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Abstract— The problem of optimal modal synthesis of digital
controllers is considered. The goal is to minimize a cost
function over the set of controllers that place closed-loop poles
in a specified region D. A two-level numerical optimization
procedure is developed for design of optimal reduced-order
modal controllers. An important feature of the method is
that the original cost function is not modified. For the case
of a quadratic cost function, a new method of optimization
over polynomials is developed on the basis of a Diophantine
equation.

Index Terms— Sampled-data systems, Modal control, Direct
digital control, Optimization, Numerical methods, Random
search

I. INTRODUCTION

Many requirements to control systems, e.g., decay rate
of transients and oscillation damping, can be formulated
in terms of locations of the closed-loop poles. The classical
pole placement problem supposes exact assignment of these
poles [1]. Nevertheless, it often suffices to place these poles
in a prescribed region D of the complex plane, and in
addition, to minimize a cost function J(C) depending on
the controller C. Then, the minimization problem can be
written in the form

C∗ = arg min
C∈C

J(C) , (1)

where C denotes the set of admissible controllers, which
place all closed-loop poles in D. Problem (1) will be called
the optimal modal controller design problem. So far no
analytic solution is known to this problem for an arbitrary
form of the region D.

Problem (1) is very important for applications. For in-
stance, it is known that formal use of the H2-minimization
procedure for sampled-data systems yields in some cases
marginally stable systems [2]. Therefore, we naturally arrive
at the problem (1), the solution of which gives a suboptimal,
but stabilizing controller.

In the simplest case, the degree of stability is constrained,
so that the region D is the open half-plane �s < −α (α >
0) for continuous-time systems and the region outside the
disk of radius eαT in the ζ-plane for sampled-data systems
with sampling period T . Hereinafter we use the variable
ζ = e−sT associated with the backward shift operator [2].

One of the first design methods that guarantees some
prescribed degree of stability α was proposed by Anderson
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and Moore [3], [4]. The idea is to modify the linear
quadratic cost function in such a way that all processes in
the closed-loop system decay faster than e−αt. A discrete
version of this approach can be found in [1]. It is important
that the optimization is actually performed with respect to a
modified criterion, and it is not guaranteed that the system
will be close to the optimum with respect to the original cost
functional. Moreover, in many cases the method appears to
be too conservative, i.e., the obtained degree of stability is
greater than required.

Other methods based on a modification of a quadratic cost
function by an appropriate selection of weighting matrices
for different stability regions can be found in [5-11] and
references therein. They are based on one-to-one mappings
of simply connected regions D onto the open left half-
plane, while an optimization procedure serves mainly as a
technique for pole placement and eigenstructure assignment.

In [12], an original method was proposed, which is
based on the Youla-Kučera parameterization of the set of
stabilizing controllers. The idea consists in approximating
the optimal (with respect to the original functional) Youla
parameter by a function having poles only in D. It is shown
that the optimal cost can be approached as closely as desired
using a sequence of controllers of increasing order, which
place all closed-loop poles in D. Nevertheless, this method
often leads to high-order controllers, which are undesirable
in applications.

In this paper we propose a new two-level numerical pro-
cedure for the optimal design of modal digital controllers.
It is based on a parameterization of the set of all controllers
of order � associated with a fixed characteristic polynomial.
The procedure developed below is suitable for any region D

and allows to restrict the order of the controller. As distinct
from the simplest parametric optimization of controller
transfer function, the present method guarantees that the
closed-loop poles remain in D for all trial controllers.

The paper is organized as follows. In Sec. II the standard
sampled-data system with a scalar (2,2)-block is introduced.
The set of all controllers associated with a fixed charac-
teristic polynomial is described in Sec. III. In Sec. IV, we
develop a parameterization of all controllers of a given order
� that yield a fixed characteristic polynomial. The main
result in the form of a two-level optimization algorithm
is formulated in Sec. V, in Sec. VI we investigate its
application to quadratic optimization problems for discrete
and sampled-data systems. For this class of problems, a
new effective algorithm for optimization over fixed-degree
polynomials is developed on the basis of a Diophantine
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equation. The method is illustrated by a numerical example
in Sec. VII, where we consider an L2-optimal control prob-
lem for a sampled data system with restrictions imposed
both on the degree of stability and the damping ratio.

II. STANDARD SAMPLED-DATA SYSTEM

� w
P11 P12

P21 P22

�ε

� uy

��
T

� C � H

Fig. 1. Standard sampled-data system

Consider the standard sampled-data system [13] shown
in Fig. 1, where ε, y, w, and u denote the output, feedback,
input and control signal, respectively. The continuous-time
plant is described by the following operator equations:

ε = P11(s)w + P12(s)u

y = P21(s)w + P22(s)u .

The feedback signal is sampled with period T , and the block
H denotes a hold element with transfer function H(s).

Hereinafter, we will assume that P22(s) is a scalar trans-
fer function so that the controller discrete transfer function
C(ζ) is scalar as well. Also, we suppose that the standard
system is stabilizable.

III. SYSTEMS WITH A FIXED CHARACTERISTIC

POLYNOMIAL

The input-output behavior of the plant inside the control
loop at the sampling instants is described by the dis-
crete transfer function D22(ζ) = DP22H(T, ζ, 0), where
DF (T, ζ, t) denotes the discrete Laplace transform for the
function F (s) [2]. Let

D22(ζ) = DP22H(T, ζ, 0) =
n(ζ)

d(ζ)
(2)

where n(ζ) and d(ζ) are coprime polynomials. By δ(·) we
denote the degree of a polynomial, assuming that δ(0) =
−∞. Hereinafter, we denote p = max{δ(n), δ(d)}.

The transfer function C(ζ) can be written as a ratio of
coprime polynomials

C(ζ) =
a(ζ)

b(ζ)
. (3)

The number ord C = max{δ(a), δ(b)} will be called the
order of the controller.

The characteristic polynomial of the closed-loop system
with controller (3) has the form1

∆(ζ) = an − bd . (4)

1Hereinafter, function arguments are often omitted for brevity.

Let us choose a characteristic polynomial ∆. Then, a
controller (3) satisfying (4) will be called a ∆-controller.
As follows from the polynomial equation theory [14], there
exists a set of polynomial pairs satisfying (4):

a(ζ) = a0 + dξ , b(ζ) = b0 + nξ (5)

where {a0, b0} is an arbitrary solution of (4), and ξ is an
arbitrary polynomial. Among all solutions (5), there exists a
solution with a of minimal degree such that δ(a) ≤ δ(d)−1,
and a solution with b of minimal degree such that δ(b) ≤
δ(n)−1. If δ(∆) < δ(n)+δ(d), both the minimal solutions
coincide.

IV. CONTROLLERS OF ORDER �

Assume that we have a characteristic polynomial ∆
and a desired controller order � such that the following
assumptions hold:

A1 δ(∆) ≤ � + p;
A2 There exists a solution {a0, b0} of (4) such that

δ(a0) ≤ � and δ(b0) ≤ �.

Comparing the polynomial degrees at both sides of (4), it is
easy to see that A1 is a necessary condition for this equation
to be solvable. On the other hand, condition A2 is necessary
for existence of a controller of order � satisfying (4).

Let {a0, b0} be the solution of (4) with a of minimal
degree for δ(d) ≥ δ(n) and the solution with b of minimal
degree for δ(d) < δ(n). Then, it can be shown that the
controller C0(ζ) = a0/b0 has the minimal order among all
controllers satisfying (4).

Theorem 1: Let ∆ be given such that A1–A2 hold, and
the pair {a0, b0} define the minimal order ∆-controller.
Then, the set of all ∆-controllers such that ord C ≤ � can
be parameterized as

C(ζ) =
a0 + dξ

b0 + nξ
(6)

where ξ(ζ) is an arbitrary polynomial such that δ(ξ) ≤ δξ =
� − p.

Proof: First, we consider the case p = δ(d) ≥ δ(n).
Let C(ζ) be a ∆-controller such that ord C ≤ �. We will
show that under the conditions of Theorem 1 the polynomial
ξ satisfies the estimate δ(ξ) ≤ � − δ(d).

Let δ(∆) < δ(n) + δ(d). Then, for the solution {a0, b0}
of (4) with a0 of minimal degree, we have

δ(a0) ≤ δ(d) − 1 , δ(b0) ≤ δ(n) − 1 .

Therefore,

δ(a) = δ(a0 + dξ) ≤ δ(d) + δ(ξ) ≤ �

δ(b) = δ(b0 + nξ) ≤ δ(n) + δ(ξ) ≤ � .

Hence, δ(ξ) ≤ � − δ(d).
If δ(∆) ≥ δ(n) + δ(d), with account for A1 we obtain

δ(a0) ≤ δ(d) − 1 , δ(b0) ≤ δ(∆) − δ(d) ≤ � .
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Therefore,

δ(a) = δ(a0 + dξ) ≤ δ(d) + δ(ξ) ≤ �

δ(b) = δ(b0 + nξ) ≤ max{�, δ(n) + δ(ξ)} ≤ � .

Hence, δ(ξ) ≤ � − δ(d).
Now let a polynomial ξ satisfy the estimate δ(ξ) ≤

� − δ(d). We will show that ord C ≤ �. From (5) it
immediately follows that δ(a) ≤ �. If δ(∆) < δ(n) + δ(d),
we have

δ(b) ≤ δ(n) + δ(ξ) ≤ δ(n) + � − δ(d) ≤ � .

If δ(∆) ≥ δ(n) + δ(d), due to A1 we obtain

δ(b) ≤ δ(∆) − δ(d) ≤ �

so that ord C ≤ �.
The proof for the case δ(d) < δ(n) is similar.
We note that for a fixed ∆(ζ) and � ≥ p there is a

freedom in selecting the polynomial ξ that can be utilized
for optimization purposes. For � < p there exists at most a
single controller of order � satisfying (4), namely C0(ζ).

V. TWO-LEVEL OPTIMIZATION PROCEDURE

Since C is uniquely determined by the pair {ξ,∆} and
vice versa, the cost functional can be written as J(ξ,∆) .

Let us choose a desired controller order � and a char-
acteristic polynomial ∆0 satisfying A1. Then, the maximal
degree δξ of ξ can be found by Theorem 1. For δξ ≥ 0,
among all polynomials ξ such that δ(ξ) ≤ δξ we can choose
ξ0 that minimizes the cost function for the given ∆ = ∆0:

ξ0(ζ) = arg min
ξ: δ(ξ)≤δξ

J(ξ,∆0) . (7)

This optimization problem constitutes the lower level of the
proposed algorithm and often can be solved analytically.
The controller obtained by (6) with ξ = ξ0 will be called
the suboptimal modal controller associated with ∆0.

For the complete solution of the problem we have to
variate (at the upper level) the polynomial ∆ in such a way
that its roots remain inside the region D. Then, the proposed
two-level optimization procedure can be written as

min
pi∈D

min
ξ: δ(ξ)≤δξ

J(ξ,∆) ,

where pi (i = 1, . . . , m) are the roots of ∆(ζ). This
procedure yields the optimal modal controller of order �
constructed by (6).

Since the dependence of the cost functional on the roots
of ∆ can be non-convex and might possess numerous
local minima, it is appropriate to use randomized search
algorithms [15-17]. In essence, the proposed procedure is
similar to the Q-parameterization approach of [17], but,
as distinct from the latter, controller complexity can be
effectively restricted.

All computations in this paper were performed using the
DIRECTSD Toolbox for MATLAB [18], where an adaptive
random search technique is realized. The algorithm starts

with an initial step size h0. The step is decreased by
a factor 0 < γ < 1 after each nf failed attempts. The
algorithm stops after kmax iterations or if the step size h
became smaller than hmin.

ALGORITHM

Input: Polynomials n(ζ) and d(ζ)
Desired controller order �
Cost functional J(C)
Search algorithm parameters

h0, hmin, γ, nf , and kmax

Output: Transfer function C(ζ) of the optimal
modal controller of order �

Step 1: Find δξ = � − p.
Step 2: Set k := 0, f := 0, h := h0, and J∗ := ∞.
Step 3: Set k := k + 1.
Step 4: Choose a trial characteristic polynomial ∆k

such that δ(∆k) ≤ � + p, all its roots are
inside the region D, and A2 holds.

Step 5: Construct the basic solution {a0, b0} of (4)
with a0 of minimal degree for δ(d) ≥ δ(n)
or with b0 of minimal degree for δ(d) ≤ δ(n).

Step 6: If δξ ≥ 0, construct the polynomial ξ0 of
degree δξ as the solution of the
optimization problem (7), else set ξ0 = 0.

Step 7: Construct Ck by (6) with ξ = ξ0, and find
the associated cost Jk = J(Ck).

Step 8: If Jk < J∗, then set C∗ := Ck, J∗ := Jk, and
f := 0, else set f := f + 1.

Step 9: If f = nf , then set h := γh and f := 0.
Step 10: If k < kmax and h > hmin, then goto Step 3,

else stop.

Remark 1. If � ≥ p − 1, then the roots of ∆k can be
chosen (at Step 4) independently inside D. If � < p − 1,
these roots should be selected in a special way, because not
all possible polynomials ∆k satisfy A2.

Remark 2. If we choose δ(∆k) < � + p at Step 4,
dead-beat modes will appear. Namely, the characteristic
polynomial in z-plane will have � + p − δ(∆k) roots at
the origin.

Remark 3. The optimization technique at the lower level
(Step 6) is determined by the properties of the functional
J(ξ,∆). In the next section we investigate a class of
functionals appearing in optimization problems for discrete
and sampled-data systems.

Remark 4. If the optimal controller Copt minimizing the
cost function (without additional restrictions on the stability
domain) can be computed analytically, it is reasonable to
take the characteristic polynomial of the optimal system as
a starting point for the search procedure. Of course, all its
roots must be projected onto D.

VI. LOWER LEVEL OPTIMIZATION FOR QUADRATIC

FUNCTIONALS

Let the superscript ∗ denote the adjoint F ∗(ζ) = F (ζ−1).
A polynomial (real rational function) in ζ will be called
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stable if it is free of roots (respectively, poles) inside the
closed unit disk.

As was shown in [2], the H2- and L2-optimization prob-
lems for SISO sampled-data systems reduce to minimizing
functionals of the form

J2 =
1

2πj

∮
Γ

[M∗AM + BM + M∗B∗ + E]
dζ

ζ
(8)

over the set of stabilizing controllers. Here A(ζ) = A∗(ζ),
B(ζ), and E(ζ) = E∗(ζ) are known real rational functions
in ζ, and

M(ζ) =
C(ζ)

1 − D22(ζ)C(ζ)

contains the controller C(ζ) to be determined. The inte-
gration path Γ in (8) is the unit circle passed in an anti-
clockwise fashion. Using (2), (4), and (6), we obtain

M(ζ) = −
(a0 + dξ)d

∆
.

Using this formula in (8) yields

J2 =
1

2πj

∮
Γ

[
ξ∗Ãξ − B̃ξ − ξ∗B̃∗ + Ẽ

] dζ

ζ
(9)

where

Ã(ζ) =
(dd∗)2

∆∆∗
A

B̃(ζ) =
d2

∆
B −

d2a∗
0d

∗

∆∆∗
A

Ẽ(ζ) = E +
a0a

∗
0dd∗

∆∆∗
A −

a0d

∆
B −

a∗
0d

∗

∆∗
B∗ .

Assume that the function Ã(ζ) is free of poles on the unit
circle. Then, it admits the factorization

Ã(ζ) = K(ζ)K∗(ζ)

where all poles of K(ζ) are outside the unit disk. Complet-
ing the squares in the integrand in (9), we obtain

J2 =
1

2πj

∮
Γ

(ξ∗K∗ − L∗)(Kξ − L)
dζ

ζ
+ J0

where J0 is independent of ξ, and

L(ζ) =
B̃∗

K∗
.

Assuming that L has no poles at the unit circle, we can
perform the following separation:

L(ζ) = L+(ζ) + L−(ζ)

where L+ is a stable function, while L− is strictly proper
and strictly antistable. Then, repeating the arguments of [2],
it can be shown that

J2 =
1

2πj

∮
Γ

(ξ∗K∗ − L∗
+)(Kξ − L+)

dζ

ζ
+ J̃0 (10)

where J̃0 is independent of ξ. This results in a parametric
optimization problem over the set of coefficients of the
polynomial ξ. For the functional (10) one can use, for

example, the method described in [19]. Nevertheless, below
we present a new polynomial solution to this problem,
which is superior to the latter as regards computational
complexity.

Consider the optimization problem

Jξ =
1

2πj

∮
Γ

(ξ∗W ∗ − V ∗)(Wξ − V )
dζ

ζ
→ min , (11)

where W (ζ) and V (ζ) are stable rational functions such
that

W (ζ) =
nw(ζ)

dw(ζ)
, W ∗(ζ) =

ñw(ζ)

d̃w(ζ)ζν
, V (ζ) =

nv(ζ)

dv(ζ)
,

where ν is a nonnegative integer, and {nw(ζ), dw(ζ)},
{ñw(ζ), d̃w(ζ)}, and {nv(ζ), dv(ζ)} are pairs of coprime
polynomials such that dw, dv , and d̃w are free of roots at
ζ = 0.

Theorem 2: The following statements are equivalent:

i) Polynomial ξ(ζ) is the solution of (11) over the set
of polynomials of order ≤ δξ;

ii) There exists a solution {ξ, π, θ} of the following
polynomial equation:

ñwnwdvξ−dwdvπ− d̃wζν+δξ+1θ = ñwnvdw , (12)

such that δ(ξ) ≤ δξ and δ(π) < δ(d̃w) + ν.
Proof: is given in the Appendix.

By construction, the functions K(ζ) and L+(ζ) in (10)
are stable, so that Theorem 3 is directly applicable.

Remark 1. It should be noted that equations similar to
(12) were introduced, for some specific cases, in [20] as
sufficient conditions of optimality. Theorem 3 considers the
general case and proves necessity as well.

Remark 2. Using the method of [19], one has to compute
2(δξ + 1) inner products of rational functions, after that
a linear system of equations must be solved. Each inner
product is a contour integral, so this is a time-consuming
operation. The solution proposed in Theorem 3 uses a single
Diophantine equation, which is equivalent to a linear system
of equations. Computational experiments (with randomly
generated second-order W and V ) demonstrated that for
δξ = 0 new algorithm is almost 3 times faster than that of
[19], while for δξ = 10 this ratio exceeds 17. Nevertheless,
a detailed analysis of computational aspects are beyond the
scope of the paper and will be considered elsewhere.

VII. NUMERICAL EXAMPLE

Consider the L2-optimization problem for a sampled-data
tracking system shown in Fig. 2. The reference signal r(t)
has the Laplace transform R(s). The system performance
is evaluated by the L2-norm of the error e(t) between the
actual output y(t) and the ideal signal ŷ(t) formed by a
linear block with transfer function Q(s):

J =

∫ ∞

0

e2(t) dt =

∫ ∞

0

[y(t) − ŷ(t)]
2

dt . (13)
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r(t)
�� � ��

T
� C(ζ) � F (s) ��

y(t)
� �
e(t)

�

� Q(s)
ŷ(t)

�−

Fig. 2. Block-diagram of the sampled-data tracking system

Let

F (s) =
1

s2
, Q(s) =

1

T0s + 1
, R(s) =

1

s
,

H(s) =
1 − e−sT

s
, T0 = 2 sec , T = 0.5 sec .

It is required to find a digital controller C minimizing (13)
such that ord C ≤ 3, the degree of stability is greater than
α = 0.2, and the damping ratio is restricted by a sector
with tan θ = β = 2 [8]. This means that

� si ≤ −α ,

∣∣∣∣� si

� si

∣∣∣∣ ≤ β (14)

holds for all si = − 1
T

log pi, where pi are the roots of the
characteristic polynomial in the ζ-plane.

The analytical solution to the L2-problem without ad-
ditional restrictions on pole locations is given for SISO
systems in [2]. A formal application of the procedure
described in [2] gives

Copt(ζ) =
1.4986(1 − ζ)(1 − 0.119ζ)

(1 + 0.5225ζ)(1 − 0.015ζ)
.

Fig. 3 indicates that the optimal controller seems to ensure
a nearly ideal tracking behavior to step inputs (with J =
0.00186). However, the closed-loop poles pi in the ζ-

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec) −−>

ideal
C

opt

Fig. 3. Transient of the system with L2-optimal controller

plane are {1, 1.284,−2.323,−23.204}, i.e., the system is
marginally stable and will not work in practice. It is easy to
check that the first restriction in (14) is violated for p1 = 1,
while the second one is false for p3 = −2.323. Then, we
compare different controller design methods that provide
for the prescribed degree of stability. Applying the idea of

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time, sec

y(t)

Reference

C
AM C

3

C
2

C
1

Fig. 4. Transients for systems with controllers CAM , C3, C2, and C1

Anderson and Moore [3], [4] to sampled-data systems for
α = 0.2, we obtain

CAM (ζ) =
6.2354(1 − 0.8708ζ)(1 − 0.7127ζ)

(1 + 0.7146ζ)(1 − 0.6633ζ)
.

Now the closed-loop poles are located at
{1.221, 1.284,−2.569,−25.685}, and the actual degree
of stability is 0.4. The controller yields J = 1.021. This
method does not take into account the required damping
ratio, and the second condition in (14) is violated for
p3 = −2.569.

Calculations show that the method of [12] is hardly
applicable to this problem, because an approximation of
Youla parameter with required precision leads to controllers
of very high order (more than 5).

Using the search procedure developed in the paper we
found the optimal modal controllers satisfying (14). The
first-order controller

C1(ζ) =
1.0039(1 − 0.95ζ)

1 + 0.2867ζ

ensures J = 0.289, and the poles are located at the points
{−4.812, 1.123, 1.105}.

For the optimal controller of order 2

C2(ζ) =
2.0823(1 − 0.9501ζ)(1 − 0.5568ζ)

(1 + 0.4664ζ)(1 − 0.2759ζ)

we have J = 0.218, and the closed-loop poles are
{−18.868,−4.819, 1.105, 1.105}.

The controller of order 3:

C3(ζ) =
1.0407(1 − 0.9659ζ)(1 − 1.878ζ + 0.8872ζ2)

(1 + 0.1254ζ)(1 − 1.875ζ + 0.8886ζ2)

places all roots of the characteristic polynomial in the
neighborhood of the point ζ = 1.105 and gives J = 0.137.
This cost value is almost 7.5 times less than that for CAM .

The transients for the systems with the above controllers
shown in Fig. 4 demonstrate effectiveness of the optimal
modal controllers that ensure much better performance as
compared with CAM .
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VIII. CONCLUSIONS

The paper investigates the problem of optimal modal
design of digital controllers, which minimize a specified
cost function and place all closed-loop poles in a prescribed
region D of the complex plane.

A two-level optimization procedure is developed that
uses, at the upper level, variation of desired characteristic
polynomial so that its roots remain inside D, and, at the
lower level, design of a suboptimal controller for the system
with a fixed characteristic polynomial. For a quadratic cost
function, a new effective polynomial-based method was
proposed for analytical lower-level optimization.

Compared with the simplest parametric optimization of
controller transfer function, the proposed method guarantees
that the closed-loop poles remain in D at all stages of the
algorithm.

It is important that the controller is optimized with respect
to the original (rather than modified!) criterion, and this fact
makes it possible to overcome many drawbacks of existing
methods. Moreover, the algorithm is suitable for an arbitrary
region D and can be used for the design of reduced-order
controllers. The idea developed here is also applicable to
continuous-time and discrete-time LTI systems.

APPENDIX

The proof of Theorem 3 presented below is based on the
following lemma.

Lemma 1: Let G(ζ) be a real rational function free of
poles on the unit circle:

G(ζ) =
ng

d+
g d−g

, (15)

where ng(ζ), d+
g (ζ), and d−g (ζ) are polynomials such that

d+
g is stable and d−g is strictly antistable. Then, the following

statements are equivalent:

i) For all i = 0, . . . , n

1

2πj

∮
Γ

G(ζ)

ζi

dζ

ζ
= 0 . (16)

ii) The polynomial Diophantine equation

d−g ζn+1θ + d+
g π = ng (17)

has a solution {θ, π} such that δ(π) < δ(d−
g ).

Proof: is omitted for space limitation.
Proof of Theorem 3: i) → ii). Let a polynomial ξ of

degree δξ solve (11). Then, by the projection theorem [21],
it is equivalent to

1

2πj

∮
Γ

G(ζ)

ζi

dζ

ζ
= 0 , i = 0, . . . , n , (18)

where

G(ζ) = W ∗ [Wξ − V ] =
ñw

d̃wζν

[
nw

dw

ξ −
nv

dv

]

=
ñw [nwdvξ − nvdw]

d̃wζνdwdv

.

Since W and V are stable, the polynomials dw and dv are
stable, while d̃w is strictly antistable. Therefore, G(ζ) can
be written in the form (15) with

ng(ζ) = ñw [nwdvξ − nvdw] ,

d−g (ζ) = d̃wζν , d+
g (ζ) = dwdv .

Since (18) holds, by Lemma 1 there exists a solution
{θ, π} of

d̃wζν+n+1θ + dwdvπ = ñw [nwdvξ − nvdw] ,

such that δ(π) < δ(d−
g ). This equation is easily transformed

into (12).
ii) → i) is proved by inverting the above argument.
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