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Abstract— We present formal methods of improving multiple
policies for solving controlled Markov set-chains with infinite-
horizon discounted reward criteria. The multi-policy improve-
ment methods follow the spirit of parallel rollout for solving
Markov decision processes (MDPs). In particular, these methods
are useful for on-line control of Markov set-chains and for
approximately solving MDPs via state aggregation. We further
discuss issues on designing a policy-iteration type algorithm
based on our policy improvement methods.

I. INTRODUCTION

When dealing with a Markov Decision Process (MDP) [6],
the state-transition probability matrix typically is assumed to
be uniquely given at each decision time. The probabilistic
state transition at each time is uniquely determined from a
given transition probability distribution associated with the
current state and the current action, whether the distribution
is stationary or non-stationary or whether it is known to a
decision maker or not.

Kurano et al. [5] extend the usual MDP model to the case
where the transition probability varies in some given domain
at each decision time, and its variation is unobservable or
unknown (see, e.g., [5] for example problems). In doing so,
they develop a novel model called a “controlled Markov set-
chain,” based on Markov set-chains [3], and study an optimal
control problem with a total expected discounted reward
criterion under some partial order. In their generalization of
the MDP model, each state and action pair is associated with
a range of probability distributions and, at each decision
time, a probability distribution is arbitrarily selected by
some unknown adversary of the system. In this view, the
controlled Markov set-chain model is suitable for designing
a robust controller. Furthermore, the model can be used
for sensitivity analysis of an MDP where the transition
probability parameters are perturbed. The model also can be
used as an approximate-solution approach for solving large
MDPs via aggregation of the states. By grouping the states in
a given MDP, we can induce a controlled Markov set-chain
model with a much smaller state space (see [2] for a related
discussion).
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Based on appropriately defined contraction operators, Ku-
rano et al. [5] establish an optimality equation satisfied by an
optimal policy (optimal in a certain partial-order sense), and
some results that induce a value-iteration [6] type algorithm
for solving problems modeled by controlled Markov set-
chains. A condition for policy improvement [6] for a single
policy is provided, but no policy-iteration (PI) type algorithm
based on the condition is discussed explicitly in their paper.

In this paper, we present formal methods for improving
multiple policies in a partial-order sense and discuss some is-
sues on designing a PI-type algorithm for controlled Markov
set-chains. Our multi-policy improvement methods follow
the spirit of parallel rollout [1] for solving MDPs. Along
the same line, they are useful for on-line control of Markov
set-chains and for approximately solving MDPs via state
aggregation. We further discuss issues on designing a policy-
iteration type algorithm based on our policy improvement
methods.

Some related models based on MDPs have been studied
in the operations-research literature by White and Eldeib [8],
and Satia and Lave [7], under the rubric of MDPs with
“imprecisely known transition probabilities.” Related work
has also been reported in the artificial-intelligence literature
by Givan et al. [2], who discuss “bounded parameter Markov
Decision Processes (BMDPs).” The controlled Markov set-
chain model is very similar to BMDPs. See Section 8 in [2]
for a discussion on the relationship of BMDPs with other
models. Kalyanasundaram et al. [4] study continuous-time
MDPs with unknown transition rates and average reward cri-
teria, and develop a PI-type algorithm based on single-policy
improvement, for obtaining robust (“max-min”) policies.

This paper is organized as follows. In Section II, we
formally describe the controlled Markov set-chain model
and some preliminaries. In Section III, we then discuss two
versions of the multi-policy improvement method, and the
main theoretical results. We also discuss the design of a
PI-type algorithm for solving controlled Markov set-chains.
In Section IV, we briefly describe the use of our multi-
policy improvement results. We conclude the present paper
in Section V.
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II. CONTROLLED MARKOV SET-CHAINS

In this section we provide a formal description of
controlled Markov set-chains, following the notation of [5]
(see [5] for more detailed discussion). A controlled Markov
set-chain model is a four-tuple M = (X, A, R, P = 〈p, p〉),
where X is a finite set of states, A is a finite set
of actions, R : X × A → R

+ represents a bounded
nonnegative reward function, and P = 〈p, p〉 is an

“interval transition function.” To elaborate, let R
1×|X|
+

denote the set of vectors in R
1×|X| with entrywise

nonnegative elements. Then, for each (x, a) ∈ X × A,
p = p(·|x, a) ∈ R

1×|X|
+ and p = p(·|x, a) ∈ R

1×|X|
+

with p ≤ p (the relations ≤, <, and = used in a
vector or a matrix context are defined componentwise
throughout the present paper). We assume that 〈p, p〉 :=
{p|p is a probability distribution over X with p ≤ p ≤ p}
is nonempty.

If the system is in state x ∈ X and an action a ∈ A is
taken at x, then the system makes a transition from state
x to a random next-state y ∈ X according the probability
p(y|x, a), and a reward of R(x, a) is obtained. This process
is repeated at the state y. To decide what action a to take at
each state x, the decision maker only knows that p(·|x, a) is
arbitrarily selected from 〈p(·|x, a), p(·|x, a)〉. The decision
maker wishes to maximize the total expected discounted
reward over an infinite horizon. Note that if p = p, then
M reduces to a standard MDP [6].

We define a stationary policy π as a mapping from X to
A, and let Π be the set of all possible policies. We associate
with each π ∈ Π the |X |-dimensional column vector R(π) ∈
R

|X|
+ , where the entry of R(π) associated with state x is

R(x, π(x)). Consider the set of stochastic matrices P(π) :=
〈P , P 〉, where

〈P , P 〉 = {P |P is a stochastic matrix with P ≤ P ≤ P},
and the rows associated with state x for P and P are
p(·|x, π(x)) and p(·|x, π(x)), respectively.

We will need some more notation involving sets of
stochastic matrices. Let

Mm×n = {A = 〈A, A〉|A ≤ A, A, A ∈ R
m×n
+ }.

Identifying any stochastic matrix P with the set 〈P, P 〉 =
{P}, any state transition matrix is associated with some
element of M|X|×|X|. The product of A and B in M |X|×|X|
is defined by

AB = {AB|A ∈ A, B ∈ B}
(the product of the elements in M |X|×1 and M|X|×|X| is
also similarly defined). For any sequence {Ai}∞i=1 with Ai ∈
M|X|×|X|, i ≥ 1, the multiproduct is defined inductively by

A1A2 · · ·Ak := (A1 · · · Ak−1)Ak, k ≥ 2.

Similarly, for any vector v ∈ R
|X| and A ∈ M|X|×|X|,

vA = {vA|A ∈ A}.

For a given policy π ∈ Π, we define the value of following
π with an initial state x ∈ X as

V π(x) = ex

{ ∞∑
t=0

γt

(
t∏

i=0

Pi

)
R(π)

∣∣∣∣Pi ∈ P(π),

i ≥ 1, P0 = I

}
,

where γ ∈ (0, 1) is a discount factor, ex ∈ R
|X|
+ is the unit

vector whose entry associated with x is 1 and all of the other
entries are zero, and I denotes the identity matrix. (See also
Lemma 2.1 in [5] for more on this definition.)

Denote the set of all bounded and closed intervals in
R

+ by C(R+). Next, denote the set of all |X |-dimensional
column vectors whose elements are in C(R+) by C(R|X|

+ ).
Note that given π ∈ Π, we have V π(x) ∈ C(R+), x ∈ X ,
and the value function V π is in C(R|X|

+ ). Hence, we can
write V π = [V π, V

π
] with V π, V

π ∈ R
|X|
+ and V π ≤ V

π
.

We now define a partial order (≥, >) on C(R+): for
[c1, c2] and [d1, d2] in C(R+), we write [c1, c2] ≥ [d1, d2]
if c1 ≥ d1 and c2 ≥ d2, and [c1, c2] > [d1, d2] if [c1, c2] ≥
[d1, d2] and [c1, c2] �= [d1, d2].

Using the above partial order, we then say that a policy
π∗ is optimal in Π if there does not exist π ∈ Π such that
V π∗

< V π. Our goal for a given M is to find an optimal
policy π∗ ∈ Π. Note that the optimal policy may not be
unique, and, for two optimal policies π∗

1 and π∗
2 , the value

of following each policy may be different, i.e., V π∗
1 and V π∗

2

are not necessarily equal. This is in contrast to the uniqueness
of the optimal value function in standard MDPs.

Kurano et al. [5] prove the existence of an optimal
stationary policy π∗ and establish an optimality equation
uniquely satisfied by the policy’s value function V π∗

. They
also provide some results that induce a value-iteration type
algorithm [6] to compute V π∗

by defining relevant contrac-
tion operators (thereby obtaining π ∗). They further provide
a sufficient condition for single-policy improvement (see
Corollary 4.1 and 4.2 in [5] and Lemma 1 below), but they
do not explicitly discuss any policy improvement method;
specifically, they do not provide any type of policy-iteration
(PI) algorithm in their paper.

III. MULTI-POLICY IMPROVEMENT

The policy improvement step of any PI-type algorithm
for solving MDPs is based on improving a single policy.
Recently, Chang et al. [1] extend this single-policy improve-
ment method to a multi-policy improvement method using an
approach called “parallel rollout.” Applying a similar policy
improvement step to the case of controlled Markov set-chains
is nontrivial, because in the latter case we have to deal with
simultaneously improving the intervals associated with each
state (where “improvement” is in the sense of the partial
order). Our main goal here is to provide some useful results
regarding multi-policy improvement for controlled Markov
set-chains.

For each (x, a) ∈ X × A, let

p(x, a) := 〈p(·|x, a), p(·|x, a)〉.
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For each policy π ∈ Π, define the operators T π : R
|X|
+ →

R
|X|
+ and T π : R

|X|
+ → R

|X|
+ as follows: for V , V ∈ R

|X|
+

and for x ∈ X ,

Tπ(V )(x) =

R(x, π(x)) + γ min
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))V (y) (1)

and

Tπ(V )(x) =

R(x, π(x)) + γ max
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))V (y). (2)

It has been shown by Kurano et al. that for any π ∈ Π
with value function V π = [V π, V

π
], V π and V

π
are unique

fixed points of T π and T
π
, respectively; i.e.,

Tπ(V π)(x) = V π(x), x ∈ X

Tπ(V
π
)(x) = V

π
(x), x ∈ X.

We remark that for each π ∈ Π, P(π) = conv{P (l)(π) :
l = 1, . . . , l(π)} for some P (l)(π) ∈ P(π), l = 1, . . . , l(π),
where for D ⊂ R

|X|×|X|, conv(D) is the closed convex hull
of D (see Lemma 1.1 in [5]). Thus, we can rewrite (1) as

Tπ(V )(x) =

R(x, π(x)) + γ min
1≤l≤lx,π(x)

∑
y∈X

p(l)(y|x, π(x))V (y)

for some lx,π(x), and similarly for the T π-operator. This
leads to some computational simplification in applying the
operators.

We present below two versions of our multi-policy im-
provement method for controlled Markov set-chains based on
the idea of parallel rollout [1] for MDPs. The name “parallel
rollout” comes from the idea that we “roll out” or simulate
each available policy to estimate its value in parallel and then
apply the most “promising” action to the system in on-line
manner. The parallel-rollout method generalizes the policy-
improvement step of the PI algorithm to the case of multiple
policies.

Given a nonempty set ∆ ⊆ Π, we define Φ = [Φ, Φ] ∈
C(R|X|

+ ) by

Φ(x) = max
π∈∆

V π(x), x ∈ X (3)

Φ(x) = max
π∈∆

V
π
(x), x ∈ X. (4)

Next, for each x ∈ X , we define the two sets Ax and Ax as

Ax = arg max
a∈A

{
R(x, a)

+γ max
p∈p(x,a)

∑
y∈X

p(y|x, a)Φ(y)
}

(5)

and

Ax = arg max
a∈A

{
R(x, a)

+γ min
p∈p(x,a)

∑
y∈X

p(y|x, a)Φ(y)
}

. (6)

We then define a parallel rollout policy πpr ∈ Π with respect
to ∆ to be any policy such that for all x ∈ X ,

πpr(x) ∈
{

Ax ∩ Ax if Ax ∩ Ax �= ∅
A otherwise .

(7)

Define the improvable state set I = {x|Ax ∩ Ax �=
∅, x ∈ X}. The following theorem establishes that over
the set I, the value of πpr exceeds those of all policies
in ∆. In other words, by following πpr, both the lower
(value) bounds and the upper bounds of all policies in ∆ are
improved simultaneously, provided the initial state belongs
to the improvable state set.

Theorem 1: For a given nonempty set ∆ ⊆ Π, and for the
policy πpr defined in (7),

V πpr(x) ≥ max
π∈∆

V π(x), x ∈ I,

where the max operator is defined componentwise.

To prove the above theorem, we begin with a lemma,
which is similar to Corollaries 4.1 and 4.2 in [5].

Lemma 1: For any V ∈ R
|X|
+ and π ∈ Π, if

Tπ(V )(x) ≥ V (x), x ∈ X (8)

then V π(x) ≥ V (x), x ∈ X . Similarly, if

Tπ(V )(x) ≥ V (x), x ∈ X

then V
π
(x) ≥ V (x), x ∈ X .

Proof: By successive applications of the T π-operator
to both sides of (8), and the monotonicity property of the
operator (see Theorem 3.1 in [5]), we have that for all x ∈ X ,

lim
n→∞Tn

π(V )(x) ≥ V (x).

By Theorem 3.1 in [5], iterative application of T π on any
initial value function converges monotonically to the fixed
point V π; i.e., limn→∞ Tn

π(V )(x) = V π(x), x ∈ X . The
same argument applies to the T π case and this proves the
lemma.

We now prove the statement of Theorem 1.
Proof of Theorem 1: For any x ∈ I and any π ∈ ∆, we

have

Tπpr
(Φ)(x) =

= R(x, πpr(x))

+γ min
p∈p(x,πpr(x))

∑
y∈X

p(y|x, πpr(x))Φ(y)

= max
a∈A

(
R(x, a) + γ min

p∈p(x,a)

∑
y∈X

p(y|x, a)Φ(y)
)

by definition of πpr, πpr(x) ∈ Ax ∩ Ax

≥ R(x, π(x)) + γ min
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))Φ(y)

≥ R(x, π(x)) + γ min
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))V π(y)
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by definition of Φ
= V π(x).

Therefore,

Tπpr
(Φ)(x) ≥ Φ(x), x ∈ I.

By Lemma 1, for any x ∈ I and any π ∈ ∆,

V πpr(x) ≥ max
π∈∆

V π(x).

Similarly, for any x ∈ I and any π ∈ ∆,

Tπpr(Φ)(x) =

R(x, πpr(x)) + γ max
p∈p(x,πpr(x))

∑
y∈X

p(y|x, πpr(x))Φ(y)

≥ R(x, π(x)) + γ max
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))Φ(y)

by definition of πpr

≥ R(x, π(x)) + γ max
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))V
π
(y)

by definition of Φ
= V

π
(x).

Therefore, for any x ∈ I and any π ∈ ∆,

V
πpr(x) ≥ max

π∈∆
V

π
(x). (9)

The above implies that for all π ∈ ∆ and x ∈ I,

V πpr(x) = [V πpr(x), V
πpr(x)],

≥ [V π(x), V
π
(x)],

= V π(x).

Therefore, for any x ∈ I,

V πpr(x) ≥ max
π∈∆

V π(x),

which completes the proof.
We remark that at state x ∈ X−I, we have the freedom to

choose any action. If we choose πpr(x) ∈ Ax for x ∈ X−I,
by following the parallel rollout policy, we can improve at
least the lower bounds of all policies in ∆ (or the upper
bounds of all policies in ∆ by choosing an action in Ax).
In that case, by the partial order, there does not exist π ∈ ∆
such that V π > V πpr if there exists at least one state x ∈
X − I such that V πpr(x) > maxπ∈∆ V π(x).

We now consider another policy defined from ∆ for
multi-policy improvement with the Φ-function defined by (3)
and (4). Given ∆ ⊆ Π, define

Ax[∆] = {π|π ∈ Π, π(x) ∈ Ax, ∀x ∈ X} (10)

Ax[∆] = {π|π ∈ Π, π(x) ∈ Ax, ∀x ∈ X}, (11)

where Ax and Ax are given in (5) and (6), respectively.
Define π̃pr to be any policy such that for x ∈ X ,

π̃pr(x) ∈ arg max
a∈Ax

{
R(x, a)

+γ max
p∈p(x,a)

∑
y∈X

p(y|x, a) max
π∈Ax[∆]

V
π
(y)

}
. (12)

The policy π̃pr can be interpreted as follows. By defining
π̃pr(x), x ∈ X , over Ax , it first improves all of the lower
bounds of the policies in ∆. Then, π̃pr does its best to
improve the upper bounds of all of policies φ that improve
all of the lower bounds of the policies in ∆:

φ(x) ∈ argmax
a∈A

{
R(x, a)

+γ min
p∈p(x,a)

∑
y∈X

p(y|x, a)Φ(y)
}

. (13)

The following theorem is a “localized” version of Theorem
4.1 in [5]. For a given nonempty ∆ ⊂ Π, we say that π̃ is
optimal with respect to ∆ if there does not exist π ∈ ∆ such
that V π̃ < V π. (If ∆ = Π, then π̃ is an optimal policy for
M in the usual “global” sense.)

Theorem 2: For any given nonempty set ∆ ⊆ Π and for
the policy π̃pr defined in (12), π̃pr is optimal with respect to
∆.

Proof: We first show that for all π ∈ Π with π(x) ∈
Ax, x ∈ X ,

V
π̃pr(x) ≥ V

π
(x), x ∈ X

and
V π̃pr(x) ≥ max

π∈∆
V π(x), x ∈ X.

(The argument is similar to that of the proof of Theorem 1.
We only show the essential steps here.)

Define Ψ = [Ψ, Ψ] ∈ C(R|X|
+ ) such that Ψ(x) =

maxπ∈∆ V π(x), x ∈ X and Ψ(x) = maxπ∈Ax[∆] V
π
(x),

x ∈ X . For any x ∈ X and any π ∈ ∆, we have

T π̃pr
(Ψ)(x)

= R(x, π̃pr(x))

+ γ min
p∈p(x,π̃pr(x))

∑
y∈X

p(y|x, π̃pr(x))Ψ(y)

≥ R(x, π(x)) + γ min
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))Ψ(y)

by definition of π̃pr, π̃pr(x) ∈ Ax

≥ R(x, π(x)) + γ min
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))V π(y)

= V π(x).

Therefore, by Lemma 1, for any x ∈ X and any π ∈ ∆,

V π̃pr(x) ≥ max
π∈∆

V π(x).

Similarly, for any x ∈ X and any π ∈ Ax [∆],

T π̃pr(Ψ)(x) =

≥ R(x, π(x)) + γ max
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))Ψ(y)

≥ R(x, π(x)) + γ max
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))V
π
(y)

= V
π
(x),

8061



which implies that for all π ∈ Π with π(x) ∈ Ax ,

V
π̃pr(x) ≥ V

π
(x), π(x) ∈ Ax, x ∈ X. (14)

Now observe that if there exists π ∈ ∆ such that V π̃pr <
V π, then the following must be true: V π̃pr(x) ≤ V π(x), x ∈
X . But this is impossible unless V π = V π̃pr . If that is the
case, then π(x) ∈ Ax, x ∈ X . To see this,

V π(x) = V π̃pr(x)
= R(x, π̃pr(x))

+ γ min
p∈p(x,π̃pr(x))

∑
y∈X

p(y|x, π̃pr(x))V π̃pr(y)

= R(x, π̃pr(x))

+ γ min
p∈p(x,π̃pr(x))

∑
y∈X

p(y|x, π̃pr(x))V π(y)

= R(x, π̃pr(x))

+ γ min
p∈p(x,π̃pr(x))

∑
y∈X

p(y|x, π̃pr(x)) max
π′∈∆

V π′
(y)

= max
a∈A

(
R(x, a)

+ γ min
p∈p(x,a)

∑
y∈X

p(y|x, a) max
π′∈∆

V π′
(y)

)

= R(x, π(x)) + γ min
p∈p(x,π(x))

∑
y∈X

p(y|x, π(x))V π(y),

which implies that π(x) ∈ Ax .
By (14), there is no x ∈ X such that V

π̃pr(x) < V
π
(x)

for any π ∈ Ax[∆]. Therefore, there does not exist π ∈ ∆
such that V π̃pr < V π. This implies that π̃pr is optimal with
respect to ∆, which completes the proof.

We remark that the following policy symmetrically defined
as

π̃pr(x) ∈ arg max
a∈Ax

{
R(x, a)

+ γ min
p∈p(x,a)

∑
y∈X

p(y|x, a) max
π∈Ax[∆]

V π(y)
}

(15)

for x ∈ X is also optimal with respect to ∆.
Based on the above policy improvement results, the fol-

lowing PI-type algorithm follows naturally. (Below, we use
(15); alternatively, the algorithm can be constructed using
(12) instead of (15)).

0. Initialization: k = 0 and set π0 arbitrarily in Π.
1. Policy Evaluation: obtain V πk .
2. Policy Improvement: obtain πk+1 by (15) with ∆ =

{πk}.
3. Stop Condition: If V

πk = V
πk+1 , then stop. Otherwise,

k ← k + 1 and go to step 1.

Several observations can be made on this PI-type algo-
rithm. First, the upper bounds are monotonically increasing,
i.e., for all k,

V
πk

(x) ≤ V
πk+1

(x), x ∈ X.

Therefore, πk cannot beat πk+1 in terms of the partial order.
In fact, πk is optimal with respect to {π0, π1, . . . , πk−1}. Be-
cause there are finitely many policies and the upper bounds
are monotonically increasing, the algorithm converges to a
policy in a finite number of steps—|Π| steps in the worst
case. Let π∗ be the converged policy. We know that π ∗

achieves the best upper bound; i.e., for all π ∈ Π, V
π∗

(x) ≥
V

π
(x), x ∈ X .

Pick any optimal policy π∗ ∈ Π. It cannot happen that
there exists a state x ∈ X such that V π∗

(x) > V π∗
(x)

because if that were the case, it would contradict with the
definition of optimality. Therefore,

V π∗
(x) ≤ V π∗

(x), x ∈ X.

From (15), π∗ improves the lower bounds of all of the
policies (including π∗) that improve the upper bound of
the best-upper-bound-achieving policy π ∗. Suppose that there
exists an optimal policy that achieves the best upper-bound;
denote it as ρ. Then,

V π∗
(x) ≥ V ρ(x), x ∈ X.

These observations imply that π∗ achieves V ρ; i.e., V π∗
=

V ρ. Therefore, it must be true that V
π∗

= V
ρ
. Otherwise, ρ

cannot be an optimal policy. Hence, we have that V ρ = V π∗
.

We can apply a similar reasoning to the PI-type algorithm
with (12), but with the following Stop Condition: If V πk =
V πk+1 , then stop. Otherwise, k ← k + 1 and go to step 1.

Summarizing, if there exists an optimal policy ρ (or ρ) in
the partial order that achieves the best upper-bound function
(or, resp., the best lower-bound function), then the PI-type
algorithm with (15) (resp. (12)) converges to a policy π ∗

(resp. π∗) such that V ρ = V π∗
(resp. V ρ = V π∗

) with the
corresponding stop condition.

We can extend the above single-policy improvement algo-
rithm into a multi-policy improvement algorithm. At iteration
k ≥ 0, we have a set of policies Πk ∈ Π, instead of a
single policy, and we evaluate each policy πk ∈ Πk and
obtain πk+1 by applying (12) with ∆ = Πk. We then set
Πk+1 = {πk+1} ∪ Ωk+1, where Ωk+1 is an arbitrary subset
of Π. Note that we have significant freedom in our choice of
Ωk. One possibility is to run the single-policy improvement
method in parallel and put the sequence of the policies
generated into Ωk.

The result of Theorem 1 also gives rise to a (heuristic)
PI-type algorithm if we use (7) instead of (12) or (15),
with the following stop condition: if either V πk = V πk+1

or V
πk = V

πk+1 , then stop (alternative conditions are also
possible). In this case, πk+1 improves both the lower and
upper bounds of πk over the improvable state set of πk.
Therefore, a converged policy, if it exists, improves all of
the policies that have appeared in the algorithm, over the
intersection of their improvable state sets.

IV. APPLICATIONS

Even though the two well-known algorithms—value itera-
tion and policy iteration—are available for solving MDPs, it
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is generally understood that solving MDPs with large state
and/or action spaces in practice using these algorithms is
impossible. Numerous efforts have been devoted to solving
MDPs approximately and/or heuristically. Similarly, we can
expect that solving controlled Markov set-chains with large
state and/or action spaces via the value-iteration type algo-
rithm studied by Kurano et al. is also practically difficult.

Following the spirit of parallel rollout [1], it is often true
that for a given problem, we already have some heuristic
policies available. For example, for the multiclass-scheduling
problem with stochastically arriving prioritized tasks with
deadlines, the “earliest-deadline-first” and “static-priority”
heuristics are available candidate policies in hand for the
scheduling decision. It may even be the case that our heuristic
policies are such that each policy is near-optimal over some
part of the state space. In this case, the decision maker may
well wish to combine those policies to develop a policy that
somehow improves all of the heuristic policies. The results
presented in the previous section are directly relevant to this
goal.

Suppose we have a large MDP Mo = (X, A, P, R), where
P is the state transition matrix. We then partition the state
space X into B = {B1, . . . , Bn} with nonempty Bi ⊂ X ,⋃n

i=1 Bi = X , and Bi∩Bj = ∅ for i �= j, i, j = 1, . . . , n. We
then construct a controlled Markov set-chain model M r =
(B, A, PM , RM ) such that the state space is B, the action
space is A, and PM = 〈p

M
, pM 〉 is defined such that for

Bi, Bj ∈ B and a ∈ A,

p
M

(Bj |Bi, a) = min
x∈Bi

∑
y∈Bj

P (y|x, a)

pM (Bj |Bi, a) = max
x∈Bi

∑
y∈Bj

P (y|x, a).

We can then consider a “minimum” (pessimistic) model with
RM (Bi, a) = minx∈Bi R(x, a) or a “maximum” (optimistic)
model with RM (Bi, a) = maxx∈Bi R(x, a). Given a set of
heuristic policies {π|π : B → A}, we can then apply our
multi-policy improvement method to the model M r. Note
that the V π-function for a given policy π for Mr provides a
performance bound for the corresponding policy applied to
Mo. (If a heuristic policy is given for Mr as a mapping from
B to A, to apply it to Mo, we induce a corresponding policy
as a mapping from X to A.) By applying the multi-policy im-
provement method, we can improve the performance bounds
of the available policies.

To use the multi-policy improvement method for on-line
control of a Markov set-chain (following the method of
parallel rollout), we need to estimate V π(x) for the current
state x ∈ X and π ∈ Π via simulation. Unlike in the MDP
case, a direct application of Monte Carlo simulation would
not apply here. Developing an efficient simulation method
to estimate V π(x) is an interesting research topic. Here we
discuss one heuristic method.

We simulate π as follows: at state x we take π(x)
and select l from 1 ≤ l ≤ lx,π(x) uniformly, and make
a transition to the next state according to p(l)(·|x, π(x)),

thereby generating a single simulated sample path over a
finite horizon. We repeat this over many sample paths and
obtain the estimated interval of following the policy π with
an initial state x.

For on-line control, we evaluate the value of taking each
action a ∈ A at state xt at time t as follows. We sample a set
of next states ya

1 , . . . , ya
n randomly, uniformly over X , and

for each π ∈ ∆, we estimate the value of following policy
π (which we denote V̂ π(ya

i )). Then, we select at time t an
action a in

arg max
a∈Âx

{
R(xt, a) +

γ

n
×

max
p∈p(xt,a)

n∑
i=1

p(ya
i |x, a)max

π∈∆̂
V̂

π

(ya
i )

}
,

where ∆̂ = {π|π ∈ Π, π(x) ∈ Âx, ∀x ∈ X} and

Âx = argmax
a∈A

{
R(xt, a) +

γ

n
×

min
p∈p(xt,a)

n∑
i=1

p(ya
i |xt, a)max

π∈∆
V̂

π
(ya

i )
}

.

V. CONCLUDING REMARKS

“Policy switching” [1] is yet another multi-policy improve-
ment method for MDPs, where the maximization over the
action space is not necessary (cf. parallel rollout), making
the method attractive for problems with large action spaces.
A future direction is to extend the original policy switching
method to the case of controlling Markov set-chains.

An issue that remains unanswered is a characterization
of the performance gains to be expected by using the
proposed method. Providing analytical results along these
lines is challenging. Indeed, to the best of our knowledge,
no analytical result exists on performance gains for single
policy improvement in PI for MDPs.
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