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Abstract— Robust dynamic output feedback design is an open
problem, computationally speaking, since its determination asks
for the solution of nonlinear matrix inequalities, namely bilinear
ones. This is particularly the case, for polytopic uncertainty.
Here a new sufficient condition is proposed by the use of bounds
and scaling for completion of squares. The usefulness of the
provided conditions stands in the fact that its solution can be
performed using the Frank-Wolfe algorithm which runs in only
one shot. The control design of an inverted pendulum with
uncertain friction coefficients illustrates the theory.

I. INTRODUCTION

Robust control has grown, in the last past years, as one of
the most important area in modern control design since the
pioneering works by Zames [8], [9] and Doyle [2], [3], [4],
among many others. Now the progresses in the domain have,
to a large extent, reached the initial purpose of filling the gap
between the advantages of the frequency domain approaches
in terms of robustness and engineering understanding and
the time domain ones in terms of mathematical descrip-
tion and computational efficiency. Specifically, the Linear
Matrix Inequalities - LMI, in semi-definite programming is
recognized to have a big interest because of its abilities
to describe non trivial control design problems integrating
various specifications such as robustness, structural and
performances constraints, as well its suitability for efficient
numerical processing through various solvers available to
date (see [1] and the references therein). Although there is
still room for efficiency improvement the actual solvers give
a satisfactory answer for practical design on real processes.
There are, however, some control problems which are still
open for the determination of solutions enabling the direct
use of LMI for numerical determination. This is the case of
the robust dynamic output control problem where the plant
is subject to structured uncertainty.

In this paper polytopic uncertainty is considered which is
recognized as one of the most difficult structured uncertainty
since, in this case, not even any nominal system is formally
defined in the system description. In the case of norm
bounded uncertainty which is equivalent in the one block
case to the H∞ control, the dynamic output controller is
clearly derived as a filter like controller based on the nominal
model [3], [5].

This research was supported by grants from “Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico - CNPq” and “Fundação de
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In the polytopic uncertain case, the problem has been
addressed in a preceding work where a bilinear matrix
inequality was found as a necessary and sufficient condition
for quadratic stability and used for H2 and H∞ guaranteed
cost control design. An LMI processing was performed
in a cross decomposition algorithm working by successive
projection and relaxation techniques [7]. In the present paper,
a new sufficient condition is given in terms of LMI whose
sufficiency is reduced by the use of suitable bounding and
scaling determined from an adequate completion of squares,
leading to a Frank-Wolfe algorithm for optimization which
generates a sequence of feasible LMI problems with a
remarkable speed of convergence.

The organization of the paper is as follows. In the next
section the problem is stated together with a summary of the
preceding results pointing out the difficulty of its numeric
resolution. Section 3 is devoted to the main result, that is the
LMI sufficient condition for robust dynamic output feedback
control design in face of polytopic uncertainty. A discussion
is developed on the use and the processing of the proposed
bounds and scaling in order to reduce the conservativeness
of the approach. The H2 norm guaranteed cost problem
is treated. The paper ends with a numerical example and
concluding remarks about the interest for the reported results.

The notation used throughout is standard. Capital letters
denote matrices, small letters denote vectors and small Greek
letters denote scalars. For matrices or vectors (′) indicates
transpose. For symmetric matrices, X > 0 (≥ 0) indicates
that X is positive definite (nonnegative definite). The set of
real numbers is denoted by R. For square matrices trace(X)
denotes the trace function of X being equal to the sum
of its eigenvalues and, for the sake of easing the notation
of partitioned symmetric matrices, the symbol (•) denotes
generically each of its symmetric blocks.

II. PROBLEM FORMULATION

Let the uncertain time invariant linear system be given by
the following state space representation

ẋ(t) = Ax(t) + B1w(t) + B2u(t) (1)

z(t) = C1x(t) + D1u(t) (2)

y(t) = C2x(t) + D2w(t) (3)

where as usual, x(·) ∈ R
n is the state, u(·) ∈ R

m the
control, w(t) ∈ R

r the exogenous perturbation, z(t) ∈ R
p

the controlled output and y(t) ∈ R
q the measured output.

To ease the presentation it is assumed that only the pair of
matrices (A,B2) is uncertain and belongs to the polytopic
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domain

(A,B2) ∈ D := co{(Ai, B2i) , i = 1, · · · , N} (4)

where co{·} denotes the convex hull of the indicated vertices.
More general uncertainty models including uncertainty on
the output matric C2 can also be handled with slight modi-
fications. The control is given by a full order strictly proper
dynamic output feedback controller

ẋc(t) = Acxc(t) + Bcy(t) (5)

u(t) = Ccxc(t) (6)

where accordingly xc(·) ∈ R
n and the real matrices

Ac, Bc, Cc are of appropriate dimensions. Here, too, strictly
proper controllers have been considered for simplicity. The
case Dc �= 0 can also be handled with slight modifications.
The conventional H2 guaranteed cost control is worked out.
The control, that is, the design matrices (Ac, Bc, Cc), leading
to the controller transfer function Hc(s) = Cc(sI−Ac)−1Bc,
are to be determined such as to minimize an upper bound of
the squared H2 norm between the output z(t) and the input
w(t) over the uncertainty set, namely

min{µ : ‖Hzw(s)‖2
2 ≤ µ , ∀(A,B2) ∈ D} (7)

Connecting the controller (5-6) to the system (1-3) the H2

norm of the transfer function under consideration is readily
given by1

min
P>0

{trace(B′PB) : A′P + PA + C′C < 0} (8)

where

A :=
[

A B2Cc

BcC2 Ac

]
(9)

B :=
[

B1

BcD2

]
(10)

C :=
[

C1 D1Cc

]
(11)

Now, using the uncertainty domain (4) together with (9) -
(11) it is seen that the closed loop matrix A depends on
the unknown parameters in such a way that A ∈ D :=
co{Ai , i = 1, · · · , N} where the vertices Ai are determined
from those of D. Hence, defining the following N +1 matrix
inequalities [

W B′P
• P

]
> 0 (12)

and [
A′

iP + PAi C′

• −I

]
< 0 (13)

for all i = 1, · · · , N . The guaranteed cost control problem
(7) can be rewritten in the final form

min{trace(W ) : (12) − (13)} (14)

being apparent that whenever a given stabilizing output
feedback controller is fixed, the associated guaranteed H2

1This problem should be stated with inf instead of min. All feasible sets
of problems expressed in terms of LMIs must be considered closed from
the interior within a precision defined by the user.

cost is readily calculated from the solution of (14) with
respect to matrices W and P . In this case (14) becomes
a convex problem expressed in terms of LMIs. The situation
is much more complicated when the controller matrices
(Ac, Bc, Cc) are included in the set of variables. In this
case, problem (14) is non convex and the determination of
a solution still remains an open problem. Some attempts
have been already done in order to solve this type of
optimization problem (see [7] and the references therein).
They generally work by successive approximation applying
relaxation techniques involving LMIs at each iteration. Al-
though, in many cases, convergence may be observed it is not
mathematically proved. The cross decomposition algorithm
given in [7] can be cast in this class although it has been
adapted to the problem above in such a way that at each
iteration a maximum number of variables is used so that
there are common overlapping terms, a fact which is non
classical in relaxation techniques. The main goal of this
paper is to provide a suboptimal solution to the guaranteed
cost control problem (14), determined in only one shot,
avoiding thus convergence difficulties. The quality of the
proposed suboptimal solution will be illustrated by means
of a numerical example.

III. MAIN RESULT

In this section, before we give the main result of this paper,
we need to introduce the following partitions of matrices
P , P−1 and T used towards the linearization of constraints
appearing in problem (14). Let

P :=
[

X U

U ′ X̂

]

P−1 :=
[

Y V

V ′ Ŷ

]
(15)

T :=
[

Y I
V ′ 0

]

where all matrix blocks are square n × n real matrices,
X, X̂, Y, Ŷ are symmetric and U, V are non singular. This
last assumption is introduced with no loss of generality.

Theorem 1: Assume that there exist a scalar γ, symmetric
matrices W,X, Y and matrices F,L,G,M of compatible
dimensions satisfying the following N + 1 linear matrix
inequalities ⎡

⎣ W • •
XB1 + FD2 X •

B1 I Y

⎤
⎦ > 0 (16)

⎡
⎢⎢⎢⎢⎣

Li + L′
i • • • •

A′
i + M ′ Hi + H′

i • • •
C1Y + D1L C1 −γI • •

0 X 0 −I •
Li + G 0 0 0 −I

⎤
⎥⎥⎥⎥⎦ < 0 (17)

where Li := AiY +B2iL and Hi := XAi +FC2 for all i =
1, · · · , N . The full order dynamic output feedback controller
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with state space representation defined by matrices

Ac = U−1(M ′ + XG − FC2Y )V ′−1

Bc = U−1F (18)

Cc = LV ′−1

with U and V satisfying XY + UV ′ = I is such that
‖Hzw(s)‖2

2 < γtrace(W ) for all pairs (A,B2) ∈ D.

Proof: For each i = 1, · · · , N fixed, it is readily
verified that the inequality⎡

⎣ −(Li + G)′(Li + G) • •
Li + G −I •

0 0 0

⎤
⎦ ≤ 0 (19)

holds. Hence, performing the Schur complement with respect
to the two last columns and rows of (17) and adding the
result to (19) multiplied both sides by the symmetric matrix
diag(I,X, I), we get⎡

⎣ Li + L′
i • •

A′
i + M ′ + X(Li + G) Hi + H′

i •
C1Y + D1L C1 −γI

⎤
⎦ < 0 (20)

which together with (15) and (18) can be rewritten in the
form [

T ′(A′
iP + PAi)T •
CT −γI

]
< 0 (21)

for each i = 1, · · · , N allowing the conclusion that the
Lyapunov inequality associated to the closed loop system
A′P + PA + γ−1C′C < 0 holds for all A ∈ D. Once
again, using (15) it is seen that inequality (16) is equivalent
to W > B′PB and P > 0 yielding

‖Hzw(s)‖2
2 = trace

(
B′

∫ ∞

0

eA
′tC′CeAtdt B

)

< γ trace(B′PB)
< γ trace(W ) , ∀ A ∈ D (22)

which proves the proposed theorem.

An important feature of the guaranteed cost provided
by Theorem 1 is that it is determined from any feasible
solution of a set of N + 1 LMIs. Once a feasible solution
is determined, the associated guaranteed cost is given by
the nonlinear function µ(γ,W ) := γ trace(W ) allowing the
conclusion that the robust full order dynamic output feedback
controller associated to the guaranteed cost problem (7)
is given by (18) where the involved matrices variables are
provided by

min
γ,W,X,F,Y,L,G,M

{µ(γ,W ) : (16) − (17)} (23)

The solution of this nonconvex design problem will be
addressed in the sequel. For the moment, we want to stress
that the variable γ > 0 appearing linearly in the linear matrix
inequalities (17) is of capital importance to get the next result
which states that in the case of known systems characterized
by N = 1 the solution of problem (23) provides the H2

optimal full order output feedback controller.

Corollary 1: Assume N = 1. The optimal solution of the
guaranteed cost problem (23) provides the H2 optimal full
order output feedback controller.

Proof: Adopting, with the same notation, the change
of variables

(γW, γX, γF ) → (W,X,F )
(γ−1Y, γ−1L, γ−1G) → (Y,L,G) (24)

M → M

and noticing that as far as the feasibility of (17) is concerned
we can set G = −AiY − B2iL without introducing any
conservatism, then the guaranteed cost provided by Theorem
1 satisfies ‖Hzw(s)‖2

2 < trace(W ) where the involved
variables verifies (16) and⎡

⎣ Li + L′
i • •

A′
i + M ′ Hi + H′

i + γ−1X2 •
C1Y + D1L C1 −I

⎤
⎦ < 0 (25)

For γ → +∞ it is seen that the linear matrix inequalities
(16) and (25) together with (18) provide the H2 optimal full
order output feedback controller [7].

As a consequence of Corollary 1, without uncertainty
(N = 1), the H2 norm optimal solution is recovered by
the present result. This is of course the minimum to be
asked to a constructive approach since it guarantees that
there exist a neighborhood around the nominal model in
the parameter space where the inequalities introduced in the
design step correspond to feasible constraints. Furthermore,
it is interesting to put in evidence that the linear matrix
inequalities (17) provided by Theorem 1 have been deter-
mined from the observation that the bilinear inequalities (21)
can be generated by completing the squares to get quadratic
constraints with opposite sign to that of the constraints (19),
for each i = 1, · · · , N .

The problem has been developed for C2 constant and
(A,B2) ∈ D := co{(Ai, B2i) , i = 1, · · · , N}. It is almost
straightforward to extend the result to the case when B2 is
constant and (A,C2) ∈ D := co{(Ai, C2i) , i = 1, · · · , N},
as formally presented in the next theorem.

Theorem 2: Assume that there exist a scalar γ, symmetric
matrices W,X, Y and matrices F,L,G,M of compatible
dimensions satisfying the following N + 1 linear matrix
inequalities ⎡

⎣ W • •
XB1 + FD2 X •

B1 I Y

⎤
⎦ > 0 (26)

⎡
⎢⎢⎢⎢⎣

Li + L′
i • • • •

A′
i + M ′ Hi + H′

i • • •
C1Y + D1L C1 −γI • •

Y 0 0 −I •
0 H′

i + G′ 0 0 −I

⎤
⎥⎥⎥⎥⎦ < 0 (27)

where Li := AiY +B2L and Hi := XAi +FC2i for all i =
1, · · · , N . The full order dynamic output feedback controller
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with state space representation defined by matrices

Ac = U−1(M ′ + GY − XB2L)V ′−1

Bc = U−1F (28)

Cc = LV ′−1

with U and V satisfying XY + UV ′ = I is such that
‖Hzw(s)‖2

2 < γtrace(W ) for all pairs (A,C2) ∈ D.
Proof: Follows the same pattern as the proof of

Theorem 1, being thus omitted.

The same can be done when polytopic uncertainty is
present in all matrices (A,B2, C2). As well, the discrete
time case is solved in much the same way with only slight
differences in the matrix inequalities.

It has to be stressed that the determination of a dynamic
output feedback for uncertain dynamical systems is indeed a
difficult problem. Whatever the type of linear time invariant
uncertainty (polytopic or norm bounded), in the quadratic
approach, where a single Lyapunov matrix is used for sta-
bility check, necessary and sufficient conditions are written
in terms of bilinear matrix inequalities. Up to now, there is
no numerical algorithm with guaranteed convergence able
to provide a feasible solution to such inequalities. In the
case of norm bounded uncertainty problem (equivalent to
the H∞ one) bilinearity in the matrix inequalities comes
from the fact that they imply a multiplier matrix R together
with the inverse. The classical choice R = γI with one
directional search with respect to the scalar γ > 0 may lead
to quite conservative results. In the polytopic uncertainty
case, the matrix inequalities associated to each vertex of
the uncertain domain are also bilinear with respect to the
unknown matrix variables. By over bounding some terms,
sufficient LMI conditions have been obtained. Up to now,
it is difficult to make a fair comparison between the two
uncertainty formulations (there are cases where both can be
used to describe the same uncertainty domain).

Finally, it is important to notice that the criterion to be
handled is nonlinear but subjected only to LMI constraints. A
possible way to solve the associated guaranteed cost problem
(23) is to perform a one dimensional search along the scalar
γ axis. This is clearly time consuming and provides a subop-
timal solution whose accuracy depends on the discretization
step. It is possible to avoid this one line search by choosing
a log-type criterium as discussed in the next section.

IV. NUMERICAL ISSUES

In order to keep free the variable γ in LMIs (17), we
propose to solve the problem (23) by means of the Frank-
Wolfe algorithm which can take advantage of the fact that
its feasibility set is convex. Since the objective function is
positive then, with no loss of generality it can be replaced by
its natural logarithm yielding a concave function such that

ln µ(γ,W ) ≤ ln µ(γk,Wk) − 2 + θk(γ,W ) (29)

M

m

x

y

α

β

φ

u(t)

Fig. 1. Inverted pendulum

holds for all pairs (γ > 0,W > 0) and (γk > 0,Wk > 0),
where

θk(γ,W ) :=
γ

γk
+

trace(W )
trace(Wk)

(30)

The Frank-Wolfe algorithm is well adapted to deal with
this particular class of problem since, due to the concavity of
the objective function, the step size in the descent direction
does not need to be determined. Indeed, it can be shown
that the convex programming problems defined for all k =
0, 1, · · · , with linear objective function

(γk+1,Wk+1) = arg min{θk(γ,W ) : (16) − (17)} (31)

generate a sequence that converges to a solution (possibly
local) of the problem under consideration (23) and, at the
same time, enables us to estimate an actual convergence gap
which gives a measure of the distance to the optimal solution.
Indeed, using (29) we have that

µ(γk+1,Wk+1) ≤ µ(γk,Wk)
× exp(θk(γk+1,Wk+1) − 2) (32)

from which it is seen that its right hand side is an upper
bound of the current cost value attained by the feasible
solution provided by (31) at iteration k + 1 for all k =
0, 1, · · · . In several examples solved, it has been verified
that the proposed algorithm performed well and provided
a solution in a few number of iterations. In addition, for
N = 1 in all these cases the global optimum has always
been attained.

V. EXAMPLE

Figure 1 shows an inverted pendulum mounted on a small
car moving horizontally due the action of an external force
u(t). The inverted pendulum is constituted by a bar with uni-
formly distributed mass. The goal is to determine the control
action u(t) in order to bring the pendulum to the vertical
position θ = φ − π/2 = 0 from any initial small deviation.
Assuming that the friction coefficient between the air and
the car fc and the air and the bar fb are not exactly known
but belong to the box (fc, fb) = [0.15, 0.25]× [0.15, 0.25],
following [6] the linearized model can the written as (1)-(3)
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where matrix A = E−1Af is determined from

E =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 3/2 −1/4
0 0 −1/4 1/6

⎤
⎥⎥⎦

Af =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 −(fc + fb) fb/2
0 5/2 fb/2 −fb/3

⎤
⎥⎥⎦

matrix B2 = E−1B20 follows from

B20 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

and the remaining matrices are

B1 =

⎡
⎢⎢⎣

0 0
π/6 0
0 0
0 0

⎤
⎥⎥⎦

and
C2 =

[
1 1 0 0

]
, D2 =

[
0 1

]
which indicates that the symmetric horizontal displacement
of the free end of the pendulum with respect to the vertical
is the measured variable, that is xmeas = x − �cos(φ) ≈
x+�θ where � = 1 is the length of the bar. Moreover, matrix
B1 makes clear that the impulsive external perturbation is
equivalent to an initial condition characterized by θ(0) =
π/6 and θ̇(0) = 0 with the car being at rest on the origin.
Finally, the controlled variable is defined by matrices

C1 =

⎡
⎣ 20 0 0 0

0 1/2 0 0
0 0 0 0

⎤
⎦ , D1 =

⎡
⎣ 0

0
4

⎤
⎦

It is important to observe that the four vertices of the
uncertain system under consideration are open loop unstable.
First, we solved problem (23) associated to the nominal
system with parameters (fc, fb) = (0.20, 0.20). The Frank-
Wolfe algorithm given in (31) reached the global optimal
controller (5)-(6) whose transfer function is given by

Hcn(s) = −0.9273 · 103 (s + 5.338)(s + 0.2996)
(s − 4.606)(s + 2.83)

× (s − 0.0857)
(s2 + 21.41s + 277.8)

(33)

This is an immediate consequence of Corollary 1 which
states that for the nominal system, the optimal solution of
the guaranteed cost problem (23) provides the H2 optimal
full order output feedback controller.

The same algorithm has been used to determine the
associated robust output feedback controller corresponding
to the parameter uncertainty belonging to the box (fc, fb) =
[0.15, 0.25] × [0.15, 0.25]. The behavior of the proposed
algorithm (31) is shown in Figure 2. Only eight iterations
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Fig. 2. Frank-Wolfe iterations
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Fig. 3. Time simulation - car displacement

have been necessary to reach a local optimal solution which
provided the controller

Hc(s) = −1.0264 · 104 (s + 4.524)(s + 0.3021)
(s − 12.08)(s + 2.61)

× (s − 0.255)
(s2 + 53.32s + 1327)

(34)

It is interesting to observe that both controllers Hcn(s)
and Hc(s) are unstable. However, as it it is clearly verified
in Figure 3 (dashed line) the nominal one is not robust
since the closed loop system is unstable for small friction
coefficients, namely (fc, fb) = (0.15, 0.15). On the other
hand, Figure 3 and 4 show that the performance of the
robust controller is quite good (solid lines) for all param-
eters (fc, fb) belonging to the uncertainty box. Even under
friction uncertainty, the robust control is able to bring the
pendulum to the vertical position while simultaneously the
car is positioned at the origin. The simulation also shows
that the system under consideration is highly sensitive to
variations on the friction coefficients. Even though, we have
verified numerically that problem (23) was feasible for the
box (fc, fb) = [0.10, 0.30]× [0.10, 0.30] which corresponds
to parameter uncertainty magnitude of 50% around each
nominal value.
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VI. CONCLUSIONS

Partial information dynamic output feedback is a complex
problem for systems with model uncertainty, especially when
the uncertainty is structured as for the polytopic case. Gener-
ally, its solution is written through bilinear matrix inequali-
ties which can be processed by relaxation type techniques
but with no convergence guarantee. We proposed for the
H2 guaranteed cost problem a new formulation based on
a LMI sufficient condition, whose conservatism is tackled
by introducing two degree of freedom : a matrix variable
which, in some sense, tries to attenuate the absence of a
nominal model and a scalar multiplier of classical use in
robust control determination. The development of a Frank-
Wolfe algorithm enables to find the solution in one run
and reveals itself very efficient in terms of convergence and
speed. A numerical example has been given for performance
illustration.
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Dinâmicos : Teoria, Ensaios Práticos e Exercı́cios (in portuguese),
Editora Edgard Blucher LTDA, São Paulo, Brazil, 2004.

[7] Geromel, J. C., Bernussou, J., and de Oliveira, M. C., “H-2-norm
optimization with constrained dynamic output feedback controllers:
Decentralized and reliable control”, IEEE Trans. Automat. Contr., vol.
44, No 7, pp. 1449-1454, 1999.

[8] Zames, G., “Feedback and optimal sensitivity - model reference
transformations, multiplicative seminorms and approximate inverses”,
IEEE Trans. Automat. Contr., vol. 26, No 2, pp. 301-320, 1981.

[9] Zames, G., and Francis, B. A., “Feedback, minimax sensitivity and
optimal robustness”, IEEE Trans. Automat. Contr., vol. 28, No 5, pp.
585-601, 1983.

5023


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




