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Abstract— We consider a class of non-homogeneous Markov
chains arising in simulated annealing and related stochastic
search algorithms. Using only elementary first principles, we
analyze the convergence and rate of convergence of the relative
frequencies of visits to states in the Markov chain. We describe
in detail three examples, including the standard simulated
annealing algorithm, to show how our framework applies to
specific stochastic search algorithms—these examples have not
previously been recognized to be sufficiently similar to share
common analytical grounds. Our analysis, though elementary,
provides the strongest sample-path convergence results to date
for simulated annealing type Markov chains. Our results
serve to illustrate that by taking a purely sample-path view,
surprisingly strong statements can be made using only relatively
elementary tools.

I. INTRODUCTION

For at least the last 20 years, there has been an interest in
stochastic search algorithms for global optimization based
on non-homogeneous Markov chains. The prime example
is simulated annealing, first suggested for optimization by
Kirkpatrick et al. [1] based on techniques of Metropolis
et al. [2]. An early application to image processing was
described by Geman and Geman [3]. The basic procedure in
simulated annealing is to explore the search space by setting
up a graph over the space and jumping from point (vertex) to
point in this graph according to a non-homogeneous Markov
chain. The non-homogeneity arises from the gradually de-
creasing probability of jumping from one point to a “worse”
point in the course of the search (but such a jump also cannot
be precluded, because of the need to “climb out” of “cups”
around local minimizers). The speed at which this decrease
in the transition probabilities occurs depends on a sequence
called the “cooling schedule” (described in more detail in
Section III).

In a seminal paper, Hajek [4] provides a detailed treatment
of the behavior of the Markov chain associated with the
simulated annealing algorithm. Specifically, he provides a
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necessary and sufficient condition on the cooling schedule
for convergence in probability of the algorithm to the set
of global minimizers. Tsitsiklis [5] proves essentially the
same result, but using different techniques. Around the same
time, Connors and Kumar [6] also study simulated annealing
type Markov chains, providing yet a different view of such
processes.

In the last 15 years, the literature on the analysis of
simulated annealing has grown significantly. In particular,
there have been several generalizations of simulated anneal-
ing. For example, Gelfand and Mitter [7] and Tsallis and
Stariolo [8] consider a continuous-space version of simulated
annealing, and Morai and Miclo [9], Cot and Catoni [10],
and Trouve [11] consider an even further generalization
of the Markov process in standard simulated annealing.
The analysis of these generalizations of simulated annealing
involve relatively sophisticated tools.

In this paper, we study a non-homogeneous Markov chain
that is also a generalization of simulated annealing. Our
generalization is different from those of the above papers—
ours is much closer to the original simulating annealing
framework of Hajek [4]. For convenience, in this paper we
refer to our generalization simply as generalized simulated
annealing (even though this same term is used also for other
generalizations). The main reason for introducing our gen-
eralization is to facilitate the analysis of relative frequencies
in non-homogeneous Markov chains arising in simulated
annealing and other stochastic search algorithms.

Our focus on relative frequencies in our non-homogeneous
Markov chain sharply differentiates our study from previous
studies in the literature. At the same time, our approach
offers several advantages. First, we use only elementary first
principles—our tools consist essentially of applications of
Kolmogorov’s three-series theorem and coupling. In contrast,
the seminal paper of Hajek [4], which was also based
on first principles, requires relatively complex arguments.
Second, our generalization, while simple, allows studying
rather disparate search algorithms within a single unified
framework. We illustrate this claim by considering two other
search algorithms (besides standard simulated annealing)—
these two other algorithms have not previously been rec-
ognized to be sufficiently akin to simulated annealing to
have a common analytical “ancestry.” Third, our approach
provides what we believe to be the strongest sample-path
characterizations of simulated annealing type Markov chains
to date. We establish not only the convergence to zero of the
relative frequencies of all non-global-minimizers, but also
the rate at which these relative frequencies vanish.
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There is significant appeal in characterizing convergence
and rates in purely sample-path terms. Our commitment to
this program of study is evident in our previous work on
sample-path analyses of various stochastic algorithms; see
Kulkarni and Horn [12], Wang et al. [13], Wang et al. [14],
Wang and Chong [15], and Chong et al. [16]. The typical
conclusion we find is that although these purely sample-
path analyses involve only elementary tools, the results are
surprisingly strong—the results in this paper corroborate this
conclusion. We contrast this with the probabilistic analysis
of Hajek [4]: although his analysis provides the strongest
possible condition for convergence based on first principles,
rates of convergence do not fall out easily. In our analysis
of relative frequencies, on the other hand, rate estimates
follow relatively easily and naturally. From first principles it
is extremely difficult to obtain the kind of “sharp” estimates
needed in Hajek’s probabilistic analysis to characterize rates
in addition to convergence. Since Hajek’s paper, there have
certainly been results on convergence rates of probabilities
in simulated annealing and its generalizations; however,
more sophisticated machinery than Hajek’s first-principles
approach has to be brought to bear (e.g., see Catoni [17],
who uses results from Freidlin and Wentzell [18]). This paper
and our previous work along similar lines suggest that the
same is not the case in a purely sample-path setting.

Some notation and terminology

We first introduce some notation used throughout this
paper. For two positive sequences {an} and {bn}, we write:

• an ∼ bn if an/bn → 1;
• an

O= bn if lim sup an/bn < ∞, and lim sup bn/an <
∞; and

• an
O≈ bn if (log an − log bn)/ log n → 0.

The difference between an
O= bn and an

O≈ bn is that while
“

O=” implies that the two sequences are of the same “order,”
the weaker “

O≈” allows their order to differ by a slowly
varying function, e.g., a power of log n.

Given a sequence x = {xn} = {x1, x2, . . .} and a set A,
we define the notation

I(xi ∈ A) =
{

1 if xi ∈ A
0 otherwise.

The notation I(xi ∈ A) represents an “indicator” of the
condition xi ∈ A. We define the relative frequency of visits
to A up to time n as Fn(x ∈ A) = 1

n

∑n
i=1 I(xi ∈ A). If

A is the singleton {v}, we write Fn(x = v). Similarly, we
use the notation Fn(x �= v) = Fn(x �∈ {v}).

If xi ∈ A for an infinite number of i, then we say that A
is visited infinitely often. Otherwise, we say that A is visited
finitely often.

When considering random sequences, we use capital let-
ters: X = {X1, X2, . . .}, Fn(X = x∗), etc.

Relative frequencies of random sequences

Our results are stated in terms of convergence (a.s.) of rel-
ative frequencies. In general, a (discrete state-space) random
sequence X = {X1, X2, . . .} that converges in probability to

x∗ may or may not also have convergent relative frequencies
of the form Fn(X = x∗). If the sequence is independent,
then convergence in probability is stronger than its relative
frequency counterpart, as stated in this simple lemma.

Lemma 1: Let X = {X1, X2, . . .} be an independent,
discrete state-space, random sequence that converges to x∗

in probability. Then, Fn(X = x∗) → 1 a.s.
We should point out that in the independent case, con-

vergence in probability is strictly stronger than its relative
frequency counterpart, because there are instances where
Fn(X = x∗) → 1 a.s. but the sequence does not converge
to x∗ in probability. To see this, consider the sequence
X = {X1, X2, . . .} on the state-space {0, 1}, where Xn = 1
a.s. for all n except for those n of the form n = 2k,
k = 1, 2, . . . , in which case Xn = 0 a.s. Thus, P (Xn = 1)
does not converge to 1, but Fn(X = 1) → 1 a.s.

In our generalized simulated annealing framework, the
sequences are non-homogeneous Markov chains. In these
cases, it is not clear a priori whether convergence in prob-
ability is weaker or stronger than its relative frequency
counterpart. It will turn out that in fact they are equivalent.

II. GENERALIZED SIMULATED ANNEALING

In this section we present our generalized simulated an-
nealing framework and our main results. Consider a finite,
oriented, connected graph G = (V, E), where V is a set of
vertices and E a set of directed edges. Assume that each
vertex v ∈ V is assigned a value f(v). Our goal is to find
the minimum of the function f ; i.e., we wish to find vmin ∈ V
such that f(vmin) ≤ f(v) for all v ∈ V .

We assume that all values of f(v), v ∈ V , are distinct.
We make this assumption to simplify the presentation. In
particular, under this assumption, vmin = arg minv∈V f(v)
is unique. However, all our results remain valid with appro-
priate adjustments if we remove this assumption.

Now define a non-homogeneous Markov process {Xn} on
the graph G, as follows. Associate with each edge uv ∈ E ,
u �= v, two values gr(u, v) ≥ 0 and gc(u, v) > 0. The
transition probabilities of {Xn} satisfy, for u �= v,

P (Xn = v|Xn−1 = u)

{
∼ gc(u, v)n−gr(u,v) if uv ∈ E
= 0 otherwise,

and, as usual, P (Xn = u|Xn−1 = u) = 1−∑
v �=u P (Xn =

v|Xn−1 = u). Thus, the asymptotic behavior of the tran-
sition probabilities is determined by the values of gr(u, v)
and gc(u, v). We will call {Xn} a generalized simulated
annealing process. As we will see in Section III, general-
ized simulated annealing reduces not only to the familiar
simulated annealing process, but also processes associated
with other stochastic search algorithms.

For convenience, define for each vertex u ∈ V two
neighborhoods: Nout(u) = {v �= u : uv ∈ E} and
Nin(u) = {v �= u : vu ∈ E}. With this notation, we see
that because probabilities must be bounded above by 1, for
all u,

∑
v∈Nout(u): gr(u,v)=0 gc(u, v) ≤ 1.

We now describe the notion of weak reversibility, the main
assumption that links the function f(v) with the transition
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probabilities of {Xn} (the same term is used in Hajek [4]
for simulated annealing—our definition reduces to that of
Hajek’s in that special case). As usual, we say that p =
{u1, u2, u3, . . . , uk−1, uk} is a path from u to v if u1 = u,
uk = v, and ui+1 ∈ Nout(ui), i = 1, . . . , k − 1. For a path
p = {u, u2, u3, . . . , uk−1, v} we define its height by

h(p) = max{f(u) + gr(u, u2), f(u2) + gr(u2, u3),
. . . , f(uk−1) + gr(uk−1, v)}.

(This definition is again motivated by the notion of “height”
in Hajek [4] for simulated annealing.) For any two vertices
u and v, we then define

h(u, v) = min {h(p) : p is a path from u to v} . (1)

Next, we introduce two definitions involving the notion of
heights: weak reversibility and height normalization. These
are needed in the statements of our main results. The notion
of weak reversibility follows that of Hajek [4]. Height
normalization plays a key role in convergence.

Definition 1: We say that the generalized simulated an-
nealing process is weakly reversible if, for any two vertices
u and v, h(u, v) = h(v, u).

Definition 2: We say that the generalized simulated an-
nealing process is height-normalized if, for any vertex v �=
vmin, h(v, vmin) − f(v) ≤ 1.

We are ready to state our main convergence result.
Theorem 1: Consider a weakly reversible generalized

simulated annealing process X = {X1, X2, . . .}. If the
process is height-normalized, then Fn(X = vmin) → 1 a.s.
regardless of the starting point.

On the other hand, suppose that the process is not
height-normalized. Then, there is a vertex v �= vmin

such that h(v, vmin) − f(v) > 1, and if X1 =
v, then P (Fn(X = v) → 1) > 0 (which implies that
P (Fn(X = vmin) → 1) < 1).

Our next result characterizes the rate of convergence in
terms of relative frequencies.

Theorem 2: Consider a weakly reversible, height-
normalized generalized simulated annealing process
X = {X1, X2, . . .}. Suppose v is a vertex such that

h(vmin, v) − f(vmin) < 1. (2)

Then, Fn(X = v) O= n−(f(v)−f(vmin)) a.s. regardless of the
starting point.

Otherwise, if (2) is not satisfied but

h(vmin, v) − f(vmin) = 1, (3)

then Fn(X = v)
O≈ n−(f(v)−f(vmin)) a.s. regardless of the

starting point.
Finally, if for some v neither (2) nor (3) is satisfied, then

v is visited finitely often a.s. regardless of the starting point,
whence either Fn(X = v) = 0 or Fn(X = v) O= n−1 a.s.

Recall that “
O=” is stronger than “

O≈.” Thus, for simplicity,
we can summarize the essence of Theorem 2 as follows:
If v is visited infinitely often a.s., then Fn(X = v)

O≈

n−(f(v)−f(vmin)) a.s. regardless of the starting point. In
Section III, we will use this simplified version of Theorem 2
in applying our framework to specific examples.

Because of space restrictions, we are unable to provide our
proofs, which are based on elementary coupling arguments
(see [19] for details). The main technical instrument used in
our proofs is the following lemma.

Lemma 2: Let {Xn} be a non-homogeneous Markov
chain with state-space {1, 2} and transition probabilities
satisfying P (Xn = 2|Xn−1 = 1) ∼ d1n

−∆1 and P (Xn =
1|Xn−1 = 2) ∼ d2n

−∆2 . Assume that d1, d2 > 0 and 0 ≤
∆2 < ∆1 ≤ 1. If ∆1 < 1, then Fn(X = 2) O= n−(∆1−∆2)

a.s. If ∆1 = 1, then Fn(X = 2)
O≈ n−(∆1−∆2) a.s.

To prove Theorem 1, denote vmax = arg maxv∈V f(v).
We first prove that Fn(X = vmax) → 0 with a power-law
decay. Then, we remove vmax from the graph, and reconnect
neighbors of vmax, resulting in a new process (a subsequence
of the original process) on V \ {vmax}. We then show that
the new process satisfies the conditions of Theorem 1, and
that the properties of the relative frequencies are unchanged
by this procedure. The statement of the theorem will then
follow by induction.

To show that Fn(X = vmax) → 0, we construct a two-
state Markov chain Y = {Yn} with state-space {1, 2},
coupled with X , such that if Xn = vmax then Yn = 2.
This coupling property of Y ensures that Fn(X = vmax) ≤
Fn(Y = 2), so that it suffices to analyze the convergence of
Fn(Y = 2). This analysis uses Lemma 2, which also allows
us to conclude the statement of Theorem 2.

III. APPLICATIONS

In this section we show that generalized simulated anneal-
ing provides a unifying framework to study various stochas-
tic optimization algorithms. In particular, we show that
the classical simulated annealing algorithm, the “stochastic
ruler” algorithm of Yan and Mukai [20], and the “stochastic
comparison” algorithm of Gong et al. [21] are all special
cases of generalized simulated annealing. In doing so, our
convergence results can be brought to bear in the analysis
of these algorithms. We show that our analysis in fact yields
stronger results than are available for these algorithms. For
the case of simulated annealing, a necessary and sufficient
condition for convergence in probability is already available
in Hajek [4], though as far as we know, rates on the relative
frequencies have not been previously obtained.

A stochastic optimization algorithm aims to minimize a
function l(v) defined on a discrete set V via a stochastic
search process. The search process gives rise to a non-
homogeneous Markov chain of the kind that we will show
fits within our framework. When showing that a particular
stochastic optimization algorithm is a special case of gen-
eralized simulated annealing, we first relate the functions
gr(u, v) and gc(u, v) with the transition probabilities of the
stochastic algorithm. We then show how to define a function
f(v) that makes the process weakly reversible. In general, we
cannot use l(v) directly in place of f(v) because the function
f(v) contains information about the rate of convergence,

6628



while l(v) might not. The needed modification to l(v) to
obtain f(v) should become apparent in our discussion of the
three examples in this section.

A. Simulated Annealing

Consider the problem of minimizing l(v) with v ∈
V . In simulated annealing, we begin with a graph G =
(V, E) and define a non-homogeneous Markov chain {Xn}
with transition probability P (Xn = v|Xn−1 = u) =
R(u, v) exp(−[l(v) − l(u)]+/Tn), where [x]+ = max(x, 0),
and R(u, v) is a transition probability such that

R(u, v)

{
> 0 if v ∈ Nout(u),
= 0 otherwise,

and
∑

v∈Nout(u) R(u, v) = 1. The sequence {Tn} is a
positive sequence called the cooling schedule. We focus our
attention on cooling schedules of the form Tn = d/ log n,
popularized by Geman and Geman [3]. In the seminal paper
of Hajek [4], he shows that {Xn} converges in probability
to the global minimizer if and only if d ≥ d∗, where d∗ is a
quantity Hajek calls the “depth of the second deepest cup,”
a parameter we define precisely below. Our goal here is to
show that, based on our main results, the same condition as
Hajek’s (involving d∗ above) is also necessary and sufficient
for convergence in the relative-frequency sense. Moreover,
we provide a characterization of the rate of convergence of
the relative frequencies.

To begin, consider a cooling schedule satisfying Tn ∼
d/ log n, with d > 0 fixed. Then, the simulated annealing
algorithm above is readily seen to be an instance of gener-
alized simulated annealing with

f(v) =
l(v)
d

,

gr(u, v) =
[l(v) − l(u)]+

d
,

gc(u, v) = R(u, v).

It remains to see when the height-normalization con-
dition holds. To this end, denote the set of all
paths from u to v by P(u, v). Then define d∗ =
maxv �=vmin minp∈P(v,vmin) maxu∈p{l(u) − l(v)}. Here, u ∈
p means that the vertex u is part of the path p.

To understand the connection between d∗ and
height normalization, first observe that by the
definitions of f , gr, and gc given above, the quantity
h(v, vmin) (defined by (1) in Section II) simplifies
to h(v, vmin) = 1

d minp∈P(v,vmin) maxu∈p l(u). From
this, it is easy to see that d∗ can be rewritten as
d∗ = d (maxv �=vmin{h(v, vmin) − f(v)}) . We conclude that
the process is height-normalized if and only if d ≥ d∗.

Combining the above with Theorems 1 and 2 gives the
following convergence theorem for simulated annealing.

Theorem 3: For simulated annealing with cooling sched-
ule Tn ∼ d/ log n, Fn(X = vmin) → 1 a.s. regardless
of the starting point if and only if d ≥ d∗. Moreover,
assuming d ≥ d∗, if v �= vmin is visited infinitely often,

then Fn(X = v)
O≈ n−(l(v)−l(vmin))/d a.s. regardless of the

starting point.

The first part of Theorem 3 exactly parallels that of Hajek’s
(the necessary and sufficient condition for convergence is
identical to that of Hajek [4]). This shows that convergence in
probability (Hajek’s result) is equivalent to a.s. convergence
of the relative frequency. The second part of Theorem 3
characterizes the rate of convergence in terms of relative
frequencies. As noted before, we can sharpen the rate result
to Fn(X = v) O= n−(l(v)−l(vmin))/d for those v such that
h(vmin, v) − f(vmin) < 1. As far as we know, these results
on relative frequencies for simulated annealing have not
previously been available.

The convergence result in Hajek [4] goes beyond the case
where Tn ∼ d/ log n. In particular, he also shows that if
Tn log n → 0 then simulated annealing might converge to a
“local” rather than global minimizer, and if Tn log n → ∞
then the algorithm converges to the global minimizer. Our
framework addresses the case of Tn log n → 0 as one can
show that the algorithm does not converge, using a cou-
pling argument involving a generalized simulated annealing
process that does not satisfy the conditions of Theorem 1.
On the other hand, we do not directly recover the case of
Tn log n → ∞. However, in this case a coupling argument
with a generalized simulated annealing process shows that
the rate of convergence is slower then any power; i.e., for
all v, we have Fn(X = v)

O≈ 1, suggesting that a cooling
schedule for which Tn log n → ∞ should not be used.

B. Stochastic Ruler Algorithm

Yan and Mukai [20] consider the problem of minimizing
an objective function l(v), v ∈ V , that is assumed to be
of the form l(v) = EH(v), where H(v) is random with
finite variance. They assume we do not actually have access
to l(v); instead, we can only observe independent samples
(realizations) of H(v). They convert the problem to one of
maximizing p(v, a, b) = P (H(v) ≤ Θ(a, b)), where Θ(a, b)
is a random variable uniformly distributed on (a, b) (and
independent of H(v)). They prove that for a small enough
and b large enough, any u that maximizes p(u, a, b) also
minimizes l(v). (We assume henceforth that a and b are
chosen such that this conclusion holds.)

To find the maximizer of p(u, a, b) they set up a
non-homogeneous Markov chain Xn satisfying P (Xn =
v|Xn−1 = u) = R(u, v)(p(v, a, b))Mn , where Mn → ∞
is called the “testing sequence.” (It is useful to think of the
testing sequence as the reciprocal of a cooling schedule.)
As in simulated annealing, the probabilities R(u, v) satisfy
R(u, v) > 0 if and only if v ∈ Nout(u). Yan and Mukai [20]
impose the additional restriction that the process is “strongly”
reversible, i.e., v ∈ Nout(u) if and only if u ∈ Nout(v).

Yan and Mukai [20] consider the specific testing sequence
Mn = 	log(n+n0 +1)/d
, where 	x
 is the integer part of
x, and n0 and d > 0 are fixed constants. They show how to
implement the search algorithm using only samples of H(·):
suppose that at the nth iteration the process is in state u,
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and a random candidate next-state v is generated according
to R(u, v). Then, generate 	log(n+n0 +1)/d
 independent
samples (realizations) of H(v) and Θ(a, b), and transition to
v if and only if H(v) ≤ Θ(a, b) for all the samples. It is
convenient to call the above algorithm the stochastic ruler
algorithm, because the samples of H(v) are compared to a
“stochastic ruler” Θ(a, b).

The main convergence result in Yan and Mukai [20] is that
with the above testing sequence, provided some technical as-
sumptions hold (which we elaborate below), {Xn} converges
in probability to the global minimizer. Below, we show that
the stochastic ruler algorithm falls within the framework
of generalized simulated annealing, and hence our relative-
frequency convergence results apply, including a character-
ization of the convergence rates of the relative frequencies.
Moreover, as we will see below, the technical assumptions
in Yan and Mukai [20] can be weakened considerably—we
provide a necessary and sufficient condition for convergence.

In our analysis, we consider the slightly more general case
where the testing sequence {Mn} satisfies Mn ∼ (log n)/d.
In this case, we see that for v �= u, P (Xn = v|Xn−1 =
u) = R(u, v)(p(v, a, b))Mn ∼ R(u, v)n(log p(v,a,b))/d. The
transition probabilities of this non-homogeneous Markov
chain suggest the following specialization of generalized
simulated annealing:

f(v) =
− log p(v, a, b)

d
,

gr(u, v) =
− log p(v, a, b)

d
,

gc(u, v) = R(u, v).

Notice that f(v) ≥ 0, and maximizing p(v, a, b) is equivalent
to minimizing f(v). Moreover, the above choice guarantees
weak reversibility of the resulting process.

As before, denote the set of all paths from u to v by
P(u, v). Then define

d∗ = max
v �=vmin

min
p∈P(v,vmin)

max
uu′∈p

{log p(v, a, b) − log p(u, a, b) − log p(u′, a, b)}.
(4)

Here, uu′ ∈ p means that the link uu′ is part of the path p.
This value of d∗ is analogous to Hajek’s notion of the “depth
of the second deepest cup” for simulated annealing Hajek [4].
It will turn out that d∗ characterizes a necessary and sufficient
condition for convergence of the stochastic ruler algorithm
(see below). Therefore, although Yan and Mukai [20] are
careful to point out that their approach is “different from the
technique of simulated annealing,” the analysis of simulated
annealing actually bears on the analysis of the stochastic
ruler algorithm, through our generalized simulated annealing
framework.

To see why d∗ plays the same role here as in simu-
lated annealing, note that by the above definitions of f
and gr, we can once again write d∗ in the form d∗ =
d (maxv �=vmin{h(v, vmin) − f(v)}) . and hence conclude that
the process is height-normalized if and only if d ≥ d∗.

Applying Theorems 1 and 2 to the stochastic ruler algo-
rithm, we obtain the following convergence result.

Theorem 4: For the stochastic ruler algorithm with testing
sequence Mn ∼ (log n)/d, Fn(X = vmin) → 1 a.s.
regardless of the starting point if and only if d ≥ d∗.
Moreover, assuming d ≥ d∗, if v �= vmin is visited infinitely
often, then Fn(X = v)

O≈ n−(log p(v,a,b)−log p(vmin,a,b))/d

a.s. regardless of the starting point.

C. Stochastic Comparison Algorithm

Gong et al. [21] consider a set up that is similar to
that of Yan and Mukai [20], except that their Markov
chain {Xn} satisfies, for v �= u, P (Xn = v|Xn−1 =
u) = R(u, v)(P (H(v) < H(u)))Mn . So, unlike in Yan
and Mukai [20], the transition probability from u to v
here involves comparing H(u) with H(v) (instead of with
an independent “ruler”). For this reason, Gong et al. [21]
call their algorithm the stochastic comparison algorithm.
Moreover, the graph in Gong et al. [21] satisfies, for all
u ∈ V , Nout(u) = {v ∈ V : v �= u}. In other words, they
assume a complete graph—any two vertices are connected
with an edge (in both directions).

Gong et al. [21] analyze the convergence of their stochastic
comparison algorithm using tools that are much the same as
those of Yan and Mukai [20]. Specifically, they first assume
that H(v) = l(v) + W , where W has zero mean, finite
variance, and a symmetric density that does not depend
on v. Then, under certain technical assumptions, they show
that {Xn} converges in probability to the global minimizer.
Below, we show that the stochastic comparison algorithm
also falls within the framework of generalized simulated
annealing. As was the case in our analysis of the stochastic
ruler algorithm, the technical assumptions in Gong et al. [21]
can be weakened considerably—we provide a necessary
and sufficient condition for convergence of the stochastic
comparison algorithm. Our analysis also reveals significant
differences between the stochastic comparison algorithm and
the stochastic ruler algorithm.

Once again, we consider the slightly more general case
where Mn ∼ (log n)/d. To simplify the notation, let F be
the distribution function of W1−W2, where W1 and W2 are
independent random variables with the same density as W
defined above. Then, P (H(v) < H(u)) = F (l(u) − l(v)).
In this case, we see that for v �= u,

P (Xn = v|Xn−1 = u) = R(u, v)F (l(u) − l(v))Mn

∼ R(u, v)n(log F (l(u)−l(v)))/d.

The transition probabilities of this non-homogeneous Markov
chain suggest the following correspondence with generalized
simulated annealing:

gr(u, v) =
− log F (l(u) − l(v))

d
, gc(u, v) = R(u, v).

The definition of f to satisfy weak reversibility involves a
little more work. First, order the vertices in ascending order
according to their values of the objective function l; denote
the ordered vertices by v(1), . . . , v(N). Note that v(1) =
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vmin is the global minimizer. Then set f(v(1)) = 0 and
f(v(j)) = mini∈{1,...,j−1}

(
f(v(i)) + gr(v(i), v(j))

) −
gr(v(j), v(1)). Because gr(v(j), v(1)) ≤ gr(v(j), v) for all
v, and the definitions of f and h (see (1)) imply that
h(v(1), v(j)) = f(v(j)) + gr(v(j), v(1)), we conclude that
h(v(j), v(1)) = h(v(1), v(j)) for all j = 1, . . . , n.

To show that the resulting process is weakly re-
versible, consider two vertices u and v. Consider a path
p = {u, v(1), . . . , v} where {v(1), . . . , v} is a “minimal-
height” path from v(1) to v (i.e., a path whose height
is equal to h(v(1), v)). We see that h(u, v) ≤ h(p) =
max

(
h(u, v(1)), h(v(1), v)

)
. On the other hand, consider a

minimal-height path from u to v: p′ = {u, w, . . . , v}. The
fact that gr(u, v(1)) ≤ gr(u, w) implies that h(u, v) =
h(p′) ≥ h(u, v(1)). Now consider a minimal-height path
from v(1) to u: q = {v(1), . . . , u}. Combining q with p′, we
get a path q′ = {v(1), . . . , u, w, . . . , v}. Thus h(v(1), v) ≤
h(q′) = h(p′) = h(u, v). Combining the above, we get
h(u, v) = max

(
h(v(1), u), h(v(1), v)

)
and weak reversibility

follows by symmetry.
Finally, define d∗ = − log F (l(v(2))− l(v(1))). As before,

d∗ characterizes a necessary and sufficient condition for
convergence of the stochastic comparison algorithm. To elab-
orate, first note that for any node v, the path that goes directly
from v to v(1) is a minimal-height path from v to v(1). Next,
among all v �= v(1), the height of this minimal-height path
to v(1) is maximized for v = v(2) (because v(2) is the node
with the lowest probability to transition to v(1)). Hence, just
as in the two previous examples, our choice of f and gr

allows us to write d∗ = d (maxv �=vmin{h(v, vmin) − f(v)}) .
from which we conclude once again that the process is
height-normalized if and only if d ≥ d∗. Hence, by applying
Theorems 1 and 2, we obtain the following result.

Theorem 5: For the stochastic comparison algorithm with
testing sequence Mn ∼ (log n)/d, Fn(X = vmin) → 1
a.s. regardless of the starting point if and only if d ≥ d∗.
Moreover, assuming d ≥ d∗, if v �= vmin is visited infinitely
often, then Fn(X = v)

O≈ n−f(v) a.s. regardless of the
starting point.

In our rate result above, we have not explicitly provided
an expression for f(v), because such an expression would be
complicated to state, given the definition of f(·). However,
it is easy to bound the rate in terms of l(·):

Fn(X = v)
O≈ n−f(v)

≤ n(log F (l(v(1))−l(v))−log F (l(v)−l(v(1))))/d.

In their convergence analysis, Gong et al. follow Yan and
Mukai in setting d = (log σ)/c, where 0 < c < 1 and σ ≥
1/µ. Here, µ = minu �=v P (H(v) < H(u)). (It is silently
assumed in Gong et al. [21] that 0 < µ < 1.) Clearly, in this
case, d = log σ

c > − log µ ≥ − log F (l(v(2))− l(v(1))) = d∗,
which shows that the choice of d in Gong et al. [21] satisfies
the condition d ≥ d∗ of Theorem 5.

It is interesting to note that even though the original graph
of Gong et al. is complete, we get only weak reversibility
of our generalized simulated annealing process. Moreover,

the minimal-height path between any two vertices always
goes through the global minimizer. Thus, we can generalize
our result to graphs that are not complete but where every
node is a neighbor of the global minimizer. In this case, the
function f(·) might not be a monotone transformation of
l(·), in contrast to the case of a complete graph. This shows
that generalization of this algorithm to graphs that are not
complete might be non-trivial.
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