

Abstract— Co-simulation between models that focus in
different aspects of the same system is a powerful tool during
the design of a system. In this paper, a co-simulation
application that closes the loop between the process model and
the control system, running in different software tools, is
presented. The target systems are Industrial Process
Measurement and Control Systems (IPMCS) that usually are
implemented using PLCs as the primary control equipment.
The configuration of the co-simulation is achieved by extracting
information from the software model of the system being
designed. Mainly, the concurrent control algorithms as well as
their temporal requirements (period and priority) and the
process model input/output variables are used for designing a
simple cyclic executive. This cyclic executive marks the time
instants in which data exchange for each control loop must be
performed. These synchronization times are used by the co-
simulation application which allows performing incremental
validations of the control system before its implementation. The
framework is based on CORBA middleware. This middleware
allows performing the co-simulation among heterogeneous and
distributed tools.

I. INTRODUCTION

HIS paper describes an approach for the design of a co-
simulation framework towards the design of distributed
Industrial-Process Measurement and Control Systems

(IPMCS).
Nowadays, the use of Programmable Logic Controllers

(PLCs) is widely spread in industry. Technological
advances in these controllers have allowed the improvement
of the manufacturing processes, reducing costs and
optimizing production. The use of standards has a great
force in the fast growth and development in the control and
the instrumentation fields of the industrial processes. In this
sense, the International Electrotechnical Commission’s
(IEC) 1131 [1] standard, developed with the input of
vendors, international end-users and academics, is the
international standard for programmable controllers. It
provides five programming languages and guidelines to
implement vendor independent applications. It also provides
facilities for the implementation of multithreaded, multi-
rated and distributed applications.

On the other hand, many of today's manufacturers are
faced with difficult challenges including reducing time to
market and achieving right first time designs. To achieve
this goal, computer models are replacing the physical

Manuscript received September 7, 2005. This work was financed by the
European Union’s Information and Science Technologies programme
(FLEXICON project IST-2001-37269) and by and by MCYT&FEDER
under project DPI 2003-2399.

G. U., M. M. and E. E. Authors are with the Department of Automation
and Systems Engineering, University of the Basque Country, Spain (e-mail:
unai.gangoiti@ehu.es, marga.marcos@ehu.es, elisabet.estevez@ehu.es).

prototypes. There are many benefits to this approach
including a faster and lower costs development with greater
number of evaluated design alternatives and more optimal
designs achieved. Plenty of proprietary tools exist to design,
program and configure their systems, but it is difficult to
reuse the work in other equipments. Open systems concept
tries to overcome these difficulties through the integration of
proprietary COTS tools so that they collaborate in the phases
of the distributed system development cycle.

In the current market it is possible to find plenty of well-
known software packages that can be used during certain
phases of the design cycle of this kind of applications:
modelling tools, analysis and simulation tools, code
generation tools, configuration tools, etc. These tools make it
possible designing, simulating and validating the design
before its implementation. However, the integration of these
tools, which contain different looks of the same system, is
still a major problem. In fact, there are neither
methodologies nor tools that support integrating all these
kind of components.

Within the IPMCS application field, it is also possible to
find powerful hardware components as well as multi-
disciplinary COTS tools that are used in the design of this
type of systems, but most of the commercial tools have little
support to be integrated with others. Some software vendors
are adopting proprietary tool integration approaches,
following the final developers demands. There are also a few
software packages for system analysis and simulation that
allow exchanging information among the tools that cover the
design phase. For instance, Extessy [2] integrates the
Matlab modelling and simulation environment [3] with
ARTiSAN RtS UML tool [4]. HyPneu [5] integrates
hydraulic and pneumatic models with Simulink applications;
CosiMate [6] integrates Mechatronics and Simulink.

Tool integration has also been investigated in the
automotive sector integrating ADAMS and Xmath tools [7].
Some attempts have also been done by universities; in [8] a
high level architecture to communicate different simulators
is presented. In all cases, a proprietary integration is
achieved for a few tools allowing them to collaborate within
a closed environment. These solutions only cover certain
phases of the design cycle. It is not possible to easily add
new tools to the environment offered by a software vendor.

In this work a co-simulation application between
commercial tools is presented as a pragmatic approach
towards the achievement of tool integration. CORBA
middleware is used to achieve co-simulation among
heterogeneous and distributed tools. The steps to be
followed for adding a new tool to the set have been
described in previous works of the authors [9], [10]. Each tool
acts as a CORBA server, offering a set of services to be

Using cyclic executives for achieving closed loop co-simulation
U. Gangoiti, M. Marcos, Member, IEEE, E. Estévez

T

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeIA18.6

0-7803-9568-9/05/$20.00 ©2005 IEEE 4785

performed on the simulation model. The synchronization
among tools is achieved through a configuration file, which
defines the time instants in which information exchange and
command execution must be achieved.

This paper presents a co-simulation application that closes
the loop between the control system (a model in a PLC
programming tool) and the process (a model in a modelling
and simulation tool). This application has been integrated
into a general framework that supports the design cycle of
IPMCS. In [11] a detailed description of the framework,
based on a formal model for IPMCS proposed by authors in
previous works [12], can be found. The formal model
captures all the aspects of the system being designed in
terms of functionality and implementation issues (hardware
and software). The software model of the application follows
the IEC 1131-3 standard and it defines the tasks containing
control algorithms as well as their temporal requirements.
The integration of the co-simulation application is achieved
extracting this information from the application model and
generating automatically the configuration file where the
synchronization time instants are defined. The co-simulation
application is used during the test phase of the application
development for achieving the validation of the control
system.

The layout of the paper is as follows: section 2 briefly
describes the formal modelling of IPMCS proposed in
previous works. In this section, and taking into account that
the co-simulation application extracts the information
concerned to the software architecture. In section 3, the
design of the closed loop co-simulation is described. Firstly,
the general scenario for the co-simulation through CORBA
middleware is presented. Secondly, the design of the closed
loop co-simulation application as a cyclic executive is
detailed. Finally, the automatic generation of the
co-simulation configuration is illustrated. Section 4
describes the general framework developed within the
European project FLEXICON IST-2001-37269 and it also
illustrates the co-simulation application through a case
study.

II. FORMAL MODELLING OF IPMCS APPLICATIONS

Normally, industrial applications present few variations in
their functional structure. In fact, in many cases, parts of
this structure are re-usable in other applications. Reusability
is one of the main requirements in the design and
development of this type of applications. In order to
facilitate the reusability of the design it is advisable to define
a hierarchical functionality as well as to base the description
of the application on modular components.

The whole application model is thus defined as the set of
components illustrated in Fig 1. Note that the
implementation issues are defined in the hardware
architecture (processing and I/O nodes) and the software
architecture is defined for each processing resource.

Fig. 1. Application scheme
A detailed description about the overall system modelling

can be found in [12]. The software model, proposed by the
IEC 1131 standard, defines the following elements
illustrated in Fig.2.:

Configuration: e.g. PLC
Resource: It provides support for program
execution (e.g. CPU or Virtual Machine)
Task: It allows the designer to control the execution
rates of different parts of the program.
POU (Program Organisation Unit): Program,
Function Block (FB) and Functions. They provide
software reuse.

Fig.2. IEC 1131 software model
In particular, the task elements within resources contain

the information related to control algorithms. They are
mainly characterized by their activation period and priority.
They are in charge of the timed execution of programs.
Programs that are not associated to any task, executed at
every cycle, are those in charge of performing the logical
and sequential control. The definition of the programs has
been enriched with temporal characteristics. These
characteristics include the worst, average and best execution
times (WCET, ACET, and BCET). This information,
extracted from the model, can also be used to ensure the
response time constraints are fulfilled using a temporal
analysis tool.

Fig.3. Hierarchy of the IEC 1131 elements

4786

Besides task and program information of each
configuration, it is also important to obtain the inputs and
outputs that have to be updated each synchronization instant
between simulations of tools. This information can be found
in the architecture elements shown in Fig 4. On one hand it
defines the relation configuration/PLC. On the other hand it
relates the variables of each resource contained in a
configuration that are mapped to input/output nodes. Thus,
these variables and their properties (in/out, type and name)
define the set of inputs and outputs that must be exchanged
between the control model and the process model.

Fig.4. Software to Hardware Architecture relationships

III. CLOSED LOOP CO-SIMULATION APPLICATION

A generic co-simulation framework based on CORBA
middleware was proposed in [9] and [10]. The main goal of
this co-simulation framework is to achieve the collaboration
of N tools, as it is shown in Fig.5. In the generic co-
simulation of N tools, there is a CORBA server per each tool
which offers data write and read as well as command
dispatching services using the tool API. The co-simulation
application, which acts as the referee during the co-
simulation, follows the instructions defined in the co-
simulation configuration file. In this configuration file, the
co-simulation logic is defined. The co-simulation application
sends instructions to the servers in the order and time
instants defined in the configuration file. Any new tool can
be easily added to the co-simulation framework.

In this sense, in order to add a new tool to the set, the
following steps have to be followed:

Firstly, a detailed study of the tool API as well as the
necessary services must be performed. With this information
the CORBA interfaces are defined. The second step is to
develop the CORBA servers. These servers are the
implementation of the services defined in the first step.
Finally, the co-simulation logic, including the actions on the
tool and time interval of tool simulation must be defined in
the co-simulation configuration file.

The generic co-simulation framework, illustrated in figure
5, has been integrated within the FLEXICON toolset for
IPMCS. In this paper, the integration of closed-loop
co-simulation between a control system and the process
model is described. The control is developed in a PLC
programming tool (ISaGRAF Enhanced), and the model of
the process in a modeling and simulation tool
(Simulink/Matlab). During the integration of the co-
simulation framework the co-simulation configuration file is
automatically generated. In order to generate this file, the
following information must be extracted from the system

model: period, priority and worst case execution times and
associated variables for the timed tasks, as well as the name,
type and direction of all the variables exchanged between the
control system and the process model.

Fig.5. Generic co-simulation scenario

Detailed information about the generic co-simulation
framework can be found in [9].

A. Services needed for closed-loop co-simulation
The control algorithms of this kind of systems are usually

implemented in PLC programming tools and the process is
usually modelled in simulation tools. The complete control
system is usually composed by a set of periodic control
loops that have to be executed at its sampling period and the
logic control part that has to be executed every PLC cycle.
Thus, the process has to be simulated as frequently as
possible refreshing the control inputs and outputs that are
related to the login control. However, the variables of the
control system associated to timed tasks (control algorithms)
must be updated only when its sampling period is met.

To perform this operation, the necessary services include:
- Starting the simulation tools and initializing variables.
- Reading and writing values of the types used in the

co-simulation. Taking into account the different data
types used by the modelling tool and the control tool
different CORBA services for variable write/read have
to be implemented. For instance, tables I and table II
illustrates the data types defined by Matlab/Simulink
environment and ISaGRAF Enhanced programming
tool respectively.

-
TABLE I

PROCESS DATA TYPES

type Size Range
boolean logical 1 bit true,false
integer int8 8 bits -128..127
word int32 32bits -232..232-1
real Float 32bits -1E8..1E8

TABLE II
CONTROL DATA TYPES

type Size Range

4787

boolean boolean ISA_TYPBOOL uchar
integer short

integer
ISA_TYPSINT char

word double
integer

ISA_TYPDINT int32

real real ISA_TYPREAL float

- Finally, a service that executes a simulation step in
both tools.

Fig. 6. shows the CORBA services for reading/writing the
different types of variables in Matlab and for executing any
command (evalString).

module Matlab {
interface MatlabServer{
short iRead (in string variable);
float rRead (in string variable);
double wRead (in string variable);
boolean bRead (in string variable);
void iWrite (in string variable, in short value);
void rWrite (in string variable, in float value);
void wWrite (in string variable, in double value);
void bWrite (in string variable, in boolean value);
void evalString (in string command);}}

Fig. 6. Matlab/Simulink services
Fig. 7. shows the CORBA services for reading/writing

the different variables in ISaGRAF Enhanced as well as to
execute the next cycle of a resource (nextCycle).

module ISaGRAF {
interface ISaGRAFServer{
short iRead (in short resource, in string variable);
float rRead (in short resource, in string variable);
double wRead (in short resource, in string variable);
boolean bRead (in short resource, in string variable);
void iWrite (in short resource, in string variable, in short

value);
void rWrite (in short resource, in string variable, in float

value);
void wWrite (in short resource, in string variable, in

double value);
void bWrite (in short resource, in string variable, in

boolean value);
void nextCycle (in short resource);}}

Fig. 7. ISaGRAF Enhanced services.
In [9] a detailed description of the services used in the

Simulink/Matlab and ISaGRAF Enhanced co-simulation can
be found.

Fig.8. Co-simulation scenario
The closed loop co-simulation scenario between the

process modelling tool and the control tool is shown in
Fig.8.

B. Design of the co-simulation application as a cyclic
executive
In order to achieve the co-simulation it is necessary to

synchronize the tools in simulation time and the logic
control has to be executed continuously. Specifically, control
algorithms are characterized by their period, the
synchronization times between tools correspond to the
instants in which the control loops have to be executed.

The co-simulation application needs to know the
successive instants in which any task that implement control
algorithms have to be executed. Note that the interval
between two of these instants define the next simulation step
for the process model. In order facilitate the design of the
simulation steps in both tools; it is proposed to apply cyclic
executive design techniques to obtain periodic simulation
steps, the so called secondary cycles of the cyclic executives.

The design also includes the tasks in each resource that
should be updated each secondary cycle. Specifically, the
logic control has to be executed continuously and the control
algorithms (i.e. tasks in resources) have to be executed at
their sampling periods)

In this way, a cyclic executive organizes the global
execution of the co-simulation. To design this cyclic
executive the following information has to be extracted from
the application model:

• The period, T, and priority, P, of all tasks. This
information is contained in the software architecture
elements as illustrated in Fig.3.

• The execution time of each task. This is automatically
computed as the sum of the execution times of all the
programs associated to each task (see Fig.3.

• The type and direction of the variables to be exchanged:
field signals are the input/output signal to/from the
control and process. They are obtained from the
hardware and software relationships, shown in Fig.4.
Note that this information is needed to associate the
input and output variables of each control algorithm.

From this information, a simple cyclic executive can be
automatically generated from the following algorithm [14]:

• First, it is checked that the processor utilization is
less or equal to one (necessary condition for a
schedulable cyclic executive):

1
1

n
i

i i

c
u

p=

= ≤

• Calculates the major cycle duration; ()m iT lcm T=
• Calculates all the possible secondary cycle

durations Ts, following the next rules:
o There must be a whole minor cycle

between the activation and the deadline of
every task (necessary condition):

: s ii T d∀ ≤
o Every task must execute within a minor

cycle: max()s iT c≥

4788

o Ts must divide the major cycle duration
Tm, every minor cycles must have the
same duration: : m sk T k T∃ = ⋅

o There must be a whole minor cycle
between the activation and the deadline of
every process (necessary and sufficient):

: 2 (,)s s i ii T gcm T T d∀ ⋅ − ≤
With this information the different values for secondary

cycles are tried starting from the biggest.
At this point, the secondary and major cycle durations

have been stated. The main structure of the cyclic executive
has been created with the temporal requirements of the given
tasks. The next step is to fill the empty frames with the
different tasks (i.e. with the control algorithms that have to
be updated).

• There are two options in order to define the
mapping order of the tasks into the secondary
cycles: “by priority” or “by worst execution time”

• Following the order defined in the last step, for
each task, the possible secondary cycles where it is
possible to place the activation of each task is
calculated.

• Assign the activation of each task to a secondary
cycle. There are two options in order to select the
secondary cycle: “to fill the first free secondary
cycle” or “to fill the minor cycle with the higher
execution time free”.

If it is not possible to schedule the cyclic executive with
these options the user can try other filling order or divide
tasks and try the scheduler again.

C. Automatic Generation of the Co-simulation
Configuration
The co-simulation application interprets a configuration

file in which the command execution and data interchange
order is defined.

The co-simulation configuration file consists of three main
parts. These parts are illustrated in Fig.9.

• Boot: In this section models loadings and tool
initialization is defined. Tool initialization usually
includes: setting the working path, opening models
and initializing variables to their default value.

• Loop: The commands introduced in this section are
sequentially and systematically repeated while the
co-simulation is running. In this section the
sequence of the different commands to be sent and
data to be exchanged is defined.

• Faults: In this section the commands that punctually
are going to be sent to the tools are defined. A
practical case of use is fault injection in order to
verify the behavior of the control system.

Each command defined in the file, contains the following
information (see Fig.9.):

• Id: command identifier. It is unique in the file.
• Object: object used by the command

• Method: name of the object method to be invoked.
• Description: optional field that contains a brief

description of the command.
• Order: this field defines the execution order of the

commands
Depending on the characteristics of the method to be

invoked, it can also contain:
• Argument: with its corresponding type and value.

This value can be a literal or the output of the
previous executed method

Fig.9. Generic co-simulation configuration file
The design of the configuration file as a cyclic executive in

pseudo code is illustrated in Fig.10..

Fig.10. Configuration file pseudo code

IV. THE FLEXICON TOOLSET FOR IPMCS
In this section the framework for IPMCS that includes the

co-simulation application proposed in this paper is
described. This framework has been developed within the
European project FLEXICON IST-2001-37269. The general
goal of the project is to develop methodologies that enable
Commercial Off-The-Shelf (COTS) tools integration for the
design and deployment of Distributed Control Systems
(DCS) with high degree of flexibility, dependability and re-
usability. This project specifically addresses the
development of the capability to produce open, high
performance, dependable, distributed fault tolerant systems
in reduced timescales and at lower cost.

Within the toolset, the different phases of the design cycle
are addressed using the appropriate tools. Fig. 11 illustrates

4789

the different tools involved during the application
development cycle. In particular, the toolset integrates a set
of COTS tools: ARTiSAN RtS UML tool as the modelling
tool, ISaGRAF Enhanced as the PLC programming tool and
Simulink as the simulation tool for modelling the process.
The co-simulation application that has been integrated
allows performing incremental validation of the control
system.

Fig. 11. The FLEXICON toolset for IPMCS

During the analysis phase, the process model is developed
using the Matlab/Simulink environment as the analysis and
simulation tool. On the other hand, the basic control
functions have to be selected from repositories or developed
within the PLC programming tool (ISaGRAF Enhanced).
This phase concludes with the high level design of the
control system as well as the identification of I/O and
networking needs.

The Design phase uses the modelling tool, ARTiSAN
RtS, for modelling the functional specification of the control
system as well as the hardware and software architectures
that implement it.

Coding and Testing phases consist of generating the
control system project in the PLC programming tool and
validating it through the co-simulation framework. In this
sense, the co-simulation application allows to close the loop
between the ISaGRAF Enhanced tool that models the
control system and the Matlab tool that models the process.
The flow of information is illustrated in Fig. 12.

The co-simulation framework gets the information from
the application model, related to the cyclic and timed
resources as well as the information to be exchanged
between the process model and the control system. This
information is needed in order to compute the time instants
in which the data exchange should be performed.

Fig. 12. Data flow between tools

V. CONCLUSION

In this paper a co-simulation application for closing the
loop between a PLC programming tool and a process model
simulation has been proposed. For the design of the co-
simulation logic, cyclic executive design techniques have
been applied. Thus, the goal is to obtain the major and minor
cycles at which the control loops have to be updated to run
the next simulation step of the process model. The use of
these techniques can also be used to perform temporal
analysis of the co-simulation behavior. This co-simulation
application has been integrated in a general framework for
designing IPCMS that covers the application life cycle by
integrating a set of COTS tools.

REFERENCES

[1] Lewis R.W. “Programming Industrial Control Systems using IEC
1131-3, IEE Control Engineering series 50. ISBN-0 85296 950 3”,
1997.

[2] Extessy AG. (2003) URL: www.extessy.com
[3] The MathWorks (2002), Using Matlab version 6.5
[4] Artisan (2002). Manual of ARTiSAN Real-Time Studio, Version 4.2,

ARTiSAN Software tools.
[5] BarDyne, Inc: Hydraulic and Fluid Power Experts.

http://www.bardyne.com
[6] TNI Software: CosiMate. www.tni-world.com
[7] George N. (1998). “Cosimulation of an Automotive Control System

using ADAMS and Xmath”. International ADAMS User Conference.
Utrecht, The Netherlands

[8] Adriano, B.A and Wagner, F.R. (2001). A Standardized Co-
simulation Backbone. University of Porto Alegre, Brasil

[9] Marcos M., Gangoiti U., Estévez E., Portillo J., Calvo I. “A
CORBA-based Co-simulation Framework for Integrating COTS
Tools”, submitted to: Sixth Portuguese Conference on Automatic
Control CONTROLO 2004, Faro, Portugal. 2004.

[10] Marcos M., Gangoiti U., Calvo S. Estévez E., Orive D., Barandiarán
J. “Design and Validation of Industrial Distributed Control Systems”,
The 43rd IEEE Conference on Decision and Control. Atlantis,
Paradise Island, Bahamas. 2004.

[11] Marcos M, Estévez E., D. Orive “A Tool Integration Framework for
Industrial Distributed Control Systems “. Joint 44th IEEE Conference
on Decision and Control and European Control Conference ECC
2005. Sevilla (Spain). Submitted for publication.

[12] Marcos M, Estévez E. “Formal modelling of Industrial Distributed
Control Systems“. 16th IFAC World Congress in Prague.2005.
Accepted for publication.

 [13] Foresign Systems, Inc. (2002) Combining Foresight and Matlab for
Complex System Design.URL: www.Foresight-Systems.com

 [14] Zamorano J., Alonso A., De la Puente J.A. “Building safety-critical
real-time systems with reusable cyclic executives” Control
Engineering Practice, v 5, n 7, July 1997, p 999-1005

4790

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

