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Abstract— In this paper, an efficient approach for a moment-
based Bayesian prediction step for both linear and nonlinear
discrete-time dynamic systems using exponential densities with
polynomial exponents is proposed. The exact solution of the
prediction step is approximated by an exponential density
which minimizes the Kullback-Leibler distance. Compared to
other approaches, the user of this procedure can specify the
approximation quality by controlling the deviation between
the moments of the exact and the approximated solution.
Furthermore, this algorithm can also be used for the adaptation
of the order of the exponential densities either to improve the
approximation quality or to reduce the computational effort.

I. INTRODUCTION

Estimating predicted probability densities is a common

problem in filtering theory for nonlinear dynamic sys-

tems [1]. Only for a few special cases this problem can

be solved analytically, e.g. if prior information about the

state variable is described by Gaussian densities. Even then,

system state equations have to be restricted to linear mapping

functions with additive Gaussian system noise to obtain exact

closed form solutions for the predicted densities. These re-

strictions are equivalent to the prerequisites of the prediction

step considered in linear filtering problems solved exactly by

the Kalman filter.

Usually, the exact prediction step can only be calculated

by numerical evaluation of convolution integrals over infinite

regions of the state space, if the system is characterized by

nonlinear state equations, non-Gaussian a priori information

about the state variables, non-Gaussian system noise, and

non-additive uncertainties. Therefore, techniques relying on

particle filters or grid-based approximations of the predicted

probability densities are often applied [2], [3].

Other common methods, using no discretization of the

state space, rely on analytical density descriptions. In this

case, the exact predicted density is approximated by opti-

mization of the parameters of an assumed density such that

a distance measure, e.g. the Kullback-Leibler distance [4] be-

tween the exact and the approximated density, is minimized.
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These parameterizable densities are often chosen as exponen-

tial densities with polynomial exponents [5], [6]. The case

of Gaussian density approximations corresponds to finding

optimal parameters of an exponential density with second

order polynomial exponent. It has to be pointed out, that even

for linear mapping functions with additive Gaussian system

noise the prediction step cannot be calculated analytically, if

non-Gaussian exponential densities are assumed.

In this paper, a general approach for a prediction step using

exponential densities to approximate the predicted density is

considered for nonlinear discrete-time state equations. This

approximation of the prediction step is neither restricted to

additive system noise nor to linear mapping functions.

The new approach significantly reduces the difficulties

of minimization of the Kullback-Leibler distance between

the exact predicted density and an assumed approximation.

In general, such optimization criteria are nonlinear in the

components of a multi-dimensional parameter space. In this

paper, the distance between the exact density and its ap-

proximation by an exponential density with fixed or variable

order polynomial exponents is minimized without explicitly

evaluating the integral defining the exact predicted density.

For that purpose, a progression approach corresponding to

a continuous variation of the state equation from an identity

mapping to the desired nonlinear state equation defines

continuous variations of the moments of the predicted density

starting with an initial parameter set with known moments.

By solving a set of ordinary differential equations relating

continuous moment variations to continuous variations of

the density parameters an approximation of the predicted

density is determined. In the case of exponential densities

this procedure minimizes the Kullback-Leibler distance to

the exact solution. The corresponding proof is given.

The advantages of the presented algorithm are: First,

instead of numerical integration over infinite regions of the

state space, a differential algebraic approach is applied to

the moment calculation of exponential densities [7]. Second,

the order of the polynomial exponent can be adapted, if

the approximation quality of the moments of the predicted

density is decreasing. Third, the computational effort of the

prediction algorithm can be influenced by the user by limiting

the order of the exponential density. If the presented pre-

diction algorithm is applied to state estimation of dynamical

systems a filter step which incorporates measured data has to

be implemented additionally. For exponential densities such

techniques have e.g. been described in [8].

In Section II, a precise problem formulation is given. In

Section III, the idea of approximating the predicted density
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by an exponential density with the same moments as the

exact density is explained. Then, in Section IV, an overview

of the key components of the moment-based prediction

algorithm is given. In Section V, the implementation of

the prediction algorithm is explained in more detail. In

Section VI, an example demonstrating the performance of

this algorithm for recursive prediction is given for a nonlinear

state equation. Finally, in Section VII this paper is concluded.

II. PROBLEM FORMULATION

In this paper, a prediction step for scalar nonlinear

discrete-time system state equations

xk+1 = ak (xk, vk) (1)

is proposed for uncertain state variables xk and xk+1,

both described by exponential densities with polynomial

exponents. The system state equation ak (xk, vk) represents

a nonlinear relation between the uncertain state variables

xk and xk+1, as well as uncertain, stochastic parameters

and system noise described by the vector vk. For additive

uncertainties vk the state equation

xk+1 = ak (xk) + vk ,

leads to the exact predicted density f̃x
k+1 (xk+1) given by

the convolution integral

f̃x
k+1 (xk+1) =

∞∫
−∞

fx
k (xk) fv

k (xk+1 − ak (xk)) dxk . (2)

In general, analytic expressions for this integral are only

available for a few special cases such as Gaussian (mixture)

densities fx
k (xk), additive Gaussian noise vk with the density

fv
k (vk), and linear mapping functions ak (xk).

To enable efficient recursive prediction for nonlinear state

equations, the exact predicted densities f̃x
k+1 (xk+1) have

to be approximated adequately. In recursive application, the

number of parameters of the approximated density should

only increase moderately. Users should be able to control

quality and computational effort of this approximation.

In this paper, the densities f̃x
k (xk) and f̃x

k+1 (xk+1) are

approximated by exponential densities

fx
k

(
ηx

k
, xk

)
= c

(
ηx

k

)
exp

⎛
⎝ 2n∑

j=1

ηx
k,jx

j
k

⎞
⎠ (3)

of order 2n with n ∈ N and the density parameters

ηx
k

=
[
ηx

k,1 . . . ηx
k,j . . . ηx

k,2n

]T
. To guarantee correct

probability densities, the highest-order coefficient ηx
k,2n has

to be negative. Then, finite moments

Mx
k,i

(
ηx

k

)
=

∞∫
−∞

xi
kfx

k

(
ηx

k
, xk

)
dxk < ∞ (4)

exist for i ∈ N0. The negativity of the highest-order coeffi-

cient ηx
k,2n is guaranteed by the parameter vector

ηx
k

=
[
ηx

k,1 . . . ηx
k,j . . . −

(
ηx

k,2n

)2
]T

. (5)

After the prediction step, the normalization factor c
(
ηx

k+1

)
has to be chosen such that the predicted density

fx
k+1

(
ηx

k+1
, xk+1

)
is normalized again, i.e.,

Mx
k+1,0

(
ηx

k+1

)
=

∞∫
−∞

fx
k+1

(
ηx

k+1
, xk+1

)
dxk+1 = 1. (6)

The presented approach relies on calculating the exact mo-

ments M̃x
k+1,j of the predicted state variable xk+1, in terms

of the moments of xk and vk. Then, an approximation

fx
k+1

(
ηx

k+1
, xk+1

)
of the predicted density is determined

which has approximately the same moments

Mx
k+1,[1:2n]

(
ηx

k+1

)
≈ M̃

x

k+1,[1:2n] , (7)

where the index [1 : 2n] denotes a vector of moments of

orders 1, . . . , 2n.

III. MOTIVATION OF THE MOMENT-BASED PREDICTION

STEP FOR EXPONENTIAL DENSITIES

In this Section, the important property is derived that

a normalized exponential density fx
k+1

(
ηx

k+1
, xk+1

)
with

the same moments of orders 1, . . . , 2n as the exact proba-

bility density f̃x
k+1 (xk+1) minimizes the Kullback-Leibler

distance

G
(
f̃x

k+1‖fx
k+1

)
=

∞∫
−∞

g
(
ηx

k+1
, xk+1

)
dxk+1 (8)

with

g
(
η, x

)
= f̃ (x) ln

(
f̃ (x)

f
(
η, x

)) . (9)

Note, that a differential geometric filtering approach for

continuous-time problems which also aims at the minimiza-

tion of a distance measure between the exact and approx-

imate density functions has been published in [5], [6]. In

contrast to that work, the approach presented in this paper

introduces a progression approach which defines continuous

moment variations and thus continuous variations of the

density parameters for discrete-time systems.

Theorem: If the first 2n moments Mx
k+1,i

(
ηx

k+1

)
of the ap-

proximate, normalized predicted density fx
k+1

(
ηx

k+1
, xk+1

)
are equal to the moments M̃x

k+1,i of the true density, i.e.,

Mx
k+1,[1:2n]

(
ηx

k+1

)
= M̃x

k+1,[1:2n] , (10)

the Kullback-Leibler distance G
(
f̃x

k+1‖fx
k+1

)
between

f̃x
k+1 = f̃x

k+1 (xk+1) and its approximation fx
k+1 =

fx
k+1

(
ηx

k+1
, xk+1

)
is minimized. �

Proof: The derivative of G
(
f̃x

k+1‖fx
k+1

)
with respect to the
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parameter vector ηx
k+1

is set to zero according to

∂G
(
f̃x

k+1‖fx
k+1

)
∂ηx

k+1

= −
∞∫

−∞

f̃x
k+1

fx
k+1

∂fx
k+1

∂ηx
k+1

dxk+1

= −
∞∫

−∞

f̃x
k+1

fx
k+1

⎛
⎝∂c

(
ηx

k+1

)
∂ηx

k+1

fx
k+1

c
(
ηx

k+1

)

+fx
k+1

⎡
⎢⎢⎢⎢⎣

xk+1

x2
k+1
...

−2
(
ηx

k+1,2n

)
x2n

k+1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ dxk+1 = 0

(11)

which leads to

−
⎛
⎝∂c

(
ηx

k+1

)
∂ηx

k+1

1

c
(
ηx

k+1

)
⎞
⎠ ∞∫

−∞
f̃x

k+1 (xk+1) dxk+1

︸ ︷︷ ︸
=1

−

⎡
⎢⎢⎢⎢⎣

M̃x
k+1,1

M̃x
k+1,2
...

−2
(
ηx

k+1,2n

)
M̃x

k+1,2n

⎤
⎥⎥⎥⎥⎦ = 0.

(12)

Choosing the normalization factor c
(
ηx

k+1

)
such that

Mx
k+1,0 =

∞∫
−∞

fx
k+1

(
ηx

k+1
, xk+1

)
dxk+1 = 1 ,

the derivative of the zero-order moment with respect to the

parameter vector yields

∂Mx
k+1,0

(
ηx

k+1

)
∂ηx

k+1

=
∂

∂ηx
k+1

∞∫
−∞

fx
k+1 (xk+1) dxk+1

!= 0 .

(13)

Equation (13) is rewritten as

−
∂c

“
ηx

k+1

”

∂ηx
k+1

c
(
ηx

k+1

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Mx
k+1,1

(
ηx

k+1

)
Mx

k+1,2

(
ηx

k+1

)
...

−2
(
ηx

k+1,2n

)
Mx

k+1,2n

(
ηx

k+1

)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (14)

Substituting this expression in (12), the gradient

∂G
(
f̃x

k+1‖fx
k+1

)
∂ηx

k+1

= −

⎡
⎢⎢⎢⎢⎣

M̃x
k+1,1

M̃x
k+1,2
...

−2
(
ηx

k+1,2n

)
M̃x

k+1,2n

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

Mx
k+1,1

(
ηx

k+1

)
Mx

k+1,2

(
ηx

k+1

)
...

−2
(
ηx

k+1,2n

)
Mx

k+1,2n

(
ηx

k+1

)

⎤
⎥⎥⎥⎥⎥⎥⎦ = 0

(15)

is expressed in terms of the difference of the moments of

the exact and the approximated density. From (15) it is

obvious that the minimum of the Kullback-Leibler distance

corresponds to equal moments

Mx
k+1,[1:2n]

(
ηx

k+1

)
= M̃x

k+1,[1:2n] (16)

with ηx
k+1,2n �= 0. The parameter vector ηx

k+1
cannot be

determined explicitly if the corresponding desired moment

vectors are given. However, as shown in the following

Sections, small variations of the density parameters ηx
k+1

are

related to small variations of the moments of the exponential

density by the diffeomorphism

∂Mx
k+1,[1:2n]

(
ηx

k+1

)
∂ηx

k+1

= J ⇐⇒

∂Mx
k+1,[1:2n]

(
ηx

k+1

)
= J ∂ηx

k+1
.

(17)

�

IV. OVERVIEW OF THE MOMENT-BASED PREDICTION

ALGORITHM

In this Section, an overview of the basic concepts of the

prediction step with exponential densities are introduced. In

Subsection IV-A, the calculation of the moments of the exact

predicted density is described.

In Subsection IV-B, the differential relation between mo-

ment and parameter variations, mentioned in (17), is dis-

cussed.

A. Calculation of the Moments of the Exact Prediction
If the moments of the density fx

k (xk) of the uncertain

state variable xk and the moments of fv
k (vk) describing the

uncertainties vk are known, the moments of the predicted

random variable xk+1 can easily be calculated as a linear

combination of the prior density’s moments. This holds for

polynomial, trigonometric, and exponential functions with

polynomial exponents as state equations ak (xk, vk).
In the following it is assumed that the state equation

xk+1 = ak (xk, vk) = a1,k

(
xk, v1,k

)
+ v2,k

can be separated into a nonlinear function a1,k

(
xk, v1,k

)
of

the prior state variable with non-additive uncertainties v1,k ∈
R

v−1 and additive noise v2,k ∈ R with vk =
[
vT
1,k ; v2,k

]T

.

According to [9] and generalization of equation (2), the

exact prediction is given by

fx
k+1 (xk+1) =

∫
Rv−1

∫
R

{
fx

k (xk) fv1
k

(
v1,k

)
·fv2

k

(
xk+1 − a1,k

(
xk, v1,k

))}
dxkdv1,k .

(18)

Substituting (18) into the definition of the i-th moment

Mx
k+1,i =

∫
R

xi
k+1f

x
k+1 (xk+1) dxk+1

=
∫
R

∫
Rv−1

∫
R

{(
a1,k

(
xk, v1,k

)
+ v2,k

)j

·fx
k (xk) fv1

k

(
v1,k

)
fv2

k (v2,k)
}

dxkdv1,kdv2,k

(19)
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with
∂xk+1
∂v2,k

= 1 leads to the moments of the predicted density

in terms of the moments of fx
k (xk) and fv

k (vk) for the

above mentioned types of nonlinear state equations for which

closed form solutions exist.

B. Differential Relation between Moments and Parameter
Variations of Exponential Densities

As described in Section III, the Kullback-Leibler distance

G
(
f̃x

k+1‖fx
k+1

)
between the exact predicted probability

density and its approximation by an exponential density is

minimized by a parameter vector ηx
k+1

which minimizes

the distance between the moments of f̃x
k+1 (xk+1) and

fx
k+1

(
ηx

k+1
, xk+1

)
. In general, it is difficult to determine

the parameter vector ηx
k+1

corresponding to the global min-

imum of G if only the desired moments M̃
x

k+1,[1:2n] of the

predicted density are given and no prior knowledge about

the parameters is available.

This approximation problem is simplified significantly,

if parameters of a density are to be determined which is

described by moments that are only slightly different from

an initial density with known moments and parameters. Intro-

ducing an artificial “time” variable γ ∈ [0 ; 1], the infinites-

imal relation between the moment variation
∂M̃

x
k+1,[1:2n]

∂γ and

the corresponding parameter variation
∂ηx

k+1
∂γ is given by

∂Mx
k+1,[1:2n]

∂ηx
k+1

∂ηx
k+1

∂γ
=

∂M̃
x

k+1,[1:2n]

∂γ
. (20)

This differential equation is solved successfully if continuous

parameter variations exist which correspond to the given

continuous moment variations
∂M̃

x
k+1,[1:2n]

∂γ . Mathematically,

a unique vector of infinitesimal parameter variations
∂ηx

k+1
∂γ

can be calculated for nonsingular Jacobians J =
∂Mx

k+1,[1:2n]

∂ηx
k+1

.

In this paper, for non-singular Jacobians the ordinary differ-

ential equation

∂ηx
k+1

∂γ
= J−1

∂M̃
x

k+1,[1:2n]

∂γ
(21)

is solved for the parameter interval γ ∈ [0; 1]. During the

variation of γ the state equation is transferred, e. g. from

a unit mapping function ak (γ = 0, xk, vk) = xk, to the

desired nonlinear state equation for γ = 1 according to

ak (γ, xk, vk) = (1 − γ) xk + γak (xk, vk) . (22)

The remainder of this paper considers a proposed solution

to the three problems arising from this approach. How can

the parameter dependent entries of the Jacobian, i. e., the mo-

ments of the approximated density be calculated efficiently?

What can be done if the matrix J is (nearly) singular? How

can the approximation quality and the computational effort

be influenced by the user of this prediction algorithm?

V. PREDICTION ALGORITHM FOR EXPONENTIAL

DENSITIES

This Section is concerned with the implementation of the

moment-based prediction algorithm and the questions at the

end of Section IV. The basics of the moment calculation for

exponential densities by a system of differential algebraic

equations are described in Subsection V-A.

In Subsection V-B, the solution of the differential equa-

tions (21) between moment and parameter variations is

discussed and methods for the control of the approximation

quality of the prediction algorithm are proposed. In Fig. 1,

a block diagram summarizing the proposed algorithm is

shown.

−

(
∂M

∂η(γ)

)−1 ∫
(·) dγ

moment calculation

M
(
η(γ)

)

quality
approximation

control ofM̃(γ)

∂M̃(γ)
∂γ

= ˙̃M(γ)

∂η(γ)

∂γ
η(γ)

M
(
η(γ)

)
Ṁ(γ)

Fig. 1. Overview of the proposed moment-based prediction step.

A. Moment Calculation of Exponential Densities

The scope of this subsection is the review of the basic

idea of moment calculation of exponential densities by a set

of differential algebraic equations, see also [7]. At the same

time, the relation between moment calculation and adaptation

of density parameters (21) via the diffeomorphism (17)

should become clear.

It is assumed that the moments Mx
1,[0:2n−1]

(
ηx
1

)
of

an, in general unnormalized, exponential density function

fx
1

(
ηx
1
, x
)

of order 2n are given. The goal of the differential

algebraic approach for moment calculation is to determine

the moments Mx
2,[0:ζ]

(
ηx
2

)
belonging to another exponential

density fx
2

(
ηx
2
, x
)

up to an arbitrary order ζ.

1) Definition of Continuous Parameter Variations: In

a first step, a continuous variable τ ∈ [0; 1] is intro-

duced, which transfers the initial parameter vector ηx
1

=[
ηx
1,0 ηx

1,1 . . . − (ηx
1,2n

)2]
into the final parameter vec-

tor ηx
2

=
[
ηx
2,0 ηx

2,1 . . . − (ηx
2,2n

)2]
according to

ηx
12

(τ) = (1 − τ) ηx
1

+ τηx
2

= ηx
1

+ τ
(
ηx
2
− ηx

1

)
. (23)

For normalized densities fx
1

(
ηx
1
, x
)

, the parameter ηx
1,0 =

ln (c), where c is the density’s normalization factor.

2) Algebraic Constraints between Lower-Order Moments
and Higher-Order Moments of Exponential Densities with
Polynomial Exponents: The i-th order moment of the density

fx
12

(
ηx
12

(τ) , x
)

is defined by the integral

Mx
i

(
ηx
12

(τ)
)

=

∞∫
−∞

xifx
12

(
ηx
12

(τ) , x
)

dx . (24)
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Integration by parts of (24) with respect to x yields

Mx
i (ηx

12
(τ)) = − 1

i + 1

2n∑
j=1

αjM
x
i+j(η

x
12

(τ)) (25)

with

αj =

{
j
(
(1 − τ) ηx

1,j + τηx
2,j

)
for 1 ≤ j ≤ 2n − 1

−2n
(
(1 − τ)

(
ηx
1,2n

)2 + τ
(
ηx
2,2n

)2)
for j = 2n.

relating lower-order moments up to order 2n− 1 to a linear

combination of higher-order moments up to order 4n−1 [6].

Example V.1 For 2n = 4 and i = 0, . . . , 3, the algebraic

constraints (25) are re-written in matrix-vector-notation:

−

⎡
⎢⎢⎣

1 α1
1

α2
1

α3
1

0 1 α1
2

α2
2

0 0 1 α1
3

0 0 0 1

⎤
⎥⎥⎦Mx

[0:2n−1]

(
ηx
12

(τ)
)

=

⎡
⎢⎢⎣

α4
1 0 0 0

α3
2

α4
2 0 0

α2
3

α3
3

α4
3 0

α1
4

α2
4

α3
4

α4
4

⎤
⎥⎥⎦Mx

[2n:4n−1]

(
ηx
12

(τ)
)

.

(26)

Arbitrary higher-order moments Mx
[2n:4n−1]

(
ηx
12

(τ)
)

can

obviously be calculated analytically, for known lower-order

moments Mx
[0:2n−1]

(
ηx
12

(τ)
)

up to order 2n − 1. �

3) Set of Differential Equations: Now, variations of the

moments Mx
i

(
ηx
12

(τ)
)

, i = 0, . . . , 2n− 1, are expressed in

terms of moments up to order i + 2n for τ ∈ [0; 1]. This set

of under-determined ordinary differential equations

∂Mx
i

(
ηx
12

(τ)
)

∂τ
=

2n∑
j=0

βjM
x
i+j

(
ηx
12

(τ)
)

(27)

with

βj =

{
ηx
2,j − ηx

1,j for 0 ≤ j ≤ 2n − 1
− (ηx

2,2n

)2 +
(
ηx
1,2n

)2
for j = 2n

can be solved under consideration of the additional algebraic

constraints (25). Especially, if only small variations of the

density parameters are of interest, this method is much more

efficient than moment calculation by numerical integration

of the density function.

B. Solution of the Differential Equations of the Parameter
Variations and Control of the Approximation Quality

After summarizing a procedure for the calculation of the

moments of an exponential density up to an arbitrary order,

the implementation of the prediction step is described in this

Subsection. The Jacobian J =
∂Mx

k+1,[1:2n]

∂ηx
k+1

in the differential

equation (21) has to be calculated explicitly.

For that purpose, the derivative of Mx
k+1,[1:2n] with respect

to the parameter vector ηx
k+1

is calculated. Using the results

of equations (13) and (14), the components

∂Mx
k+1,[1:2n]

∂ηx
k+1

=
∂

∂ηx
k+1

∞∫
−∞

xi
k+1f

x
k+1

(
ηx

k+1
, xk+1

)
dxk+1

(28)

of the Jacobian

J = − Mx
k+1,i

⎡
⎢⎣

Mk+1,1

...

−2ηx
k+1,2nMk+1,2n

⎤
⎥⎦

+

⎡
⎢⎣

Mk+1,i+1

...

−2ηx
k+1,i+2nMk+1,2n

⎤
⎥⎦

(29)

are given in terms of the moments of fx
k+1

(
ηx

k+1
, xk+1

)
which are determined by the differential algebraic approach

in Subsection V-A.

If the differential algebraic approach for moment calcula-

tion is applied to the unnormalized density

f∗,x
k+1 = exp

(
ηx

k+1,1xk+1 + . . . − (
ηx

k+1,2n

)2
x2n

k+1

)
the normalization factor c

(
ηx

k+1

)
is given by 1

M∗,x
k+1,0

, i.e.,

Mx
k+1 =

1
M∗,x

k+1,0

M∗,x
k+1 .

During the solution of the differential equation (21), inver-

sion of the Jacobian may be prevented by singularities of this

matrix. In practical applications, this problem can be avoided

by adding a regularization matrix λI to the Jacobian matrix,

where I is an identity matrix of appropriate dimension and

λ is a small real number.

If the deviation between the true and the approximated

moments is exceeding a user-defined bound, several strate-

gies are possible to control the approximation quality. For a

fixed value of γ, the differential equation (21) can be used

to reduce the difference between the true moments and the

approximation. If the approximation error cannot be reduced

sufficiently, not all given moments can be approximated si-

multaneously by the assumed number of density parameters.

Then, not all 2n moment conditions can be minimized. Al-

ternatively, an under-determined set of differential equations,

described by a rectangular Jacobian matrix, can be used to

determine the minimum-norm parameter variations relying

on the pseudo-inverse of the Jacobian matrix. The differential

equation (21) is also used to reduce or increase the number of

density parameters, with only small changes of the moments.

E.g. the reduction from order 2n to 2n−2 can be calculated

by

∂Mx
[1:2n]

∂ηx
[1:2n−2]

∂ηx
[1:2n−2]

∂γ
= − ∂Mx

[1:2n]

∂ηx
[2n−1:2n]

∂ηx
[2n−1:2n]

∂γ
(30)

with the given parameter variations
∂ηx

[2n−1:2n]

∂γ , which are

chosen such that ηx
2n−1 (γ = 1) = ηx

2n (γ = 1) = 0. Simi-

larly, this idea can be applied to increase the absolute value of

the parameter ηx
2n to increase the distance to the singularity

at ηx
2n = 0 and ηx

2n−1 �= 0 or to increase the order of the

density from 2n to 2n + 2.
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VI. SIMULATION RESULTS FOR RECURSIVE PREDICTION

In this Section, simulation results for a nonlinear, recursive

prediction step with the discrete-time state equation

xk+1 = 2xk − 0.5x3
k + vk (31)

are given. Fig. 2 shows the state equation ak (xk) as well as

the unit mapping xk+1 = xk. The linear function and ak (xk)
have three points in common. Two stable equilibria exist for

xk = ±√
2. For xk = 0, an instable equilibrium exists. In

recursive prediction, the stable equilibria correspond to the

maxima of the predicted density functions.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
xk+1

xk

equilibrium
instable

stable
equilibria

Fig. 2. Stable and instable equilibria of the nonlinear system state equation.

The initial exponential density function of the uncertain

state variable x0 is described by the parameter vector

ηx
0

=
[
0.2 0.05 0 0 0 0 0

√
1.5
]T

with 2n = 8. The time-invariant system noise vk is assumed

to be Gaussian with µv
k = 0.0 and σv

k = 0.15. In Fig. 3, the

resulting densities are depicted for 15 subsequent time steps.

These are compared to a numerical integration of (2). The

predicted parameter vector after the first prediction step is

ηx
1

≈ [0.112 0.245 0.010 −0.095
−0.011 0.160 0.0028 0.286]T

The deviations of the moments in the same time-step are

shown in Fig. 4.

VII. CONCLUSIONS

In this paper, an efficient moment-based approach for a

Bayesian prediction step for linear and nonlinear discrete-

time systems has been proposed in order to minimize the

deviation between the exact solution and a parameterizable

exponential density. This novel approach uses a set of

ordinary differential equations to calculate the variation of

the density parameters due to given moment variations. As

demonstrated in simulations the approach can be applied

successfully for prediction using exponential densities. Fur-

thermore, the computational effort for moment calculation,

on which this algorithm relies, is significantly reduced by

the use of a set of differential algebraic equations compared

to numerical integration of the density function.
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Fig. 3. Approximated (solid lines) and exact predicted probability density
functions (dashed lines) for a recursive, nonlinear prediction step with
additive Gaussian noise.
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