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Abstract— The challenging problem in linear control theory
is to describe the total set of parameters (controller coefficients
or plant characteristics) which provide stability of a system.
For the case of one complex or two real parameters and SISO
system (with a characteristic polynomial depending linearly on
these parameters) the problem can be solved graphically by
the use of so called D-decomposition. Our goal is to extend the
technique and to link it with general M −∆ framework. On
this way we investigate the geometry of D-decomposition for
polynomials and estimate the number of root invariant regions.
Several examples verify that these estimates are tight. We also
extend D-decomposition for the matrix case. For instance, we
partition the real axis or the complex plane of the parameter k
into regions with invariant number of stable eigenvalues of the
matrix A + kB. Similar technique can be applied to double-
input double-output systems with two parameters.

Key words: Stability analysis, stability domain, linear systems,
D-decomposition, M−∆ framework.

I. INTRODUCTION

Consider a linear system depending on a vector parameter
k with a characteristic polynomial p(s, k). The boundary of
a stability domain (in the space k) is given by the equation

p(jω, k) = 0, −∞ < ω < ∞. (1)

If k ∈ R
2 (or k ∈ C) then we have two equations (real and

imaginary part of (1)) in two variables and (in general) can
define the parametric curve k(ω),−∞ < ω < ∞ defining the
boundary of the stability domain. Moreover, the curve k(ω)
divides the plane into root invariant regions (i.e. regions with
a fixed number of stable and unstable roots of p(s, k)). This
is the basic idea of D-decomposition approach. The idea can
be traced back to Vishnegradsky [22] who reduced a cubic
polynomial to the form p(s, k) = s3 + k1s

2 + k2s + 1 and
treated the coefficients k1, k2 as parameters. Then equation
(1) yields k1ω

2 = 1, ω(k2 − ω2) = 0. Eliminating ω we get
that D-decomposition is given by the hyperbola k1k2 = 1.
The stability domain is the set k1k2 > 1.

For the general case similar ideas were exploited by Frazer
and Duncan [4]. Moreover, Nyquist plot can be considered
as the realization of the same idea. But it was Yu. Neimark
[12], [13] who developed the rigorous algorithm (and coined
the name ”D-decomposition”).

In the Western literature the technique is described first
by Mitrovic [11]; he also proposed the mapping of contours
other that imaginary axis. This line of research was signifi-
cantly developed by Siljak [18], [19], [20]. In his works D-
decomposition (which he calls the parameter plane method)

was broadened to become a useful tool for design purposes.
D-decomposition is also described in the books [10], [20]
and [1] and is often exploited for low-order controller design
(e.g., [3], [2], [5], [21]).

In this paper we extend the approach to systems presented
at the state space form. More specifically, given a class K
of r × m matrices K , find all matrices K ∈ K such that
A + BKC is stable:

D = {K ∈ K : A + BKC is stable}. (2)

Here A,B, C are given real matrices of dimensions n ×
n, n×r, m×n respectively; a stability is understood either
in a continuous-time sense (all eigenvalues are in the open
LHP) or a discrete-time sense (all eigenvalues are in the open
unit disc). A class K may be different; below we analyze in
detail the simplest cases:

K = k ∈ R
n or K = kT , k ∈ R

n;
K = kI, k ∈ R or k ∈ C, m = r;
K ∈ R

2×2;

where all calculations can be performed explicitly in the
graphical form. The first case (m = 1 or r = 1) is equivalent
to the polynomial framework, two others are essentially
matrix ones.

Nevertheless we present general description of D-
decomposition. It is closely related to the standard M −∆
setting.

Problem (2) arises in design or robustness studies. For
instance, to find all stabilizing static output controllers for
the system ẋ = Ax+Bu, y = Cx one can construct the set
D (2) with K = R

r×m; here K plays a role of the feedback
gain. On the other hand, if A is a nominal stable matrix and
it is perturbed as A + BKC, where K is a constant r × m
matrix, then (2) provides all admissible perturbations which
preserve stability. Of course, if we know a boundary of a
stability domain ∂D, then we can find the distance to it:

ρ = min
K∈∂D

‖K‖. (3)

The quantity ρ−1 is closely related to µ (structured singular
value) [23]. If K is a set of all C

r×m (Rr×m) matrices,
then ρ is a complex (real) stability radius [16]. Of course,
the knowledge of the entire set D provides much more
information than the value of ρ. For instance, for design
purposes a designer can solve performance or specification
problems on the set of all stabilizing controllers D. See
examples in [9].
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The paper is organized as follows. In Section 2 we present
the general equation of D-decomposition and exhibit its links
with M−∆ approach to robustness. The rank-one case (i.e.
single-input or single-output systems) will be addressed in
Section 3. The main contribution of this Section is the study
of a D-decomposition geometry. In particular, we estimate
the number of all root invariant regions as well as the number
of simply connected stability regions and verify that the
estimates are not conservative. The related results can be
found in our papers [6]-[7]. The situation with K = kI ,
k being real or complex scalar, is analyzed in Section 4.
Section 5 is devoted to double-input double-output systems
with two parameters in a gain matrix.

II. EQUATION OF D-DECOMPOSITION

Let A ∈ R
n×n, B ∈ R

n×r, C ∈ R
m×n be fixed real

matrices while K is a class of real or complex r×m matrices.
The class will be specified later. The only property required
at the moment is: K is a connected set, i.e. K0 ∈ K, K1 ∈ K
imply the existence of a parametric family K(t) ∈ K, 0 ≤
t ≤ 1, K(0) = K0, K(1) = K1 with K(t) continuously
depending on t. We also assume that A has no imaginary
eigenvalues in the continuous-time case and no eigenvalues
on the unit circumference in the discrete-time case.

Define a transfer function M(s) = C(A − sI)−1B for
the continuous-time case and M(z) = C(A − zI)−1B for
the discrete-time case, where variables s and z are used
to distinguish continuous-time and discrete-time settings
elsewhere.

Definition. The set D(l) = {K ∈ K : A +
BKC has l stable eigenvalues}, l = 0, ..., n is called eigen-
value invariant domain (thus D(n) is the set of stabilizing
matrices). The equation for the boundaries of D(l), l =
0, ..., n, is called D-decomposition of the parameter space.
The simply connected components of D(l) are eigenvalue
invariant regions.

Theorem 1: The equation

det(I + M(jω)K) = 0, −∞ < ω < ∞ (4.a)

or

det(I + M(ejω)K) = 0, 0 ≤ ω < 2π (4.b)

defines the D-decomposition of the class K, i.e. if Q⊂K is
a connected set and det(I +M(jω)K) �= 0, −∞ < ω < ∞,
∀K ∈ Q (continuous time) or det(I + M(ejω)K) �= 0, 0 <
ω < 2π, ∀K ∈ Q (discrete time), then A + BKC has
the same number of stable and unstable eigenvalues for all
K ∈ Q.
Equations (4.a-4.b) define D-decomposition in the implicit
form. Our main goal below is to point out some particular
cases where the boundaries can be constructed explicitly.
That is in contrast with µ -analysis, where the problem

min
K∈K, det(I+M(jω)K)=0

‖K‖ is under consideration (i.e. one

is seeking for the largest ball contained in D).
Of course the complete description of D-decomposition is

possible for exceptional cases only. They will be addressed
in the following sections.

III. SINGLE-INPUT OR SINGLE-OUTPUT
SYSTEMS

Suppose we deal with a single-input system, i.e. r = 1.
Then K is a row vector: K = [k1, ..., km] while M is a
column vector M = [M1, ..., Mm]T ∈ C

m. For a, b ∈ C
m

one has det(I + abT ) = 1 +
m∑

i=1

aibi. Thus (4.a) is reduced

to
1 +

m∑
i=1

kiMi(jω) = 0 (5)

We conclude that in this case equation (4.a) is linear
in K. Similarly, for single-output systems m = 1, K =
[k1, ..., kr]T is a column vector and we obtain the same
equation. We will focus on the simplest cases when equation
(5) provides graphical tools to describe D-decomposition in
the space of parameters k.

A. ONE REAL PARAMETER

For a single-input single-output system with a real scalar
gain k (4.a) reads as

1 + kM(jω) = 0, M(s) =
b(s)
a(s)

, (6)

with a scalar transfer function M(s) = b(s)
a(s) , where

a(s), b(s) are polynomials of degree n. We avoid the
situations when a(s), b(s) have a common imaginary (or
zero) root. Thus (4.a) is equivalent to −1/k = M(jω) or to
the standard Nyquist diagram: the critical values of the gain k
(such that correspond to a change of the stable roots number
for the polynomial p(s, k) = a(s) + kb(s)) are defined by
intersections of the Nyquist plot M(jω) with the real axis.
Non-graphical tools to find critical gains are presented in
[15].

Theorem 2: The real axis can be divided into m ≤ n + 2
root invariant intervals (−∞, k1), (k1, k2), ..., (km,∞) with
−∞ < k1 < k2 < ... < km < km+1 < ∞ such that
for ki < k < ki+1 the polynomial p(s, k) has the invariant
number νi of stable roots. Moreover, the number of stability
intervals (i.e. intervals (ki, ki+1) with νi = n) is no more
than �n

2 	+1 (�α	 is the biggest integer smaller or equal α).
The examples below verify that the estimates of the

number of root invariant intervals and stability intervals
provided by Theorem 2 are not conservative. But we start
with an example, where the D-decomposition is lacking –
for any k the polynomial p(s, k) has the same number of
stable and unstable roots.

Example 1: Let for n = 4m, p(s, k) = sn +ks+1. Then
p(jω, k) = ωn + kjω + 1, and Re p(jω, k) �= 0 for all k.
Thus there are no critical values of ω, and the entire real axis
is the single root invariant region for the polynomial p(s, k)
(indeed it has 2m stable and 2m unstable roots for any k).
A minor variation of the example: p(s, k) = k(sn + 1) + s
provides real axis with an exception of the origin as the root
invariant region: for any k �= 0, p(s, k) has 2m stable and
2m unstable roots.

Example 2: This is the modification of a 2D example in
[14]. The polynomial p(z, k) = zn + kzn−1 + αzn−2 + β
with 1 < α < 1+ 2

(n−2)2 , β = 1−α− 1
n2 has

⌊
n
2

⌋
stability

intervals in k.
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Indeed, D-decomposition is given by k = −ejω−αe−jω−
βe−(n−1)jω = ψ(ω). The equation Im ψ(ω) = 0 reads (α−
1) sin ω + β sin(n − 1)ω = 0, it has n solutions on [0, π]
because |β| > |α − 1|. The values 0 = ω1 < ω2 < ... <
ωn ≤ π increase monotonically and critical values ki =
Re ψ(ωi) = (α + 1) cos ω + β cos(n − 1)ω also increase
monotonically. The derivatives of Im ψ(ω) change sign at
the points ωi. For large k the polynomial p(z, k) has n − 1
stable roots (close to zero) and one unstable root (z ≈ −k).
Thus ν0 = n − 1 and there are

⌊
n
2

⌋
stability intervals for k

varying from −∞ to +∞.

B. ONE COMPLEX PARAMETER

We are in the same setting as above (r = m = 1) but now
k ∈ C. Equation (6) gives the formula

k(ω) = −M(jω)−1 = −a(jω)
b(jω)

, (7)

where b(jω) has no roots with zero real part. The same
result follows from the direct analysis of the characteristic
polynomial p(s, k) = a(s) + kb(s). (8)

It has imaginary roots jω for k defined by (7). Curve (7)
for −∞ < ω < ∞ decomposes the complex plane into root
invariant regions. Their number is estimated below.

Theorem 3: The number N of root invariant regions for
polynomial (8) on the complex plane k is N ≤ (n−1)2 +2.

This result is valid for both continuous-time and discrete-
time polynomials. The proof of Theorem 3 exploits some
tools of algebraic geometry (e.g. Bezout theorem on the
number of real roots for two polynomials in two variables
and Euler formula).

Example 3: The polynomial p(z, k) = zn + kzn−1 + α,
where k ∈ C, has (n − 1)2 + 1 root invariant regions for
α > 1 and two root invariant regions for α < 1/(n − 1).

D-decomposition is given by the parametric curve k(ω) =
−ejω − αe−jω(n−1), 0 ≤ ω < 2π, which describes a
hypotrohoid. The quantity of stable roots in each region
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Fig. 1. Maximal number of root invariant regions in Example 3

is marked by digits, the same notation is used elsewhere.
For n = 6, α = 1.5 the decomposition is shown in Fig. 1. It
is interesting to note that there are no stability regions in this
case. Note that the minimal number of root invariant regions
is one.

Example 4: D-decomposition for the polynomial sn + k,
where n = 2m, k ∈ C, consists of one ray (−∞, 0] for m
even and [0,∞) for m odd and there are m stable roots for
any k except this ray.

Using the mapping s = z+1
z−1 , we can proceed from the

continuous-time case to the discrete one. Thus the discrete
analog of this example is (z + 1)n+ k(z − 1)n and it also
has one root invariant region.

C. TWO REAL PARAMETERS

This is the case of single-input double-output (r =
1, m = 2) or double-input single-output (r = 2, m =
1) systems. The parameters k1, k2 are assumed to be
real and the equation of D-decomposition (5) reads 1 +
k1M1(jω)+k2M2(jω) = 0. For transfer functions M1(s) =
b(s)
a(s) , M2(s) = c(s)

a(s) the characteristic polynomial is
p(s, k) = a(s) + k1b(s) + k2c(s) (9)

and the above equation is reduced to p(jω, k) = a(jω) +
k1b(jω) + k2c(jω). This is the classical setting of D-
decomposition [12]-[13]. In general, D-decomposition con-
sists of a parametric curve and singular lines. The curve
separates regions with ±2 difference in the number of stable
roots and singular lines separate regions with ±1 difference
in the number of stable roots.

Theorem 4: The number N of root invariant regions for
the polynomial (9) on the {k1, k2} plane has the following
upper bound: N ≤ 2n(n − 1) + 3.

The smallest number of root invariant regions is one, see
the example below.

Example 5: Let p(s, k) = sn + k1s
3 + k2s + 1, n = 4m.

Then equation p(jω, k) = 0 has no solutions for arbitrary
ω (because Re p(jω, k) �= 0) and R

2 plane is the only root
invariant region: for any k the polynomial p(s, k) has 2m
stable and 2m unstable roots.

Example 6: The following example demonstrates that the
number of root invariant regions N can achieve O(n2).
Let p(s, k) = a(s2) + s(k1b(s2) + k2c(s2) + α), where
a(t), b(t), c(t) are polynomials of degree m, m − 1,m − 1
correspondingly (thus p(s, k) has degree n = 2m), a(t)
has m negative real roots −t2i , i = 1, . . . , m. Then D-
decomposition equation is p(jω, k) = U(ω2) + jωV (ω2) =
0 and we get two equations U(ω2) = a(−ω2) = 0,
ωV (ω2) = ω(k1b(−ω2) + k2c(−ω2) + α) = 0. The first
equation does not depend on k, it has n real roots ωi = ±ti.
Hence D-decomposition is generated by singular straight
lines k1b(ω2

i ) + k2c(ω2
i ) + α = 0, their total number equals

m. The plane is divided into (m2 + m)/2 + 1 regions by m
straight lines of generic position, thus N = n2/8 + o(n2).

Consider the characteristic polynomial with the structure
p(s, kI , kP , kD) = a(s)(kI + kP s + kDs2) + b(s), which
correspond to a system with PID controller. For any fixed kP

D-decomposition consists of straight lines. These lines di-
vide (kI , kD)-plane into a finite number of convex polygons.
An approach for the calculation of root invariant regions in
the (kI , kP , kD)-space is to grid kP and use a tomographic
representation of the result. This idea is developed in [3],
[2], [5], [21].

What is the largest number of stability regions is an
open problem. The following example (originated in [14])
demonstrates that this number can achieve n − 1.
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Example 7: Suppose p(z, k) = zn + k1z
n−1 + αzn−2 +

k2, 1 < α < n
n−2 . Then there are n − 1 simply connected

stability regions in {k1, k2}-plane. The structure of the
regions for n = 5 α = 1.05 can be seen in Fig. 2; n − 3
regions are the loops of the D-decomposition curve while
two other regions are generated by the intersection of the
curve with two singular lines.
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Fig. 2. Root invariant regions in Example 7

IV. SCALAR GAIN

In this section we address systems with a scalar gain,
i.e. m = r and K = kI, k ∈ R or k ∈ C. By the
terminology of µ-analysis this is the class K with one scalar
block. Then the matrix A + BKC is equal to A + kBC
and the problem is reduced to the simplest one: given n×n
real matrices A and F , find D(l) = {k ∈ C (or k ∈ R) :
A + kF has l stable eigenvalues}.

Equation (4.a) or (4.b) now reads

det(I + kM(jω)) = 0, −∞ < ω < ∞ (10.a)

or

det(I + kM(ejω)) = 0, 0 ≤ ω < 2π. (10.b)

If we denote the eigenvalues of M(jω) or M(ejω) as
λi(ω), i = 1, ..., n, equations (10.a)-(10.b) split into 1 +
kλi(ω) = 0, i = 1, ..., n and a D-decomposition boundary
consists of n branches

ki(ω) = − 1
λi(ω)

, i = 1, ..., n. (11)

Equation of D-decomposition (11) can be obtained in a
different form with no use of the transfer function. If
A + kF (F = BC) has an imaginary eigenvalue then the
matrix A + kF − jωI is singular for some ω ∈ R, that is
(A+ kF − jωI)x = 0 for x ∈ C

n or (A− jωI)x = −kFx.
Thus we conclude that k is a generalized eigenvalue for the
matrix pair A − jωI and −F :

k(ω) = eig(A − jωI,−F ). (12)

Similarly for the discrete-time case
k(ω) = eig(A − ejωI,−F ). (13)

In contrast with (11), (12)–(13) can be used when A− jωI
(or A − ejωI) is singular, however the total number of the
generalized eigenvalues in this case can be less than n.

Note that eigenvalues are complex numbers, thus k(ω)
provided by (11) or (12) are complex as well. For the case
k ∈ C these equations generate the a boundary of eigenvalue
invariant regions D(l). There are some special cases, when

eig(M) or eig(A − jωI,−F ) can be calculated explicitly.
However in most situations we construct the boundary nu-
merically as follows.

Algorithm.

a. Choose a grid ω ∈ R (or ω ∈ [0, 2π] for discrete-time
case).

b. Calculate A − jωI (or A − ejωI) for all ω in the grid.
c. Calculate k(ω) = eig(A − jωI,−BC) (or k(ω) =

eig(A − ejωI,−BC)).
d. Plot k(ω) in the complex plane.

In general k(ω) consists of n branches, however the re-
sulting curve can split into a smaller number of disconnected
arcs. For instance, it may happen that k(ω) is the single
Jordan curve (see Example 8 and Fig. 3).

Example 8: A =

⎡
⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
...

. . .
...

1 1 . . . 1 0

⎤
⎥⎥⎥⎦, F = βI+αAT ,

where A, I are n×n matrices. D-decomposition for discrete-
time case, n = 4, α = 0.01, β = 1 is depicted in Fig. 3 and
consists of one Jordan curve.
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Fig. 3. D-decomposition in Example 8

It is not clear, what is the largest number N of eigenvalue
invariant regions. We conjecture that N = O(n3) (compare
with the estimates O(n2) from the previous section). Also
the largest number of simply connected stability regions is
not known yet. The smallest number of eigenvalue invariant
regions is one. Indeed, set α = −1, β = 0 in Example 8, then
the characteristic polynomial of A + kF can be calculated
explicitly: p(z, k) = (z+1)nk+(z−1)n, and after a standard
change of variables we are in the framework of Example 4.

For real k D-decomposition technique should be modified
as follows. First, we draw the curves k(ω) as in the complex
case. Second, we find the intersections ki of k(ω) with the
real axis. If we order these points such that k1 < k2 <
... < kN , then intervals (−∞, k1), (k1, k2), ...(kN ,∞) are
eigenvalue invariant regions. The number of such intervals
can be estimated.

Theorem 5: For real k the number of intervals preserving
the same number of stable eigenvalues of A+kBC does not
exceed n(n + 1) + 1.

For n = 2, 3 the estimate is not conservative, as illustrated
below.

Example 9: a. n = 2, A =
[

0 0.9
0.9 0

]
,
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B =
[

0 −1
1 1

]
, C = I . There are N = 7 eigenvalue

invariant intervals, 3 of them are stability intervals.

b. n = 3, A =

⎡
⎣ 0.95 1 0

0 0 0.6
0 0 −0.95

⎤
⎦,

B =

⎡
⎣ 0 0 −0.22

0 −0.3 0
0.4 0 0

⎤
⎦, C = I . Here (Fig. 4)

there are N = 13 eigenvalue invariant intervals and 5
stability intervals.
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Fig. 4. Stability intervals in Example 9.b

V. DOUBLE-INPUT DOUBLE-OUTPUT SYSTEMS

We consider the case r = m = 2 and K real. Then for

M =
[

m1 m2

m3 m4

]
, K =

[
k1 k3

k2 k4

]
, mi ∈ C, ki ∈ R,

i = 1, ..., 4 equation (4.a) has the form

0 = det(I + MK) = 1 +
4∑

i=1

kimi + detMdetK. (14)

This quadratic in K equation defines D-decomposition of
the 4D space K ∈ R

2×2. To take an opportunity of the
graphical representation we restrict ourselves by situations
with K depending on two parameters only.

A. CASE 1. K = diag(k1, k2)

For K =
[

k1 0
0 k2

]
equation (14) becomes 0 = 1 +

k1m1 + k2m4 + k1k2(m1m4 − m2m3). Substituting mi =
ui + jvi, i = 1, ..., 4 we get two quadratic equation in two
variables k1, k2:

1 + k1u1 + k2u4 + αk1k2 = 0,
k1v1 + k2v4 + βk1k2 = 0,

(15)

where α = u1u4 − v1v4 − u2u3 + v2v3, β = u1v4 +
v1u4 − u2v3 − v2u3. The quantities ui, vi, α, β depend
on ω. For ω = 0 the matrix M(jω) = C(A − jωI)−1B
is real and vi(0) = 0, i = 1, ..., 4 as well as β(0) = 0.
Hence the second equation vanishes and the first equation
1 + k1u1(0) + k2u4(0) + α(0)k1k2 = 0 defines the singular
curve (a hyperbola).

For ω �= 0 we solve system (15). If for some ω the solution
is complex we ignore it because it does not belong to D-
decomposition.

Example 10: The discrete-time system A +

B

[
k1 0
0 k2

]
C, A =

[ −0.8848 0.4457
−0.8733 −0.9326

]
,

B =
[

0.3914 0.2508
−0.5576 0.0266

]
, C =

[
0.1514 0.7854
−0.4255 −0.8148

]
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Fig. 5. D-decomposition in Example 10

has a typical D-decomposition structure. In Fig. 5 one can
see two singular hyperbolas (subtle lines) and two branches
of the nonsingular curve (solid lines).

5.2 CASE 2. K =
[ −k1 k2

k2 k1

]

The calculations are similar to the ones for Case 1 and
(14) becomes 1 − k1(u1 − u4) + k2(u2 − u3) − α(k2

1 +
k2
2) = 0, −k1(v1 − v4) + k2(v2 − v3) − β(k2

1 + k2
2) =

0. The D-decomposition curves are the parametric curve
k1(ω), k2(ω), ω �= 0 and the singular curve – the circum-
ference 1 + k1(u1 − u4) + k2(u2 − u3) − α(k2

1 + k2
2) = 0,

ω = 0.
Example 11: This continuous-time example is originated

in [16] (p. 889, Example 2). Here n = 4, m = r = 2, A =⎡
⎢⎢⎣

79 20 −30 −20
−41 −12 17 13
167 40 −60 −38
33.5 9 −14.5 −11

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

.219 .9346

.047 .3835
.6789 .5194
.6793 .831

⎤
⎥⎥⎦,

C =
[

.0346 .5297 .0077 .0668

.0535 .6711 .3834 .4175

]
.

The smallest norm perturbation destroying the stabil-

ity of A + BKC is K∗ =
[ −0.4996 0.1214

0.1214 0.4996

]
, that

is it has the form considered in the present subsection.
The D-decomposition of (k1, k2)-plane for matrices K =[ −k1 k2

k2 k1

]
is shown in Fig.6. There are two disconnected

−4 −3 −2 −1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

k
1

k 2

4

3

2

2

1

Fig. 6. D-decomposition in Example 11

components of the parametric curve (solid lines) and one
singular curve — the circumference (subtle line). The nearest
to the origin point on the boundary of the stability domain
is k∗

1 = 0.4996, k∗
2 = 0.1214; it corresponds to the

matrix K∗ above. Other directions preserve stability for
larger perturbations. For instance, A + BKC is stable for

6514



K = λ

[ −0.0211 −0.9998
−0.9998 0.0211

]
, 0 ≤ λ ≤ 4.8032, in

particular for K1 =
[ −0.1013 −4.802

−4.8021 0.1013

]
, ||K1|| = 4.8

(0.5141 being the real stability radius).

5.3 CASE 3. K =
[

k1 k2

−k2 k1

]

This is a real 2× 2 analog of a complex scalar (note that
the eigenvalues of such K are k1±jk2). For such K equation
(14) reads 0 = 1 + k1(m1 + m4) − k2(m2 − m3) + (k2

1 +
k2
2)(m1m4 − m2m3) and (15) is replaced with

1 + k1(u1 + u4) − k2(u2 − u3) + α(k2
1 + k2

2) = 0,
k1(v1 + v4) − k2(v2 − v3) + β(k2

1 + k2
2) = 0,

(16)

where ui(ω), vi(ω), α(ω), β(ω) are the same as above.
For ω = 0 we get vi(0) = 0, β(0) = 0 and the second
equation vanishes while the first equation 1 + k1(u1(0) +
u4(0)) − k2(u2(0) − u3(0)) + α(0)(k2

1 + k2
2) = 0 is the

equation of a circumference. For ω �= 0 we can solve (16)
and define k1(ω), k2(ω) (provided that k1, k2 are real and
(16) is nonsingular). Thus D-decomposition consists of the
components of this curve and singular circumference.

Example 12: This discrete-time example is again bor-
rowed from [16] (p. 889, Example 3): (n = 3, m = r = 2).
The optimal solution for (3) is supplied with K∗ =[

0.8483 0.5971
−0.5971 0.8483

]
; it has the form

[
k1 k2

−k2 k1

]
.

Thus we restrict ourselves with matrices K of this form
and construct D-decomposition for these matrices. It has the
same structure as in the previous subsection. It is generated
by two singular circumferences (subtle lines) and one para-
metric curve (solid line) and is shown in Fig. 7. The distance
from the origin to the boundary of the stability domain,
in accordance with [16], equals 1.0374. However, other
directions allow larger values of perturbations preserving

stability. For instance, if K = λ

[ −0.9680 −0.2508
0.2508 −0.9680

]
,

then A + BKC remains stable for 0 ≤ λ ≤ 19.6932, and
an admissible perturbation has the norm 19.6932, that is
18.9832 times larger than the real stability radius.
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Fig. 7. D-decomposition in Example 12

VI. CONCLUSIONS

We provided the simple and effective techniques to con-
struct the stability domain in the parameter space. This is
an extension of D-decomposition method for polynomials.
Simultaneously with the stability domain we construct all
root invariant regions, i.e. simply connected regions of the

domains with the invariant number of eigenvalues of the
system matrix. This technique can be helpful for low-
order controller design and for detailed robustness analysis.
The main limitation of the proposed approach is the low
dimensionality of the parameter space (one or two).
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