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Abstract— Adaptive all-pole predictors have recently found
renewed interest in the area of digital data transmission
due to their ability to perform blind magnitude equalization
of the communication channel. The pseudolinear regression
(PLR) algorithm constitutes an appealing candidate for the
predictor update, since it is computationally simpler than its
forerunners. We analyze the behavior of a first-order complex-
valued PLR-updated predictor to show that the stationary point
is unique even in general undermodelled settings, and that the
predictor pole will not escape the unit circle for sufficiently
slow adaptation. With no undermodelling, global convergence
is also established. Additional properties of PLR solutions in
undermodelled scenarios are also given, such as expressions for
their prediction gain.

I. INTRODUCTION

A recursive predictor is a pole-zero filter whose purpose
is to provide a model for the spectrum of its input signal.
Several algorithms have been suggested for the adaptation
of the predictor coefficients, the most prominent being the
Recursive Maximum Likelihood (RML) and the Pseudolinear
Regression (PLR) methods [5]. RML can be seen as a
stochastic gradient descent of the cost function given by
the average power of the adaptive filter output. To compute
the corresponding gradient term, an additional copy of the
recursive portion of the filter is required. On the other hand,
PLR directly constructs its update term from the internal
signals of the predictor, and therefore its computational
complexity is smaller than that of RML. This makes PLR
the preferred choice in applications where a predictor with a
large number of poles is required. However, due to the lack
of an optimization criterion underlying the PLR method, its
convergence and stability properties are not well understood.
This is especially true for undermodelled settings, in which
the predictor does not have enough coefficients to accurately
model the input spectrum.

In recent years there has been considerable interest in
recursive predictors in the area of digital communications,
due to the fact that these devices can be incorporated as
the front end of blind adaptive equalizers [3], [4], [7]. The
purpose of these predictors is to whiten the received signal
as a first step in the equalization process, which can be done
online with RML or PLR without the need of a training
signal. In most practical cases (i) the transmitted symbols
are statistically independent, (ii) the discrete-time equivalent
channel presents an impulse response of finite duration, and
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(iii) the additive noise can be assumed white. Therefore
the received signal can be modeled as a moving average
(MA) process, so that a purely recursive (that is, all-pole)
predictor with order no less than that of the discrete-time
equivalent channel will be able to provide perfect whitening
when properly tuned.

In view of this, a convergence analysis of all-pole pre-
dictors updated with the PLR algorithm would be extremely
useful. Although a few results are available in the literature,
they usually assume a ‘sufficient order’ setting, and thus do
not apply to the case in which the channel order is larger than
that of the all-pole predictor (no perfect whitening is then
possible). Under this ‘sufficient order’ condition, it is known
that the PLR algorithm applied to all-pole predictors presents
a unique stationary point (yielding perfect whitening) [6]
which in addition is locally convergent [9] (as a consequence
of the all-pole structure of the predictor, no ‘positive realness’
condition is required of the stationary point [9]). Analysis
of the general undermodelled case is difficult, although
conditions for the existence of stationary points have been
recently given [7].

We present an analysis of PLR for a single-pole predictor.
Uniqueness of the stationary point is proven, even in under-
modelled settings. Making use of the ordinary differential
equation (ODE) method [2] we show the self-stabilizing
property of the algorithm, as well as global stability in the
sufficient order case. Having in mind the application of these
predictors to digital communications, we focus on the general
case of complex-valued signals and filters.

II. ALGORITHM DESCRIPTION

Let {un} be a complex-valued, wide-sense stationary,
zero-mean stochastic process with autocorrelation and power
spectral density (psd) respectively given by

ru(k) �= E[unu∗
n−k], Su(z) �=

∞∑
k=−∞

ru(k)z−k. (1)

The output signal {en} (the prediction error) of an all-pole
predictor of order M is computed as

en = un − aH
n en, (2)

where the coefficient and regressor vectors are defined re-
spectively as

an
�= [ a1(n) · · · aM (n) ]T , (3)

en
�= [ en−1 · · · en−M ]T . (4)

The PLR algorithm updates the predictor coefficients as

an+1 = an + µene∗n, (5)
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with µ > 0 a small stepsize. Note that if a stationary point
is reached, then the conditions

re(k) �= E[e∗nen−k] = 0, 1 ≤ k ≤ M, (6)

must hold. Thus, PLR attempts to achieve whiteness of
the prediction error {en} by nulling out its autocorrelation
coefficients of lags 1 through M .

Let a� be a stationary point of (5). Multiplying both sides
of (2) by eH

n and taking expectations, we obtain

E[eneH
n ]︸ ︷︷ ︸

=0

= E[uneH
n ] − aH

� E[eneH
n ]︸ ︷︷ ︸

=re(0)I

(7)

Hence, the coefficient and signal vectors at a stationary point
must satisfy

a� =
1

re(0)
E[u∗

nen]. (8)

Variance of prediction error

Using (8), an expression for the prediction error variance
can be obtained. Multiplying (2) by e∗

n and taking expecta-
tions,

re(0) = E[une∗n] − aH
� E[ene∗n] = E[une∗n]

= E[|un|2] − E[uneH
n ]a� (9)

= ru(0) − (aH
� a�)re(0). (10)

In (9) and (10) we have used (2) and (8) respectively.
Therefore, one has

re(0) =
ru(0)

1 + aH
� a�

, (11)

which directly relates the prediction error variance to the
input variance and the predictor coefficients. Note from (11)
that, at any stationary point of PLR, re(0) ≤ ru(0) holds;
in other words, any recursive predictor obtained by the PLR
algorithm cannot be worse than the trivial predictor a = 0,
in terms of the prediction error variance achieved.

Improvement in spectral flatness

The spectral flatness measure [10] of a process {xn} with
psd Sx(z) is defined as the ratio of geometric to arithmetic
means of Sx(ejω):

γ2
x

�=
exp{ 1

2π

∫ π

−π
lnSx(ejω)dω}

1
2π

∫ π

−π
Sx(ejω)dω

, (12)

which satisfies 0 ≤ γ2
x ≤ 1 and equals 1 for a flat spectrum

(white {xn}).
Assume that Su(z) satisfies the Paley-Wiener condition so

that it admits a spectral factorization

Su(z) = KuB(z)B∗(1/z∗), (13)

where B(z) is a minimum phase, monic, rational transfer
function, and Ku > 0 is the geometric mean of Su(ejω).

Let the transfer function of the all-pole predictor be

1
A(z)

=
1

1 + a∗
1z

−1 + · · · + a∗
Mz−M

, (14)

and let Se(z) =
∑∞

k=0 re(k)z−k be the prediction error psd.
Note that

Se(z) = Ku
B(z)
A(z)

B∗(1/z∗)
A∗(1/z∗)

(15)

constitutes a spectral factorization of Se(z). Since
B(z)/A(z) is minimum phase, causal and monic, it
follows that the geometric mean of Se(ejω) equals Ku as
well. Therefore the spectral flatness measures at the input
and output of the predictor are respectively

γ2
u =

Ku

ru(0)
, γ2

e =
Ku

re(0)
. (16)

From (16) and (11) we conclude that if a� constitutes a
stationary point of PLR, the improvement in spectral flatness
is given by

γ2
e

γ2
u

= 1 + aH
� a� ≥ 1. (17)

Equality holds in (17) if and only if a� = 0, which can be
a stationary point of PLR if and only if the input process
satisfies ru(k) = 0 for 1 ≤ k ≤ M .

III. ON UNIQUENESS OF THE STATIONARY POINT

Existence of at least one stationary point of PLR in
general undermodelled settings, corresponding to a predictor
with stable poles, was established in [7]1 under a positivity
condition on Su(ejω). Whether this point is in general unique
remains an open issue. Here we show uniqueness in the
M = 1, complex-valued case2.

Theorem 1: Suppose that M = 1 and that Su(ejω) > 0
for all ω. Then the PLR update rule (5) has a single stationary
point inside the stability region C = {z : |z| < 1}.

Proof: Let {xn}, {yn} be the outputs of two first-order
recursive filters with coefficients a, b, driven by {un}:

xn = un − a∗xn−1, yn = un − b∗yn−1, (18)

with |a|, |b| < 1, and let rx(·), ry(·) be their respective
autocorrelation functions. Define also the process

wn = xn − b∗wn−1, (19)

with autocorrelation rw(·). In view of (18), {wn} also
satisfies

wn = yn − a∗wn−1. (20)

Using (19)-(20), rx(1) and ry(1) can be written as

rx(1) = (1 + |b|2)rw(1) + b∗rw(0) + brw(2), (21)

ry(1) = (1 + |a|2)rw(1) + a∗rw(0) + arw(2). (22)

Suppose that both predictors in (18) are stationary points of
(5). Then one has rx(1) = ry(1) = 0. Thus, from (22),

rw(1) = −a∗rw(0) + arw(2)
1 + |a|2 . (23)

1Although in [7] real-valued signals and filters were assumed, the
extension of the existence proof to the complex-valued case is immediate.

2The proof of uniqueness given in [7] for the real-valued, M = 1 case
does not carry over to the complex-valued case.
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Substituting (23) into (21) then yields

1 + |b|2
1 + |a|2 [a∗rw(0)+arw(2)]− [b∗rw(0)+brw(2)] = 0. (24)

Let z0
�= a(1 + |b|2) − b(1 + |a|2). Then, if z0 �= 0,

from (24) we could write rw(2)/rw(1) = −z∗0/z0, implying
that |rw(2)| = |rw(0)|. In that case, it is readily found
the determinant of the 3 × 3 autocorrelation matrix of
{wn} is nonpositive, which implies that the psd Sw(z) =∑

k rw(k)z−k cannot be positive on the whole unit circle.
This is a contradiction, since

Sw(ejω) =
Su(ejω)

|1 + a∗e−jω |2|1 + b∗e−jω|2 > 0 ∀ω,

because Su(ejω) > 0 and |a|, |b| < 1 by assumption. Hence
z0 = 0, i.e.,

a

1 + |a|2 =
b

1 + |b|2 , (25)

from which it follows that either b = a or b = 1/a∗. Since
it is assumed that |a|, |b| < 1, it must hold that b = a.

Observe that Theorem 1 holds regardless of whether the
stationary point of PLR achieves perfect whitening of the
prediction error.

IV. SELF-STABILIZATION

Jaidane and Macchi [1] analyzed the behavior of a PLR-
updated pole-zero predictor with narrowband inputs. In such
setting the poles of the optimal predictor are located on the
unit circle ∂C = {z : |z| = 1}. Adaptation noise will
inevitably push the poles outside ∂C, and then one could
expect the predictor coefficients to ‘blow up’. Surprisingly,
[1] revealed a ‘self-stabilization’ mechanism by which excur-
sions outside ∂C actually make the PLR algorithm push the
offending poles back into the stability region C. In another
related result, [5, Lemma 4.2] establishes the boundedness
of the prediction error in the case of a vanishing stepsize
µn = µ̄/n.

Here we consider a (broadband) stochastic input and a
single-pole predictor. Our goal is to show that whenever the
predictor coefficient a wanders sufficiently close to ∂C, PLR
(with constant stepsize) will tend to decrease its magnitude,
therefore effectively avoiding filter instability. To do so we
exploit the fact that, under slow adaptation (that is, with
asufficiently small but not necessarily vanishing stepsize µ),
the mean convergence properties of the adaptive algorithm
can be studied by examining those of the associated ODE
[2], which in this case is

ȧ(t) = r∗e(1)|a=a(t) = E[e∗nen−1]|a=a(t) , (26)

where the right-hand side is evaluated for a fixed parameter
a = a(t) in the recursive predictor that generates the
prediction error {en}. Then we have the following.

Theorem 2: Suppose that M = 1 and that the input
process psd is bounded away from zero, that is, there exists
some c1 > 0 such that

Su(ejω) ≥ c1 for all ω. (27)

Consider the ODE (26). Then there exists a real constant
c2 < 1 such that the magnitude |a(t)| of the predictor
coefficient is a decreasing function of time whenever c2 <
|a(t)| < 1 is satisfied.

Proof: For a fixed single-pole predictor, the prediction
error {en} can be written as

en = un − a∗en−1 =
∞∑

k=0

(−a∗)kun−k. (28)

Therefore the driving term of the ODE (26) satisfies

r∗e(1) = E[u∗
nen−1] − aE[|en−1|2]

=
∞∑

k=0

(−a∗)kr∗u(k + 1) − are(0). (29)

On the other hand, the prediction error variance satisfies

re(0) = E[ene∗n] = E[une∗n] − a∗E[en−1e
∗
n]

=
∞∑

k=0

(−a)kru(k) − a∗r∗e(1). (30)

Substituting (30) into (29), one obtains

r∗e(1) =
∞∑

k=0

(−a∗)kr∗u(k+1)+
∞∑

k=0

(−a)k+1ru(k)+|a|2r∗e(1).

With this, the ODE (26) can be written explicitly in terms
of a and the input correlation coefficients:

ȧ =
1

1 − |a|2
( ∞∑

k=0

(−a∗)kr∗u(k + 1) +
∞∑

k=0

(−a)k+1ru(k)

)
.

(31)
We can write the ODE more compactly if we introduce

Fu(z) =
ru(0)

2
+

∞∑
k=0

ru(k)z−k, (32)

such that the input psd satisfies Su(z) = Fu(z)+F ∗
u (1/z∗).

Note that on C, one has Su(ejω) = 2 Re Fu(ejω). It is readily
found that

∞∑
k=0

(−a)kru(k + 1) =
1
−a

[
Fu(−1/a) − ru(0)

2

]
,(33)

∞∑
k=0

(−a)k+1ru(k) = −a

[
Fu(−1/a) +

ru(0)
2

]
. (34)

Substituting (33)-(34) into (31) and rearranging terms,

ȧ =
1
a∗

[
ru(0)

2
− F ∗

u (−1/a) + |a|2Fu(−1/a)
1 − |a|2

]
. (35)

Consider now the function

W (t) �=
1
2
|a(t)|2, (36)

whose time derivative is Ẇ (t) = Re[a∗(t)ȧ(t)]. Hence, from
(35),

Ẇ =
ru(0)

2
− 1 + |a|2

1 − |a|2 ReFu(−1/a). (37)
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Since Su(z) satisfies (27), then Re Fu(ejω) ≥ c1
2 > 0 for

all ω, so that Fu(z) is strictly positive real (SPR). As a
consequence, it holds that Re Fu(z) ≥ c1 > 0 for all |z| ≥ 1
[8]. In particular, Re Fu(−1/a) ≥ c1 as long as |a| ≤ 1.

Let now

c2 =

√
ru(0) − c1

ru(0) + c1
> 1. (38)

Suppose now that at t = t0, a becomes close enough to ∂C
so that c2 < |a(t0)| < 1 holds. Then it follows that

ru(0) <
1 + |a(t0)|2
1 − |a(t0)|2 c1, (39)

and therefore the time derivative (37) satisfies

Ẇ (t0) ≤ ru(0)
2

− 1 + |a(t0)|2
1 − |a(t0)|2

c1

2
< 0. (40)

Hence W (t) is a decreasing function of time at t = t0, which
proves the theorem.

Hence PLR will push the predictor pole inside C whenever
it gets too close to the stability boundary. In fact, we note
from (30) and (33)-(34) that the prediction error variance is
given by

re(0) =
2 Re Fu(−1/a)

1 − |a|2 , (41)

so that using (41), the time derivative Ẇ (t) in (37) can be
rewritten as

Ẇ (t) =
1
2

[
ru(0) − (1 + |a|2)re(0)

]
. (42)

This shows that |a(t)| increases whenever the prediction error
variance satisfies

re(0) <
ru(0)

1 + |a|2 ,

and decreases when the opposite is true. Recall that, from
(11), at the stationary point a� equality must hold, that is,
re(0)|a=a� = ru(0)/(1 + |a�|2).

In the general case in which M > 1, we can follow the
same argument using W (t) = 1

2a
Ha, whose time derivative

becomes now

Ẇ (t) = Re{aH ȧ} = Re{aHE[ene∗n]}
= Re{E[(aHen)e∗n]}
= Re{E[un − en)e∗n]}
= Re{E[une∗n]} − re(0). (43)

With the transfer function of the predictor given by (14), the
term E[une∗n] can be expressed as

E[une∗n] =
1

2πj

∮
|z|=1

Su(z)
A∗(1/z∗)

dz

z
. (44)

Assume all roots of A(z) are inside C. Then, the only poles
of the integrand inside C are those of Su(z)/z. Hence, using
the residue theorem to evaluate (44), it is seen that E[une∗n]
will remain finite even if one or more roots of A(z) approach
∂C. In that situation, however, the prediction error variance

re(0) will grow unbounded (provided Su(ejω) > 0 for all
ω). Then from (43), we see that eventually Ẇ will become
negative so that the predictor coefficient vector norm will
decrease. Unfortunately, this does not necessarily imply that
the predictor poles will move away from ∂C, due to the non-
spherical shape of the stability region in the space of the filter
coefficients when M > 1.

V. GLOBAL STABILITY IN THE SUFFICIENT ORDER CASE

If the input {un} is a Moving Average process of first
order, or MA(1), then its psd reduces to

Su(z) = r∗u(1)z + ru(0) + ru(1)z−1 (45)

so that

Fu(z) = ru(0)
(

1
2

+ ρz−1

)
with ρ

�=
ru(1)
ru(0)

. (46)

Note that a necessary and sufficient condition for Fu(z) to be
SPR is that |ρ| < 1

2 ; and that a first-order recursive predictor
is capable of perfectly whitening the prediction error.

We recall that in sufficient order settings (that is, when
the input process is MA(M ) with M the all-pole predictor
order), it is known that the unique stationary point of PLR is
locally convergent [9]. In the particular case M = 1, global
stability can be established, as seen next.

Theorem 3: Suppose that M = 1 and that the input is
an MA(1) process satisfying Su(ejω) > 0 for all ω. Then
the unique stationary point in C of the ODE (26) associated
to the PLR update is globally convergent for all |a(0)| < 1.

Proof: Substituting the expression for Fu(−1/a) =
ru(0)(1

2 − ρa) in the ODE (35) yields, after some simplifi-
cation,

ȧ = ru(0)
ρ∗ − a + ρa2

1 − |a|2 . (47)

The numerator in (47) has two roots z1,2 which are conjugate
reciprocal, that is, z2 = 1/z∗1 . For |ρ| < 1

2 , one of these roots
is always in C, and is given by

a� =
1 − √

1 − 4|ρ|2
2|ρ|2 ρ∗. (48)

Therefore, we can rewrite (47) as

ȧ = ru(0)ρ
(a� − a)(1/a∗

� − a)
1 − |a|2

=
ru(0)ρ

a∗
�

(a� − a)(1 − a∗
�a)

1 − |a|2

=
ru(0)

1 + |a�|2
(a� − a)(1 − a∗

�a)
1 − |a|2 , (49)

where the last step in (49) follows from the fact that a�

satisfies a� = (1 + |a�|2)ρ∗, as can be checked using (48).
To show that the stationary point a� of the nonlinear ODE

(49) is globally stable, let us introduce the Lyapunov function

V (t) �=
1
2
|a(t) − a�|2, (50)

whose time derivative is given by

V̇ (t) = Re{[a(t) − a�]∗ȧ(t)}. (51)
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Now using (49), it is found that

(a − a�)∗ȧ = − ru(0)
1 + |a�|2

|a − a�|2
1 − |a|2 (1 − a∗

�a), (52)

and therefore

V̇ (t) = − ru(0)|a − a�|2
(1 + |a�|2)(1 − |a|2) Re(1 − a∗

�a)

= − ru(0)|a − a�|2
(1 + |a�|2)(1 − |a|2)

× [1 − |a||a�| cos(θ − θ�)] , (53)

where, in polar coordinates,

a = |a|ejθ, a� = |a�|ejθ� . (54)

It is seen from (53) that

|a(t)| < 1, t ≥ 0 ⇒ V̇ (t) ≤ 0, t ≥ 0, (55)

and that V̇ = 0 if and only if a = a�. The condition
|a| < 1 will hold provided that |a(0)| < 1, thanks to the
self-stabilizing property of the ODE given in Theorem 2.
Therefore, a(t) → a� as t → ∞ for all initializations
|a(0)| < 1.

VI. ORDER M PREDICTOR WITH MA(M + 1) INPUT

Possibly the simplest undermodelled setting one can think
of is that in which the input process is MA with degree
equal to the order of the all-pole predictor plus one. We now
examine the behavior of PLR stationary points under such
condition. Thus, if {un} is an MA(M + 1) process, then its
spectral factor B(z) in (13) is a minimum phase polynomial
with degree M + 1.

Let the M -th order all-pole predictor transfer function be
1/A(z) as given by (14), and let

V (z) =
z−MA∗(1/z∗)

A(z)
(56)

be the corresponding associated allpass transfer function. It
was shown in [7] that if 1/A(z) is a stable transfer function
corresponding to a stationary point of PLR, then[

Su(z)
A(z)

]
+

= z−1V (z)g(z) (57)

must hold for some stable and causal g(z), where [·]+
extracts the strictly causal part of its argument. Then, for
the MA(M + 1) input case, we have[

B(z)
A(z)

B∗(1/z∗)
]
+

= z−1V (z)g(z) (58)

for some causal, stable g(z). As shown in [8, prob. 8.4], the
left-hand side of (58) is a rational function of degree not
exceeding that of B(z)/A(z), and any pole of this function
is a pole of B(z)/A(z). Therefore we can write[

B(z)
A(z)

B∗(1/z∗)
]
+

= z−1 q(z)
A(z)

(59)

where q(z) is a polynomial of degree not exceeding M .
Equating (58) and (59),

z−1 q(z)
A(z)

= z−1V (z)g(z)

= z−1g(z)
z−MA∗(1/z∗)

A(z)
. (60)

Since all the roots of z−MA∗(1/z∗) lie outside the unit
circle, none of them can be canceled out by a pole of g(z)
(since g(z) is causal and stable). Therefore every root of
z−MA∗(1/z∗) must also be a root of q(z), and then g(z)
must reduce to a constant: g(z) = g0.

With Se(z) the prediction error psd, note that
Su(z)/A(z) = Se(z)A∗(1/z∗) and that Se(z) satisfies

Se(z) = zM+1P ∗(1/z∗) + re(0) + z−(M+1)P (z), (61)

where P (z) =
∑∞

k=0 re(k + M + 1)z−k, which is a causal
function. This is because at any PLR stationary point the
autocorrelation coefficients with lags 1 through M of {en}
are zero. Therefore

Su(z)
A(z)

= Se(z)A∗(1/z∗)

= zM+1P ∗(1/z∗)A∗(1/z∗) + re(0)A∗(1/z∗)
+ z−(M+1)P (z)A∗(1/z∗), (62)

so that the strictly causal part of (62) reduces to
z−(M+1)P (z)A∗(1/z∗). Hence, from (60),

z−(M+1)P (z)A∗(1/z∗) = z−1g0
z−MA∗(1/z∗)

A(z)
,

which shows that

g0 = re(M + 1), P (z) =
re(M + 1)

A(z)
.

Therefore the psd Se(z) must take the form

Se(z) =
r∗e(M + 1)zM+1

A∗(1/z∗)
+ re(0) +

re(M + 1)z−(M+1)

A(z)
,

(63)
and consequently, since B(z)B∗(1/z∗) = Su(z) =
Se(z)A(z)A∗(1/z∗), we can write

Su(z) = r∗e(M + 1)z[zMA(z)]
+ re(0)A(z)A∗(1/z∗)
+ re(M + 1)z−1[z−MA∗(1/z∗)]. (64)

Equating the coefficient of z−(M+1) in both sides of (64),
we see that

ru(M + 1) = re(M + 1), (65)

that is, the autocorrelation coefficient of lag M + 1 of {en}
matches that of {un}. This coefficient can be seen as a
measure of the degree of undermodeling: if ru(M + 1) = 0,
then the input is MA(M ) and the sufficient order setting is
recovered.

The relation (64) shows that A(z) is trying to approximate
in some sense B(z) in that re(0)A(z)A∗(1/z∗) tries to
match B(z)B∗(1/z∗), with the additional ‘tails’ weighted by
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re(M+1). This shows some degree of robustness of the PLR
solution, since for small |re(M + 1)|, re(0)A(z)A∗(1/z∗)
will be close to B(z)B∗(1/z∗), so that {en} will be close
to white; see (63).

Example: In the real-valued case with M = 1 and an
MA(2) input process, we can represent (see fig. 1) the
prediction gain (17) obtained by PLR as a function of the
parameters ρk

�= ru(k)/ru(0), k = 1, 2. The admissible
values of these parameters are those such that 1+2ρ1z

−1 +
2ρ2z

−2 is SPR. The maximum values of the prediction gain
(less than 3 dB for a first-order predictor) are achieved for
input processes with highpass or lowpass spectral densities,
such that one zero of the second-order spectral factor B(z)
is real and close to z = ±1, while the other one is real and
of the same sign.

Fig. 2 shows the loss in prediction gain of the first-order
PLR solution with respect to an optimal predictor (that is,
one that truly minimizes the prediction error variance (41)).
This loss is within 1 dB for all possible MA(2) inputs.
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Fig. 1. Prediction gain of a first-order PLR predictor with an MA(2) input
process.

VII. CONCLUSIONS

Due to its low computational cost, the PLR algorithm
is an appealing candidate for the adaptation of the all-pole
predictor. In the sufficient order case, uniqueness and local
convergence of the stationary point are guaranteed. The
first-order predictor enjoys a self-stabilizing property, and
the solution is unique in the general undermodelled case
and globally convergent in the sufficient order case. The
prediction loss with respect to a truly optimal predictor seems
to be small. Further work should explore the behavior of
PLR with higher-order all-pole predictors: for instance, Casas
et al. [3] have reported a case in which the convergence
domain of a third-order predictor in a sufficient-order setting
seems to be quite small. Understanding the properties of this
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Fig. 2. Loss in prediction gain of a first-order PLR predictor with an
MA(2) input process with respect to an optimal first-order predictor.

adaptive algorithm is crucial if it is to be adopted in a digital
communication receiver.

REFERENCES

[1] M. Jaidane and O. Macchi, ‘Quasi-periodic self-stabilization of adap-
tive ARMA predictors,’ Int. J. Adaptive Control and Signal Processing,
vol. 2, pp. 1-31, Jan. 1988.

[2] H. Fan, ‘Application of Benveniste’s convergence results in the study
of adaptive IIR filtering algorithms,’ IEEE Trans. Information Theory,
vol. 34, pp. 692-709, Jul. 1988.

[3] R. A. Casas, T. J. Endres, A. Touzni, C. R. Johnson, Jr., and J. R. Tre-
ichler, ‘Current approaches to blind decision feedback equalization,’
in Signal Processing Advances in Communications, Vol. 1: Trends
in Channel Estimation and Equalization, pp. 367-415, Prentice Hall,
2001.

[4] J. Labat, O. Macchi and C. Laot, ‘Adaptive decision feedback equaliza-
tion: can you skip the training period?,’ IEEE Trans. Communications,
vol. 46 no. 7, pp. 921-930, Jul. 1998.
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