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Abstract— We use set valued analysis techniques in order
to characterize Lyapunov functions for the input–to–state
dynamical stability (ISDS) property, a quantitatively sharper
but qualitatively equivalent variant of the well known input–
to–state stability (ISS) property. We show that the epigraphs of
minimal ISDS Lyapunov functions are invariance kernels of a
suitable augmented differential inclusion. This identity provides
theoretical insight into local ISDS properties and yields a basis
for a numerical approximation of ISDS and ISS Lyapunov
functions via set oriented numerical methods.

I. INTRODUCTION

One of the key concepts in nonlinear stability theory for
perturbed systems is the input–to–state stability property
(ISS), introduced by E.D. Sontag in 1989 [12] and further
investigated in, e.g., [7], [13], [15]. The ISS property can be
seen as a generalization of the asymptotic stability property
to perturbed systems of the type ẋ(t) = f(x(t), w(t)) and
demands that each trajectory ϕ satisfies the inequality

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)} (1)

for suitable, so called, comparison functions β ∈ KL and γ ∈
K∞.1 For a survey about the ISS property and its applications
in nonlinear systems theory we refer to the survey [14] and
the references therein.

One of the early important results about the ISS prop-
erty was the observation that it can be characterized by a
suitable Lyapunov function; see [15]. More precisely, the
ISS property is equivalent to the existence of a continuously
differentiable function V : R

n → R satisfying the bounds

‖x‖ ≤ V (x) ≤ σ(‖x‖) (2)

for some σ ∈ K∞, and the decaying property

inf
γ(‖w‖)≤V (x)

DV (x)f(x,w) ≤ −g(V (x)) (3)

for some g : R
+
0 → R

+
0 with g(r) > 0 for r > 0 and some

γ ∈ K∞. This Lyapunov function characterization comes
in different variants, and the fact that we prefer the form
(2), (3), whose particular lower bound in (2) can always be
achieved by an appropriate rescaling of V , lies in the fact that
integrating (3) for some perturbation function w and using
(2) one obtains (1) with γ from (3) and β(r, t) = µ(σ(r), t)
where µ is the solution of the initial value problem µ̇ =
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−g(µ), µ(0) = r. Hence, the functions σ, γ and µ from V
are directly related to the comparison functions β and γ in
the ISS estimate (1).

A more careful investigation of this relation reveals that
the existence of V with (2), (3) implies a slightly stronger
property than ISS, namely the input–to–state dynamical
stability property (ISDS) introduced in [4, Chapter 3] and [5]
(see also [6]). The ISDS property, which will be precisely
defined in Definition 2.1, below, is qualitatively equivalent
to ISS (see [4, Proposition 3.4.4(ii)]) but, due to its tighter
quantitative relation to V , more suitable for a Lyapunov
function based analysis. Hence, in this paper we will work
with this ISDS property which we will use in a rather general
version by considering arbitrary compact sets A instead of
the origin, and by allowing that ISDS only holds on a subset
B ⊆ R

n instead of the whole R
n.

This paper deals with the characterization of the ISDS
property and ISDS Lyapunov functions using set valued
techniques. More precisely, to our n–dimensional perturbed
system we associate an augmented n + 1–dimensional dif-
ferential inclusion with solutions ψ, where the additional
dimension represents the value of the Lyapunov function V .
Via this inclusion we obtain a characterization of V via the
invariance kernel Invψ(D) of a suitable set D. In particular,
we are able to give a necessary and sufficient condition on
the shape of Invψ(D) being equivalent to the ISDS property.
Furthermore, the invariance kernel Invψ(D) characterizes the
minimal ISDS Lyapunov function by means of its epigraph,
provided that ISDS holds. However, even when ISDS does
not hold the set Invψ(D) may contain useful information.
If ISDS does not hold for some perturbation range W , then
it may still hold for a suitably restricted perturbation range
W̃ . It turns out that the invariance kernel Invψ(D) for the
unrestricted perturbation set W can be used in order to
determine whether this is the case, and if so, then Invψ(D)
gives a precise estimate about the size of the maximal
restricted perturbation range W̃ for which ISDS holds.

The contribution of these results is twofold. First, our
results give additional insight into the ISDS (and thus the
ISS) property and the respective Lyapunov functions. In
particular, our second result characterizes the situation where
ISDS is lost due to a too large set of perturbations, a topic
which was recently investigated in [3] using a controllability
analysis. Second, since invariance kernels are computable by
set valued numerical algorithms, our characterization leads
to a numerical approach for computing ISDS Lyapunov
functions for which — to the best of our knowledge —
no other numerically feasible representation is available
until now. It goes without saying that the numerical ef-
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fort of this approach is rather high such that our method
is only applicable to moderately complex systems of low
dimensions, but this is due to the inherent complexity of
the problem, taking into account that the computation of
nonlinear Lyapunov functions is a difficult task even for
unperturbed systems. This numerical approach bears some
similarities with a recently developed dynamic programming
method for the computation of ISS comparison functions
[8], with the difference that here Lyapunov functions are
computed while in [8] the comparison functions (or gains)
are obtained.

This paper is organized as follows. In the ensuing Section
II we summarize background information on the ISDS prop-
erty. In Section III we state and prove our first main result
on the representation of ISDS Lyapunov functions V via
invariance kernels. Section IV gives necessary and sufficient
conditions for ISDS using a suitably restricted perturbation
range. Finally, in Section V, we show some examples.

II. SETUP AND PRELIMINARIES

We consider perturbed nonlinear systems of the form

ẋ(t) = f(x(t), w(t)) (4)

with x ∈ R
n, and w ∈ W := L∞(R,W ) for some

W ⊆ R
l. We assume that f is continuous and Lipschitz in

x uniformly for w in a compact set. We denote the solutions
with ϕ(t, x, w).

For a compact and nonempty set A ⊂ R
n we denote the

Euclidean distance to A by dA.
We define the comparison function classes

K := {α : R
+
0 → R

+
0 |α is continuous and strictly

increasing with α(0) = 0}
K∞ := {α ∈ K |α is unbounded}
L := {α : R

+
0 → R

+
0 |α is continuous and strictly

decreasing with lim
t→∞α(t) = 0}

KL := {β : R
+
0 × R

+
0 → R

+
0 |β is continuous,

β(·, t) ∈ K, β(r, ·) ∈ L for all t, r ≥ 0}
KLD := {µ ∈ KL |µ(r, 0) = r,

µ(r, t + s) = µ(µ(r, t), s) for all r, t, s ≥ 0}
The first four classes are standard in nonlinear stability theory
while the last class KLD of “dynamical” KL functions was
introduced in [4] in order to formalize the specific form
of KL functions β(r, t) = µ(σ(r), t) originating from the
integration of a Lyapunov function, cf. the introduction.

Using these functions we now define the ISDS property.
Definition 2.1: The set A is called input–to–state dynam-

ically stable (ISDS) on some open neighborhood B of A, if
for suitable µ ∈ KLD and σ, γ ∈ K∞ and all x ∈ B, all
w ∈ W and all t ≥ 0 the inequality

dA(ϕ(t, x, w)) ≤ max{µ(σ(dA(x)), t), ν(w, t)} (5)

holds with

ν(w, t) := ess sup
τ∈[0,t]

µ(γ(‖w(τ)‖), t − τ). (6)

We call A globally ISDS if this property holds with B = R
n.

The most important feature of the ISDS property is its
quantitative characterization by an ISDS Lyapunov function.
If B �= R

n then for its definition we need the reachable set
Rϕ,W (B) of a set B under ϕ, defined by

Rϕ,W (B) :=
⋃

w∈L∞(R,W ),x∈B,t∈[0,Tmax(x,w))

{ϕ(t, x, w)},

where Tmax(x,w) denotes the upper bound of the existence
interval of the solution ϕ(t, x, w).

Definition 2.2: Given functions µ ∈ KLD and σ, µ ∈
K∞, a function V : Rϕ,W (B) → R is called an ISDS
Lyapunov function, if it satisfies the inequalities

V (x) ≥ dA(x) for all x ∈ Rϕ,W (B)

V (x) ≤ σ(dA(x)) for all x ∈ B
(7)

and V (ϕ(t, x, w)) ≤ max{µ(V (x), t), ν(w, t)} (8)

for all x ∈ R
n, w ∈ W and t ≥ 0 with ν from (6).

It is easily seen that the existence of V meeting Definition
2.2 implies ISDS with the same comparison functions. The
converse is also true but much less trivial to prove, cf.
[4, Theorem 3.5.3] or [5, Theorem 4]2. Thus, an ISDS
Lyapunov function for given comparison functions µ, σ, γ
exists if and only if the set A is ISDS for these comparison
functions and the ISDS property admits a precise quantitative
charactarization by ISDS Lyapunov functions.

In the remainder of this paper we will always assume that
the function µ ∈ KLD satisfies the differential equation

d/dt µ(r, t) = −g(µ(r, t)) (9)

for some Lipschitz continuous g : R → R with g(r) > 0 for
r > 0. By [4, Proposition B.2.3] this can be assumed without
loss of generality. We further assume that the solutions of (9)
exist for all t ∈ R and extend µ from R

+
0 ×R

+
0 to R

+
0 ×R.

Remark 2.3: If the function V from Definition 2.2 is
smooth and µ satisfies (9), then (8) is equivalent to the
infinitesimal inequality (3), see [5, Lemma 15]. If V is
nonsmooth one can still use (3) interpreted in the viscosity
solution sense, see [4, Proposition 3.5.6]. In this paper,
we will work directly with (8), thus avoiding the use of
nonsmooth differential calculus.

III. AN INVARIANCE KERNEL REPRESENTATION

Fixing two functions γ ∈ K∞ and µ ∈ KLD satisfying
(9), to our perturbed system (4) we associate the n + 1–
dimensional differential inclusion

ẋ(t) ∈ f(x(t),W (y(t))), ẏ(t) = −g(y(t))

with W (y) = {w ∈ W | γ(‖w‖) ≤ y}
(10)

and y ∈ R
+
0 . We denote the solutions by ψ(t, x, y), by ψ(t, z)

for z = (x, y) ∈ R
n+1 or simply by ψ(t), if there is no

ambiguity. We will frequently use the decomposition ψ(t) =
(ψx(t), ψy(t)) with ψx(t) ∈ R

n and ψy(t) ∈ R. We assume

2In fact, in [5] only the special case A = {0} and B = R
n is treated,

but the proof easily carries over to our more general setting.
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that the right hand side of this differential inclusion and the
map y � W (y) are Lipschitz set valued maps, which holds,
e.g., if W is a star shaped set and γ−1 is Lipschitz, the latter
of which can be assumed without loss of generality.

The following sets will be crucial for our analysis.
For a subset D ⊂ R

n+1 and a differential inclusion with
solutions denoted by ψ we define its (forward) invariance
kernel as

Invψ(D) :=
{

z ∈ D

∣∣∣∣ ψ(t, z) ∈ D for all solutions
ψ of (10) and all t ≥ 0

}
.

For an extended real valued function G : R
n → R∪ {∞}

we define its epigraph Epi(G) ⊂ R
n+1 by

Epi(G) := {(x, y) ∈ R
n+1 | y ≥ G(x)}.

For a set B ⊆ R
n we define

Epi(G|B) := Epi(G) ∩ (B × R).

Since ISDS Lyapunov functions are in general only de-
fined on subsets C ⊂ R

n we extend them to R
n by setting

V (x) = ∞ for x �∈ C and define Dom(V ) := {x ∈
R

n |V (x) < ∞}.
The set which we are interested in is the invariance kernel

Invψ(D) of the set

D := Epi(dA) = {(x, y) ∈ R
n+1 | y ≥ dA(x)}. (11)

More precisely, we will use the largest epigraph contained
in Invψ(D). For this purpose, for a given closed set E ⊂
R

n+1 we define the set

M(E) := {(x, y) ∈ E | (x, z) ∈ E for all z ≥ y}.
The set M(E) is the largest subset of E which can be written
as an epigraph of a function G : R

n → R ∪ {∞}.
Using these concepts we can now describe the relation

between ISDS Lyapunov functions and invariance kernels.
Theorem 3.1: Consider the perturbed system (4) and the

differential inclusion (10). Consider a compact and nonempty
set A ⊂ R

n, an open neighborhood B of A and the set D
from (11). Then the following assertions hold:

(i) Each ISDS Lyapunov function V : R
n → R satisfies

Epi(V ) ⊆ M(Invψ(D)).

(ii) If there exists a function σ ∈ K∞ such that

Epi(σ(dA)|B) ⊆ Invψ(D) (12)

holds, then there exists an ISDS Lyapunov function V :
R

n → R with

Epi(V ) = M(Invψ(D)).

In particular, this V is the minimal ISDS Lyapunov function
for (4) in the sense that V (x) ≤ Ṽ (x) holds for all x ∈
Dom(V ) and all other ISDS Lyapunov functions Ṽ for the
comparison functions µ and γ.

(iii) The set A is ISDS with neighborhood B if and only
if (12) holds for some function σ ∈ K∞.

Proof: By [5, Lemma 13] a function V : Rϕ,W (B) → R

satisfies (8) if and only if it satisfies

V (ϕ(t, x, w)) ≤ µ(y, t) for all x ∈ B, all t ≥ 0

all y ≥ V (x) and all w ∈ W with

γ(‖w(τ)‖) ≤ µ(y, τ) for almost all τ ∈ [0, t].

(13)

We prove the theorem using this equivalence.
(i) Let (x, y) ∈ Epi(V ) and let ψ(t) = ψ(t, x, y) be a

solution of the differential inclusion (10). We have to prove
that (x, y) ∈ Invψ(D), i.e. ψ(t) ∈ D for all t ≥ 0. Writing
ψ = (ψx, ψy) this amounts to showing dA(ψx(t)) ≤ ψy(t)
for all t ≥ 0. From Filippov’s Lemma (see [1] or [9, p. 267])
we find a function w(t) with w(t) ∈ W (ψy(t)) for almost
all t ≥ 0 such that ψx solves

d

dt
ψx(t) = f(ψ(x(t)), w(t)).

Since ψy(t) = µ(y, t) we obtain that γ(‖w(τ)‖) ≤ µ(y, τ)
for almost all τ ≥ 0. Thus from (13) we can conclude
V (ψx(t)) ≤ µ(y, t) which implies dA(ψx(t)) ≤ V (ψx(t)) ≤
µ(y, t) = ψy(t), i.e., ψ(t) ∈ D and thus (x, y) ∈ Invψ(D).

(ii) We show that the function V (x) defined by

V (x) := inf{y ≥ 0 | (x, y) ∈ M(Invψ(D))}
(with the convention inf ∅ = ∞) is an ISDS Lyapunov
function. Clearly, the inequalities (7) follow immediately
from the construction and (12). It remains to show (8) for
x ∈ B which we do by verifying (13) for x ∈ Dom(V ).
Consider t ≥ 0, x ∈ Dom(V ), w ∈ W and pick y ≥ 0
with (x, y) ∈ Invψ(D) such that γ(‖w(τ)‖) ≤ µ(y, τ)
holds for almost all τ ∈ [0, t]. Thins inequality implies
that w(τ) ∈ W (µ(y, τ)) for almost all τ ∈ [0, t], hence
ψ(τ) := (ϕ(τ, x, w), µ(y, τ)) is a solution of the inclusion on
[0, τ ]. Since Invψ(D) is forward invariant we obtain ψ(τ) ∈
Invψ(D) for all τ ∈ [0, t], in particular ψ(t) ∈ Invψ(D).
From the definition of V we obtain V (ϕ(t, x, w)) ≤ µ(y, t),
i.e. (13) which shows that V is an ISDS Lyapunov function.

The fact that this V is minimal follows immediately
from (i), because each ISDS Lyapunov function V satisfies
Epi(V ) ⊆ M(Invψ(D)), hence the one satisfying Epi(V ) =
M(Invψ(D)) must be the minimal one.

(iii) If the condition (12) holds, then by (ii) we obtain the
existence of an ISDS Lyapunov function with Dom(V ) ⊇ B,
hence ISDS on B. Conversely, if ISDS holds, then by [5,
Theorem 4] there exists an ISDS Lyapunov function on B,
thus from (i) we can conclude that Invψ(D) contains an
epigraph containing the points (x, V (x)) for x ∈ B, thus for
σ ∈ K∞ from (7) Invψ(D) contains the points (x, σ(dA(x)))
for x ∈ B. Hence (12) follows.

Remark 3.2: The condition (12) involving σ implies that
M(Invψ(D)) is not empty, that V is continuous at ∂A
and that V is bounded on compact subsets of B. Thus, it
guarantees the existence of a function V with Epi(V ) =
M(Invψ(D)) as well as some regularity properties of V .
The inequality (8) is then a consequence of the structure of
the differential inclusion (10).
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A particular nice situation occurs when Invψ(D) =
M(Invψ(D)). In this case we have the following corollary.

Corollary 3.3: Consider the perturbed system (4) and the
differential inclusion (10). Consider a compact set A ⊂ R

n,
an open neighborhood B of A and the set D from (11).

Assume that there exists a function V : R
n → R ∪ {∞}

and a function σ ∈ K∞ such that

Epi(σ(dA)|B) ⊆ Epi(V ) = Invψ(D)

holds. Then V is an ISDS Lyapunov function on B and, in
particular, the set A is ISDS with neighborhood B.
Proof: The proof follows directly from Theorem 3.1 (ii).

Note that the equality M(Invψ(D)) = Invψ(D) need not
hold, even if M(Invψ(D)) �= ∅, see Example (18), below.
Hence, Corollary 3.3 indeed describes a special situation
which can, hovewer, be observed for many systems.

IV. ISDS FOR RESTRICTED PERTURBATION RANGE

Observe that Invψ(D) for D = Epi(dA) may be empty,
even when no perturbations are present, e.g., when the set A
is not forward invariant, like the set A = {1} for the simple
1d system ẋ(t) = x(t). Whenever A is forward invariant
under ϕ for w ≡ 0 it is easily seen that Invψ(D) contains
at least the set A × {0}.

By Theorem 3.1 (iii), both Invψ(D) = ∅ and Invψ(D) =
A × {0} imply that ISDS does not hold. However, the
converse is not true, i.e., if ISDS does not hold then Invψ(D)
might still be nonempty and strictly larger than A×{0}. As
an example, consider the 1d system

ẋ(t) = −x(t)(1 − 2x(t)) + w(t). (14)

Figure 1 shows the invariance kernel of D for A = {0} (i.e.,
dA = ‖ · ‖ is the Euclidean norm), µ(r, t) = e−t/10r (i.e.,
d/dt µ(r, t) = −1/10 µ(r, t)), γ(r) = 2r (i.e., γ−1(r) =
r/2), and W = R, computed numerically using the algo-
rithms from [11], [2].

Fig. 1. Invariance kernel Invψ(D) for System (14), W = R

Note that due to Theorem 3.1(iii) ISDS cannot hold
because Invψ(D) does not contain an epigraph for any
neighborhood B of A = {0}, i.e., M(Invψ(D)) = ∅. The
fact that the system is not ISDS can also be seen directly,
because it is easily verified that for x = 0 and, e.g., w ≡ 2
the corresponding trajectory has finite escape time.

This gives rise to the question about the meaning of this
nontrivial invariance kernel. The answer can be given when
looking at the set W of admissible perturbation values. In
fact, the shape of the invariance kernel in Figure 1 still
contains what could be called a restricted epigraph, i.e., a set
of the form Epi(V )∩ (Rn × [0, ŷ]) for some function V and
some ŷ > 0. It turns out that by choosing the “right” ŷ with
this property, we can prove ISDS for a suitably restricted
set W̃ ⊂ W of perturbation values. In order to make this
statement precise and to formulate a necessary and sufficient
condition we need the horizontal cross section

S(Invψ(D), y) := {x ∈ R
n | (x, y) ∈ Invψ(D)}

of the set Invψ(D) ⊂ R
n+1 and the invariance kernel of a

set S ⊂ R
n under the solutions ϕ of (4) with perturbations

from W ⊂ R
l defined by

Invϕ,W (S) :=
{

x ∈ S

∣∣∣∣ ϕ(t, x, w) ∈ S for all
w ∈ L∞(R,W ), x ∈ S, t ≥ 0

}
.

Theorem 4.1: Consider a compact set A ⊂ R
n and the set

Invψ(D) for D from (11).
(i) Assume that for some real number ŷ > 0 and the

perturbation range W̃ := {w ∈ W | γ(‖w‖) ≤ ŷ} the set

C = Inv
ϕ,W̃

(S(Invψ(D), ŷ))

contains a neighborhood B of A for which we can find a
σ ∈ K∞ with the property

Epi(σ(dA)|B) ∩ (Rn × [0, ŷ]) ⊆ Invψ(D) (15)

Then the set A is ISDS with neighborhood B and perturba-
tion range W̃ .

(ii) Conversely, if the set A is ISDS on some neighborhood
B for the perturbation range W̃ = {w ∈ W | γ(‖w‖) ≤ ŷ}
for some ŷ > 0, then the assumptions in (i) are satisfied for
this value ŷ and C = R

ϕ,W̃
(B).

Proof: (i) We prove the assertion by showing that for the
differential inclusion

ẋ(t) ∈ f(x(t), W̃ (y(t))), ẏ(t) = −g(y(t))

with W̃ (y) = {w ∈ W̃ | γ(‖w‖) ≤ y}
(16)

with solutions denoted by ψ̃ the forward invariance kernel
Invψ̃(D) satisfies (12) for B. Then (i) follows from Theorem
3.1(iii).

We prove (12) using the forward invariance of C under ϕ
and W̃ . This property implies ψ̃x(t, x, ŷ) ⊂ C for all t ≥ 0
and all x ∈ C. In order to show (12), we have to show that
for any point (x, y) with x ∈ B, y ≥ σ(dA(x)) and any
solution ψ̃(t) starting from this point the property ψ̃(t) ∈ D
holds for all t ≥ 0. In order to accomplish this we show

there exists t̂ ≥ 0 with ψ̃(t) ∈ D for all t ∈ [0, t̂]
and ψ̃(t̂) ∈ Invψ(D).

(17)

This will prove (12) since Invψ(D) ⊆ D is forward
invariant for (16), due to the fact that the solution set of
(16) is smaller than that of (10).
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If y ≤ ŷ then (15) implies (x, y) ∈ Invψ(D), hence (17)
holds for t̂ = 0. If y > ŷ then we write the solution as
ψ̃(t) = (ψ̃x(t), ψ̃y(t)). Then the forward invariance of C
under ϕ carries over to ψ̃x, i.e., ψ̃x(t) ∈ C for all t ≥
0. Since ψ̃y(t) → 0 as t → ∞ we obtain ψ̃y(t̂) = ŷ for
some t̂ ≥ 0 and consequently ψ̃(t̂) ∈ C ⊂ Invψ(D). For
t ∈ [0, t̂] we have ψ̃y(t) ≥ ŷ ≥ σ(dA(ψ̃x(t))), where the
last inequality holds because the point (ψ̃x(t), ŷ) lies in C×
{ŷ} ⊆ Invψ(D) ⊆ D = Epi(dA). Thus, ψ̃(t) ∈ Epi(dA) =
D, which proves (17) in this case.

We have thus shown that Invψ̃(D) satisfies (12). This
finishes the proof of (i) because now the ISDS property
follows immediately from Theorem 3.1(iii).

(ii) If ISDS holds for W̃ on some neighborhood B
of A, then for this set of perturbations there exists an
ISDS Lyapunov function V : R

ϕ,W̃
(B) → R whose

epigraph by Theorem 3.1(i) satisfies Epi(V ) ⊆ Invψ(D) and
Epi(σ(dA)|B) ⊆ Epi(V ) for some σ ∈ K∞. Since R(B) ⊆
S(Invψ̃(D), ŷ) holds, the invariance kernel Invψ̃(D) satisfies
the assumptions from part (i). We have to show that Invψ(D)
also satisfies these assumptions, which we do by showing
that these sets coincide for y ≤ ŷ. To this end consider the
perturbation range W ⊇ W̃ . Then for any point (x, y) with
y ≤ ŷ the set of possible solutions of (10) coincides with
that of (16), because we have W (ψy(t)) ⊆ W̃ for all t ≥ 0.
Hence we have Invψ̃(D) ∩ (Rn × [0, ŷ]) = Invψ(D) which
shows that the assumptions from (i) hold for Invψ(D).

Remark 4.2: The equivalence of ISDS with W̃ and the
condition in Theorem 4.1(i) implies that the maximal ŷ
satisfying this condition characterizes the maximal set of
perturbations for which ISDS holds for the considered com-
parison functions γ and µ.

Unfortunately, the assumption on the set C in Theorem
4.1(i), is not directly related to the shape of the invariance
kernel Invψ(D), hence just by looking at Invψ(D) it is not
possible to verify this assumption.

Fortunately, there is a remedy to this problem if one
aims at a sufficient ISDS condition analogous to Corollary
3.3. This corollary can be extended to the ŷ–restricted case
without making assumptions on Inv

ϕ,W̃
(S(Invψ(D), ŷ)).

The key observation for this result is the following lemma,
which gives a sufficient condition for the forward invariance
of the set S(Invψ(D), ŷ) itself under ϕ.

Lemma 4.3: Assume that there exists ε > 0 such that
S(Invψ(D), y) ⊆ S(Invψ(D), ŷ) holds for all y ∈ (ŷ−ε, ŷ)
and some ŷ > 0.

Then Inv
ϕ,W̃

(S(Invψ(D), ŷ)) = S(Invψ(D), ŷ) for the

perturbation range W̃ = {w ∈ W | γ(‖w‖) ≤ ŷ}.
Proof: We abbreviate C := S(Invψ(D), ŷ) and show that
C is forward invariant for all perturbation functions w ∈ W
with a := γ(‖w‖∞) < ŷ. By continuity this implies the
desired result also for a = ŷ.

Consider a point x ∈ C and a perturbation function
w ∈ W̃ with a < ŷ. We prove the forward invariance by
contradiction. For this purpose assume that there exists a time
t > 0 such that ϕ(t, x, w) �∈ C. Consider a time ∆t > 0 with

the property that µ(ŷ, ∆t) > max{a, ŷ−ε}, which exists by
continuity of µ and since ŷ > a. Since ϕ starts in C we find a
time t1 ≥ 0 with ϕ(t1, x, w) ∈ C and ϕ(t1 +∆t, x, w) �∈ C.

From the choice of ∆t we obtain ‖w(t)‖ ≤ µ(ŷ, t) for
almost all t ∈ [0, t1 + ∆t]. Hence, for t ∈ [t1, t1 + ∆t]
the function ψ(t) = (ϕ(t, x, w), µ(ŷ, t)) is a solution of the
differential inclusion (10). Furthermore, by the definition of ŷ
the point (ϕ(t1, x, w), ŷ) lies in Invψ(D). Thus, the forward
invariance of Invψ(D) implies ψ(t1+∆t) ∈ Invψ(D) which
in particular yields ϕ(t1+∆t, x, w) ∈ S(Invψ(D), µ(ŷ, ∆t))
⊆ C which contradicts the choice of t1 and ∆t. Thus C is
forward invariant under ϕ.

Using this fact we can state the following result, which is
analogous to Corollary 3.3.

Corollary 4.4: Consider the perturbed system (4) and the
differential inclusion (10). Consider a compact set A ⊂ R

n,
an open neighborhood B of A and the set D from (11).

Assume that there exists a function V : R
n → R ∪ {∞},

a function σ ∈ K∞ and a value ŷ > 0 such that

Epi(σ(dA)|B) ∩ (Rn × [0, ŷ]) ⊆ Epi(V ) ∩ (Rn × [0, ŷ])
= Invψ(D) ∩ (Rn × [0, ŷ])

holds. Then V is an ISDS Lyapunov function on B for
the perturbation range W̃ = {w ∈ W | γ(‖w‖ ≤ ŷ}.
In particular, the set A is ISDS with neighborhood B for
perturbation range W̃ .
Proof: From Epi(V )∩(Rn×[0, ŷ]) = Invψ(D)∩(Rn×[0, ŷ])
we obtain the equality S(Invψ(D), y) = V −1([0, y]) for
all y ∈ [0, ŷ]. This immediately implies S(Invψ(D), y1) ⊆
S(Invψ(D), y2) if 0 ≤ y1 ≤ y2 ≤ ŷ, hence by Lemma 4.3
we obtain Inv

ϕ,W̃
(S(Invψ(D), ŷ)) = S(Invψ(D), ŷ). Thus,

Theorem 4.1 (i) yields the assertion.
We can apply this result to our Example (14) with

Invψ(D) from Figure 1. There one sees that the condition of
Corollary 4.4 is satisfied e.g. for ŷ = 0.24. Note that for large
ŷ the assumed epigraph property from Corollary 4.4 is not
satisfied and the inclusion S(Invψ(D), y) ⊆ S(Invψ(D), ŷ)
for y < ŷ does not hold. Since γ(r) = 2r, we obtain ISDS
with W̃ = [−0.12, 0.12]. The numerical computation of the
corresponding invariance kernel Invψ̃(D) as shown in Figure
2 indicates that this is the case because now the invariance
kernel is indeed an epigraph.

Fig. 2. Invariance kernel Invψ̃(D) for System (14), W̃ = [−0.12, 0.12]
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V. EXAMPLES

Invariance Kernels and their boundaries can be computed
by set valued numerical techniques, see [11], [2]. Our
approach therefore allows to compute ISDS Lyapunov func-
tions numerically. In this section we provide two examples
which were computed with these algorithms and illustrate
our theoretical results.

The first example is motivated by the following question:
is it possible that ∅ �= M(Invψ(D)) �= Invψ(D)? Indeed,
this situation is possible, as the one dimensional example

ẋ(t) = −2x(t)(1/2 − x(t))2 + (1/4 + x(t))2w(t) (18)

shows. Figure 3 shows the numerically determined invariance
kernel for γ(r) = r/2 and g(r) = r/10.

Fig. 3. Invariance kernel Invψ̃(D) for System (18), W̃ = R

Here one observes that Invψ(D) contains the epigraph of
the function V (x) = |x| for x ∈ [−1/4, 1/4] but, in addition,
also a restricted epigraph of V (x) = |x| on a larger interval.

The reason for this behavior is due to the fact that
the system is ISDS for unrestricted perturbation on B =
[−1/4, 1/4] because the perturbation cannot drive the system
out of this set. For smaller perturbations, however, it is ISDS
on larger, hence Invψ(D) contains additional points.

The second example is a two dimensional system which is
easily verified to be ISS (hence ISDS) because it is a cascade
of two ISS systems. It is given by

ẋ1(t) = −x1(t) + 3x2(t), ẋ2(t) = −x2(t) + w(t) (19)

For γ(r) = 10r and g(r) = r/10 Figure 4 (left) shows
the numerically computed lower boundary of the invariance
kernel, which in this case happens to be an epigraph, i.e.,
the figure shows the graph of the ISDS Lyapunov function.
Figure 4 (right) shows the corresponding level sets.

VI. CONCLUSIONS

The shape of the contour set in our last example suggests
that the minimal ISDS Lyapunov function is nonsmooth,
indicating that optimal ISDS Lyapunov functions are not in
general smooth, similar to optimal H∞ storage functions,
see [10]. Indeed, since the epigraph of the minimal ISDS
Lyapunov function is an invariance kernel and since the

Fig. 4. ISDS Lyapunov function for System (19), W̃ = R

invariance kernel is a maximal closed subset (satisfying the
invariance property), the minimal ISDS Lyapunov function
is necessarily lower semicontinuous but in general it has no
reason to be smooth or even continuous. This motivates our
use of set oriented methods and set–valued analysis, which
is an appropriate framework for handling such functions.
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