-B.4 be fulfilled.
Then, card S > 1 = card(SNrdo(S)) > 1. |

Last, notice that Lemma 1 and the continuity assumption
on ¢ implies that the map oV is already lower semicon-
tinuous on X, Assumption B.5 thus represents a slightly
stronger regularity assumption.

C. Examples

We present here different examples and counter-examples
of maps o fulfilling the properties previously defined.

Example 1 (convex hull): In Moreau’s work, o(S) is
taken to be the convex hull of S, see Figure 2. One may
check easily that Assumptions B.1 to B.5 are all fulfilled.
Here, the sets X, involved in Assumption B.4 can be defined

x2

X3 o(x)
*1

Fig. 2. The convex-hull, Moreau’s set-valued Lyapunov function.

Fig. 3. Illustration of Example 2.

as follows:

3= U

CGTCO-(S)()C),‘L":I

x+max{r:x+ct € o(S)}c,

where TCgs) (x) denotes the Bouligand contingent cone to
the set o(S) at x (otherwise called tangent cone, as o(S) is
convex here; see [2, pp. 176—177 and 219] for details). W

Example 2 (a different convex example): For a given ba-
sis ej, j=1,...,p of X, take

o(S)= [mine{x,maxe{x} X+ X [mine,T,x,maxe[T,xi} .
xes xes xeSs xes
In this example, the convex hull is applied “componentwise”,
see Figure 3. Remark that conv(S) C o(S) for this case, but
this relation is not mandatory, see Example 4 below.
In the example depicted on Figure 3, one may check that

the choice consisting in taking for Xy = Ucerc, (5@ lel=1% 1
max{s : x+ct € o(S)}c, fulfills the Assumptions. [ |
Example 3 (other convex examples): One  may  also

define o(S) as the smaller set containing S and with
boundary parallel to given p -+ 1 non-parallel hyperplans
(where X = RP), see Figure 4. More precisely, let
X = conv(S) and ej,...,epp1 be (p+ 1) vectors in
X such that for some positive A € RP*! we have
YjAjej = 0. The set o(S) is a polytope defined as:

{x €X : eflx<maxyezelx, j=1,....p+ 1}, containing
the points xi,...,xp,. Symmetrically we may define
o(x) = JxeXx : ejTXZminx/eze]T-x’, j=1,...,p—|—1}.

Similarly to what occurs in Example 2, one may take for
Y, the portion of the boundary obtained by following the
vectors coming out from the tangent cone at x all the way
to their extreme intersection point with the boundary of
o (S), and the Assumptions B.1-B.5 are fulfilled. [ |

Remark that the smallest ball or the smallest hypercube
containing S does not fulfil the requested properties. For in-
stance the smallest circle containing a triangle never contains
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Fig. 4. Other convex examples of set-valued Lyapunov function, see
Example 3.
o)
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-1 o 1 2 3 4
Fig. 5. An example of map o giving rise to nonconvex sets. Notice that

conv(S) Z o(S), and that u(o(S)) is larger than p(conv(S)), the diameter
of conv(S).

the smallest circle containing the shortest of its edges, which
violates monotonicity of the map ©.

Example 4 (nonconvex examples): For —any  bijective
transformation ¢ : X — X which is Lipschitz together with
its inverse, one may take

0p(S) =0 ' ((0(5))) .

where o fulfils all the Assumptions. In general 0y (S) Z
conv(S) and is not convex: indeed, this latter property is
not essential. Such an example of nonconvex sets is given

in Figure 5, obtained for X = R?, x| = (g), Xp = ;_ ,
(0 _( cosalx|* sinollx|? -
= (—1)"P(x)— (—sinoc||x|2 cosar[lo|2 ) = 004

and o(S) = conv(S).

Notice that, generally speaking, the systems generated
along this principle are such that the map ¢ in (2) is identical
for all the sets o(S). The sets X, may be obtained as for
Example 1, up to transformation by ¢. |

Example 5 (intersection of decision sets): When o and
o’ fulfil the properties stated above, an interesting issue is
to see whether 6N o’ do. One sees easily that Assumptions
B.1-B.3 are fulfilled. The validity of B.4 and B.5 depends
upon the configuration of the sets X, X corresponding to
o and ¢’. In Figure 6 is presented an example where the

Fig. 6. Map obtained by intersection of the maps from Figures 3 and 4.

resulting map fulfills all the properties. |

III. RESULTS

Before stating the results of this paper, we recall the no-
tions under discussion below, see [10], [12]. As in Moreau’s
papers, we call equilibrium point any element of the state
space which is the constant value of an equilibrium solution.

Definition 2: Let 2" be a finite-dimensional Euclidean
space and consider a continuous set-valued map e : N X
Z = Z taking on closed values, giving rise to the differ-
ence inclusion

x(t+1) €e(t,x(t)) . (5)

Consider a collection of equilibrium solutions of this equa-
tion and denote the corresponding set of equilibrium points
by @: ¢ € @ if and only if ¢ € e(r,¢) for all r € N.

With respect to the considered collection of equilibrium
solutions, the dynamical system is called

1) stable if for each ¢ € @, for all ¢, >0 and ¢y € N, there
is ¢; > 0 such that every solution § of (5) satisfies: if
[E(t0) — @| < c1 then |{(1) — @] < ca, t > 1o.

2) bounded if for each ¢ € @, for all ¢c; >0 and 7y €
N, there is ¢; > 0 such that every solution { of (5)
satisfies: if | (to) — @| < ¢ then |{(¢) — @| < c2, t > 1.

3) globally attractive if for each ¢; € @, for all ¢1,c; >0
and 79 € N, there is T > 0 such that every solution { of
(5) satisfies: if | (t0) — @1] < ¢; then there is ¢, € ®
such that |§(1) — @2 < cp, t >t9+T.

4) globally asymptotically stable if it is stable, bounded
and globally attractive.

If ¢; (respectively ¢, and 7') may be chosen independently of
to in Item 1 (respectively Items 2 and 3) then the dynamical
system is called uniformly stable (respectively uniformly
bounded and uniformly globally attractive) with respect to
the considered collection of equilibrium solutions. |

Notice that the above notions are uniform with respect to
all trajectories of (5).

We now state a first result on boundedness and (simple)
stability, analogous to [10, Theorem 2].

Theorem 1: Assume that Assumptions A and B.1-B.3 are
fulfilled. Then the discrete-time system (1) is uniformly glob-
ally bounded and uniformly globally stable with respect to
the collection of equilibrium solutions x;(7) = -+ = x,(¢) =
constant. |
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The proof of Theorem 1 [1] is based on the evolution of
the following set-valued function Vi.xm=x,

V(%) = o(n(%)) (6)

along the solutions of (1). The fact that t — V(%(¢)) is non-
increasing is stated in the following result.

Lemma 4: Let x be a solution of equation (1). Then, for
all 7 €N,

V(&(@r+1)) CV(x(r)) - |

In view of Lemma 4, one may now have a clearer
understanding of the fact that the map ¢ has a double role: it
is necessary to define the flow, but also serves as a set-valued
Lyapunov function of the systems. Indeed, Assumption A
states that each agent has to remain in the set V(%(z)), of
which it has only an imperfect knowledge, and does its
best to come closer from the other agents it has detected
(this is the meaning of the use of the relative interior). In
particular, when no new information is received, the only
possible choice is to stay at the same place.

As detailed in Section II-B, contrary to ¢, the map ri o
is not monotone: violation of this rule may occur when
§" C S and the o-hulls 6(S),c(S’) have different topological
dimensions as spheres. Up to this subtlety, a consequence of
Assumption A is that, in general, the larger the quantity of
information received by agent k from its neighborhood, the
largest the set of possible updates it may choose (see the
monotony property in Assumption B.3). Although this may
sound paradoxical at first glance, this increase of the decision
possibilities is quite natural: it means that supplementary
information either leads to make a choice which could have
been done otherwise (it is ignored or makes more valuable
the decision) or allows to adopt choices which would not
have been done otherwise. The “subtlety” comes from the
fact that, when the information available to an agent is poor,
some decisions are taken which would not have been possible
with richer data. For example, the possibility of staying in
the same place, which occurs when an agent, say agent 1, is
isolated from the other world, disappears when the position
of another agent located elsewhere, agent 2, is received.
However, the unique choice o ({x;}) = {x;} is then located
“on the boundary” of the decision set ri o({x|,x2}), see
Lemma 3.

The key result of the paper is now stated. It provides a
necessary and sufficient stability condition for system (1),
which extends [10, Theorem 3].

Theorem 2: Assume that Assumptions A and B are ful-
filled. Then the discrete-time system (1) is uniformly globally
attractive with respect to the collection of equilibrium solu-
tions x; (1) = --- = x,(¢) = constant if and only if there exists
T > 0 such that for all 7y € N there is a node connected to
all other nodes across [fy,7 + T. [ |

The argument of the proof of Theorem 2 is based on an
abstract stability result on difference inclusions with delay
— not reproduced here for sake of space, see [1] —, and on
the following estimate [1]: for any 7,/ € N,

(> 14 (n—1)°(h+T) = u(V (") < p(V(E) -

o - )
Agent 1 Agent 2 Agent 3

Fig. 7. Graph representing the information flow for Example 6: even (dots)
and odd (dash) times.

The uniformity which is meant in the statement of Theo-
rems 1 and 2 is with respect to time. One may check from the
proofs in [1] that it is also valid with respect to the different
trajectories of (1).

Theorem 2 states asymptotic stability for any (finite) val-
ues of the delay. Of course, as may be checked elementarily,
the values of the latter has a determining impact on the
convergence speed of the solution. Quantitative analysis of
this issue is scheduled as a next step.

Example 6: The necessity for each agent to use the unde-
layed value of its own position may be seen by the following
counter-example, see Figure 7. Here, n =3 and h =2. Agent
2 sends alternativaly to agent 1 and 3 the value of its position
at the previous instant, and receives the present value of their
position. Assume the agents use at time ¢ the value of their
position at time ¢ — 1 to elaborate the update applied at time
t + 1. Clearly, for the corresponding graph, the agent 2 is
connected to all other agents across any interval [¢,7+ 1].
However, provided that agents 1 and 3 are initially located
at different points, the positions of agent 2 at even and
odd times tend in general toward two different values. As
indicated by the existence of periodic motion, the strict
decrease of the map ¢ — u(V(%(¢))) may fail. [

REFERENCES

[1] D. Angeli, P--A. Bliman (2004). Stability of leaderless multi-agent sys-
tems. Extension of a result by Moreau, arXiv:math.0C/0411338
[2] J.P. Aubin, A. Cellina (1984). Differential Inclusions: set-valued maps
and viability theory, Springer-Verlag, Berlin
[3] D.P. Bertsekas, J.N. Tsitsiklis (1989). Parallel and distributed compu-
tation, Prentice-Hall International
[4] J.A. Fax, R.M. Murray (2002). Information flow and cooperative
control of vehicle formations. In Proc. of the IFAC World Congress
2002, Barcelona, Spain
[5] M.W. Hirsch (1989). Convergent activation dynamics in continuous
time networks. In Neural Networks, Vol. 2, 331-349
[6] A. Jadbabaie, J. Lin, A.S. Morse (2003). Coordination of groups of
mobile autonomous agents using nearest neighbor rules, IEEE Trans.
Automatic Control 48 (6), 988-1001
[7]1 A. Jadbabaie, N. Motee, M. Barahona (2004). On the stability of
the Kuramoto model of coupled nonlinear oscillators. In Proc. of the
American Control Conference
[8] N.E. Leonard, E. Fiorelli (2001). Virtual leaders, artificial potentials
and coordinated control of groups. In Proc. of the 40th IEEE Conf.
on Decision and Control, 2968-2973, Orlando, FL, USA
[9] J. Lin, A.S. Morse, B.D.O. Anderson (2003). The multi-agent ren-
dezvous problem. In Proceedings of the 42nd IEEE Conference on
Decision and Control, 1508-1513, Maui HI, USA
[10] L. Moreau (2003). Time-dependent unidirectional communication in
multi-agent systems, arXiv:math.0C/0306426
[11] L. Moreau (2004). A note on leaderless communication via bidi-
rectional and unidirectional time-dependent communication, Proc. of
MTNS 04, Leuven (Belgium)
[12] L. Moreau (2005). Stability of multiagent systems with time-dependent
communication links, IEEE Trans. Automat. Control 50 (2), 169-182
[13] R. Sepulchre, D. Paley, N. Leonard (2003). Collective motion and
oscillator synchronization. In Proc. of the Block Island Workshop on
Cooperative Control

764



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




