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Abstract— In this paper, we present a generalized Fourier
series based algorithm for the identification of continuous-
time, linear-time invariant systems from power spectrum
measurements. The algorithm is strongly consistent and it is
used in the design of a linear shaping filter for a single-track
road power spectrum.

I. INTRODUCTION

Identification of linear systems from a measured power

spectrum is a problem arising in certain applications. An

example is the design of linear shaping filter for noise

processes; and a practical application is the modeling of

stochastic disturbances experienced by a vehicle moving

forward. Indeed, this problem inspired us to undertake the

current work. The goal here is to model the road spectrum

by a rational transfer function of reasonably low order and

to use this approximation for a design of a linear shaping

filter with a white noise input. Once such an approximation

is made, the vehicle control problem can be formulated in

standard form.

There are many identification algorithms available for

solving this problem. A parametric approach consists of

minimizing a quadratic loss function. Then, the optimized

parameter values are found by an iterative search. Although

quite successful in practice, there is no guarantee that the

iterations will terminate in a finite-time and the global

minumum will be attained. Discussion of parametric as

well as nonparametric methods that mostly use time-domain

data can be found in the books [13], [16], [18]. More

recently [22], [4], parametric, but non-iterative subspace-

based identification algorithm have been proposed. The al-

gorithm in [22] identifies discrete-time spectra and requires

the frequencies be uniformly spaced while the algorithm in

[4] does not require the discrete-frequencies be uniformly

spaced. A non-parametric approach would typically be

based on the Fourier series development of the power

spectrum [17] following a transformation of the estimation

problem from the continuous-time to the discrete-time.

The present paper deals with a frequency-domain spec-
tral factorization problem from noisy values of the power

spectrum of a continuous-time system at a given set of

frequencies. Spectral factorization is an important problem

in system theory. For example, it plays an important role

in linear-quadratic-optimal control [7]. In this paper, we

propose an algorithm based on the generalized Fourier
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series, and show that over a large class of continuous-

time spectra this algorithm is strongly consistent when the

corruptions are stochastic noise. This result is an extension

of the well-known consistency result for the finite-impulse

response models, which correspond to the Laguerre models

in the continuous-time, to model structures parameterized in

terms of the fixed pole rational basis functions. The latter

allow more flexibility in coding prior knowledge of the

spectrum.

Now, we briefly describe the contents of the paper. In

Section II, we formulate the spectral estimation problem

for a particular class of continuous-time power spectra.

Power spectra in this class are analytic and bounded in a

strip containing the imaginary axis and also bounded away

from zero on the imaginary axis. In addition, they satisfy

a smoothness condition at infinity. In Section III, we show

that this class of spectra is Dini-Lipschitz continuous. This

result enables us to develop in Section IV the generalized

Fourier series with respect to arbitrary uniformly bounded

rational orthonormal bases with prescribed poles which

converge uniformly on the imaginary axis with probability

one to the true spectrum. The choice for the class of

continuous-time spectra is not conservative. In fact, if the

smoothness assumption at infinity is dropped, then there is

no guarantee for the uniform convergence of the Fourier

series even in the case of trigonometric basis functions;

and the mapping that associates a spectral factor to given

spectral density may not be continuous, hence sensitive

to errors in spectra. In Section V, we use the proposed

algorithm in the design of a linear shaping filter for a single-

track road power spectrum [10].

In this paper, we consider single-input/single-output sys-

tems. The results extend to multi-input/multi-output systems

with no modifications.

A. Notation

The notation yk = O(xk) as k → ∞ will mean yk/xk

remains bounded and zk = o(xk) will mean zk/xk vanishes

as k → ∞. Let R and C denote respectively, the sets of

the real and the complex numbers. Let R̄ denote the set of

extended reals R∪{±∞}. For a scalar complex measurable

function S(z), we define its supremum norm by

‖S‖∞ ∆= sup
ω∈R

|S(jω))|.

Let H(α,M) denote the set of complex functions which

are analytic and bounded by M on the vertical strip Dα
∆=

{s ∈ C : |Re s| < α} and continuous on jR̄. Here, Rex
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and Imx are the real and the imaginary parts of x. Recall

that a continuous-time stable system has a transfer function

which is analytic and bounded on the open right half plane.

For each α,M > 0, we define a set of spectral densities by

S(α,M) ∆= {S ∈ H(α,M) : S(−s) = S(s),

∀s ∈ Dα; S(jω) > 0, ∀ω ∈ R̄}.
When f(θ) is a continuous function on [0, 2π], we write

ζf (δ) = sup
|x−y|≤δ

|f(x) − f(y)| (1)

for the modulus of continuity of f(θ). A continuous function

f(θ) is said Dini-Lipschitz continuous if

ζf (δ) ln(δ−1) → 0 (δ → 0). (2)

II. PROBLEM FORMULATION

Consider a scalar linear-time invariant continuous-time

stable system represented by the input-output relation

y(t) =
∫ t

0

g(t − τ)u(τ)dτ, t ≥ 0 (3)

where g(t) is the impulse response, u(t) and y(t) are,

respectively, the input and the output of the system. The

transfer function of the system (3) is defined as

G(s) ∆=
∫ ∞

0

g(t)e−stdt. (4)

Assuming that u(t) is unit intensity white noise process,

the power spectrum of y(t) denoted by S(s) is defined as

S(s) ∆= G(s)G(−s). (5)

The transfer function G(s) is called the spectral factor of

S(s).
We will assume that for each N , the noise η corrupting

the spectrum samples is a zero mean complex white noise

process with a covariance function satisfying

E

[
Re η

(N)
k

Im η
(N)
k

] [
Re η(N)

s Im η(N)
s

]
=

1
2

[
Rk 0
0 Rk

]
δks.

Here E(x) denotes the expected value of random variable x
and δks is the Kronecker delta. Furthermore, we assume that

the fourth-order moments are bounded by some K < ∞ as

E|η(N)
k |4 < K, for all k and N. (6)

The problem studied in this paper can be stated as

follows:

Given: N noisy samples S
(N)
k ∈ C of the power

spectrum S ∈ S(α,M) for some α,M > 0 evaluated at

N frequencies:

S
(N)
k = S(jω(N)

k ) + η
(N)
k , k = 1, 2, · · · , N. (7)

Find: A stable, minimum phase transfer function ĜN (s)
such that the estimated power spectrum

ŜN (s) = ĜN (s) ĜN (−s) (8)

is strongly consistent, i.e.,

lim
N→∞

‖ŜN − S‖∞ = 0, w. p. 1. (9)

We will propose an algorithm to estimate the spectral

factor of S by a method based on the generalized Fourier

series. The above identification problem can be thought as

the design of a linear shaping filter from corrupted power

spectrum measurements.

III. A CONVERGENCE RESULT

The continuous-time estimation problem formulated in

§ II can be transformed to a discrete-time one via to the

bilinear map:

s = ψ(z) = λ
z − 1
z + 1

(10)

where λ > 0 is chosen in the order of the bandwidth of the

spectral data. Let

Sd(θ) ∆= S(jλ tan(θ/2)). (11)

The following result will be instrumental in the convergence

analysis of our algorithm.

Lemma 1: Let S ∈ S(α,M) for some α,M > 0 and let

Sd be as in (11). Suppose

sup
|ω|≥µ

|S(jω) − S(∞)| lnµ → 0 (µ → ∞). (12)

Then, Sd is Dini-Lipschitz continuous.

Proof. Let α̃ be a positive number less than α. Since S
is analytic and bounded by M on Dα, from the Cauchy’s

integral formula its derivative has the following representa-

tion:

S′(jω) =
1

2πj

∮
|s−jω|=α̃

S(s)
(s − jω)2

ds (13)

Thus, letting α̃ → α in the following inequality obtained

from (13):

|S′(jω)| ≤ M/α̃,

we get |S′(jω)| ≤ M/α. Then, from an application of the

chain rule of differentiation:

dSd

dθ
= S′(jω)

dω

dθ
=

λS′(jω)
2 cos2(θ/2)

. (14)

Put θ
∆= π − ν (ν > 0). Since

sinx

x
≥ 2

π
, 0 ≤ x ≤ π

2
,

we get from (14)∣∣∣∣dSd

dθ

∣∣∣∣ ≤ π2λ

2ν2
|S′(jω)| ≤ π2λM

2αν2
. (15)

It follows for all δ < ν0 that

sup
|θ̃|≤δ, ν≥ν0

|Sd(θ + θ̃) − Sd(θ)| ≤ π2λM

2α(ν0 − δ)2
δ. (16)
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Next, by an application of the triangle inequality

sup
|θ̃|≤δ, ν<ν0

|Sd(θ + θ̃) − Sd(θ)| ≤

sup
|θ̃|≤δ, ν<ν0

|Sd(θ + θ̃) − Sd(π)| + sup
ν<ν0

|Sd(θ) − Sd(π)|

≤ 2 sup
|θ̃|≤δ+ν0

|Sd(π + θ̃) − Sd(π)|. (17)

Combining inequalities (16) and (17), we obtain

sup
|θ̃|≤δ

|Sd(θ + θ̃) − Sd(θ)| ≤

max

{
2 sup
|θ̃|≤δ+ν0

|Sd(π + θ̃) − Sd(π)|, π2λM

2α(ν0 − δ)2
δ

}
provided that δ < ν0. Thus, if δ < ν0

ζSd(δ) ln(1/δ) ≤ max
{

π2λM

2α(ν0 − δ)2
δ ln(1/δ),

2 ln(1/δ) sup
|θ̃|≤δ+ν0

|Sd(π + θ̃) − Sd(π)|
}

.

Set ν0 = δ1/3 in the above expression. Then for all δ < 1/2,

ζSd(δ) ln(1/δ) ≤ max
{

8π2λM

9α
δ1/3 ln(1/δ),

2 ln(1/δ) sup
|θ̃|≤2δ1/3

|Sd(π + θ̃) − Sd(π)|
}

.

Since

δ1/3 ln(1/δ) → 0 (δ → 0),

the left hand side of the above inequality converges to zero

if

ln(1/δ) sup
|θ̃|≤δ

|Sd(π + θ̃) − Sd(π)| → 0 (δ → 0) (18)

Since ω = λ tan(θ/2) and tanx = x+O(x3) for all small

x, (18) is equivalent to

sup
|w|≥µ

|S(jω) − S(∞)| lnµ → 0 (µ → ∞).

The spectral factorization problem is a well-known sub-

ject in statistics and engineering. Formally, a discrete-time

stochastic process has a factorable spectral density function

Sd(θ) if and only if it is regular:∫ 2π

0

lnSd(θ) dθ > −∞. (19)

Then, it is possible to write the spectral factors of

Sd(θ) in terms of the Fourier coefficients of the function

ln(Sd(θ))1/2 [17]. For a continuous-time stochastic process,

the regularity is guaranteed by the familiar Paley-Wiener

condition: ∫ ∞

0

lnS(jω)
1 + ω2

dω > −∞ (20)

which is obtained from (19) by an application of (10).

It is desired to have the mapping which associates a

spectral factor to a spectral density be continuous since any

irrational spectral factor will typically be approximated by

a rational one and calculation by a computer will always

introduce small errors. It is important to know that the cal-

culated spectral factor is still within a certain allowed error

region around the exact solution. However, this does not

hold if the spectral densities are bounded strictly positive

functions on the imaginary axis [5]. This does not hold

either for the class of spectral densities that are analytic

and bounded away from zero in some strip including the

imaginary axis [12]. Therefore, the choice S(α,M) for the

class of continuous-time spectra is not conservative.

The condition (12) combined with the analyticity of S
in a strip containing the imaginary axis implies the Dini-

Lipschitz continuity of Sd(θ) by Lemma 1. It is a well-

known fact that the Fouries series of a Dini-Lipschitz

continuous function converges uniformly to that function

[9]. Recently [6], [1], this fact was extended from the

trigonometric basis to arbitrary but uniformly bounded

orthonormal bases, which is the basis of our algorithm

developed in the next section.

IV. A GENERALIZED FOURIER SERIES BASED

ALGORITRHM

Let {zk} be a given sequence of complex numbers

satisfying z0 = 0 and |zk| < 1 for all k. We define a set of

rational functions by

B0(z) ∆= 1; Bk(z) ∆=
(1 − |zk|2)1/2

1 − zkz

k−1∏
i=0

z − zi

1 − ziz
(k ≥ 1).

(21)

The rational functions defined by (21) are complete in

the space of complex functions which are analytic inside

and square integrable on the unit circle if and only if∑∞
k=0(1 − |zk|) = ∞ [15]. Furthermore, the orthogonal

complement of this space in the space of square integrable

complex functions is spanned by the functions [2]

B−k(z) ∆=
(1 − |zk|2)1/2

z − zk

k−1∏
i=1

1 − ziz

z − zi
(k ≥ 1). (22)

The rational functions in (21) and (22) are orthonormal with

respect to the inner product:

〈f, g〉 ∆=
1
2π

∫ 2π

0

f(ejθ) g(ejθ) dθ.

The basis functions (21) generalize the well-known finite-

pulse response, the Laguerre and the Kautz, and the gen-

eralized orthonormal basis functions. In contrast to the

Laguerre and the Kautz bases, the basis defined by (21)

enjoys increased flexibility of pole location.
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In any application involving the modeling of a physical

system it is necessary that the underlying modeled impulse

response is real-valued. A requirement is that the set {zk}
used to define basis via (21) and (22) always contains

the complex conjugates. Then, the constraint of realness is

easily accommodated by taking suitable linear combinations

of the basis functions (21) and (22) [2]. Let B̃k denote the

new basis functions with real-valued impulse responses.

The Fourier series of Sd with respect to (21) and (22) is

defined by

FM (z) ∆=
M∑

k=−M

〈Sd, Bk〉Bk(z)

=
M∑

k=−M

〈Sd, B̃k〉 B̃k(z) (23)

where M is such that {z1, · · · , zM} contains the complex

conjugates. The proof of the second equality in (23) is given

in [2]. Since Sd(z) = Sd(z−1), the new basis functions

constructed in [2] satisy the following equalities for all k

〈Sd, B̃−k〉 = 〈Sd, B̃k〉 ∈ R; B̃k(z−1) = B̃−k(z).

which can be directly verified from (21) and (22) when

zk ∈ R for all k. Therefore, (23) can be written as

FM (z) = 〈Sd, 1〉 +
M∑

k=1

〈Sd, B̃k〉 [B̃k(z) + B̃k(z−1)].

Since Sd is Dini-Lipschitz continuous, FM converges

uniformly to Sd on the unit circle [1] provided that

supk |zk| < ∞. Moreover, in the above equation, we may

replace the Fourier coefficients of Sd with their least-

squares estimates denoted by c
(N)
k without changing con-

vergence properties if M does not grow too fast with N .

Thus, we propose the following as an estimator of Sd:

Ŝd
N (z) ∆= ĤN (z) + ĤN (z−1) (24)

where

ĤN (z) ∆=
c
(N)
0

2
+

M∑
k=1

c
(N)
k B̃k(z); (25)

c(N) ∆= (ΘT
NΘN )−1ΘT

NS(N); (26)

θ
(N)
k = 2 tan−1(ω(N)

k /λ), k ≤ N ; (27)

ΘN
∆= Re

⎡⎢⎢⎣
1 · · · 2B̃M (ejθ

(N)
1 )

...
. . .

...

1 · · · 2B̃M (ejθ
(N)
N )

⎤⎥⎥⎦ ; (28)

S(N) ∆=

⎡⎢⎢⎣
S

(N)
1
...

S
(N)
N

⎤⎥⎥⎦ . (29)

The consistency result is the following.

Lemma 2: Let S
(N)
k be as given by (7) where η

(N)
k has

bounded fourth order moments as in (6). Consider the

spectral estimator in (24). Let S be as in Lemma 1. Assume

that supk |zk| < ∞ and the frequencies in (27) satisfy

π(k − 1)/N ≤ θ
(N)
k < πk/N for all k = 1, 2, · · · , N .

Choose M such that M ζSd(1/N) → 0 as N → ∞ and

M = O(N1/4(lnN)−γ) for some γ > 1/4. Then,

lim
N→∞

‖Ŝd
N − Sd‖∞ = 0 w.p.1.

Proof. Since Sd is Dini-Lipschitz continuous, all the con-

ditions in Theorem 4.4 in [3] are satisfied. Hence, the

conclusion follows.

The condition on the frequencies can be fulfilled by

sampling for each N the frequencies ω
(N)
k and the cor-

responding spectral data S
(N)
k . Put µ = N in (12). Then,

sup|ω|≥N |S(jω) − S(∞)| = o(1/ ln N); and thus from

the condition M ζSd(1/N) → 0 (N → ∞) we obtain

M = O(lnN), which is a severe restriction on the number

of basis functions. We say that f is of Lipschitz class

denoted by Λβ (0 < β ≤ 1) if ζf (δ) = O(δβ). The only

consistency requirement for the class Λβ (β > 1/4) turns

out to be M = O(N1/4(lnN)−γ), γ > 1/4. Note that

any time-delayed finite-dimensional spectral factor has a

spectrum in the class Λ1.

We are left with the problem of extracting the spectral

factor Ĝd
N (z) from the spectral summand ĤN (z). To this

end, we first obtain a state-space realization of ĤN (z)
denoted by (ÂN , F̂N , ĈN , 1

2 ÊN ). A minimal balanced re-
alization of ĤN (z) could readily be computed by using the

recursive algorithm in [21] developed for the realization of

a product of successive rational inner functions. Then, we

solve the Riccati equation for P̂N :

P̂N = ÂN P̂N ÂT
N + (F̂N − ÂN P̂N ĈT

N )
(30)

·(ÊN − ĈN P̂N ĈT
N )−1(F̂N − ÂN P̂N ĈT

N )T

and compute B̂N and D̂ as follows:

B̂N
∆= (F̂N − ÂN P̂N ĈT

N )(ÊN − ĈN P̂N ĈT
N )−

1
2 (31)

D̂N
∆= (ÊN − ĈN P̂N ĈT

N )1/2. (32)

The quadruplet (ÂN , B̂N , ĈN , D̂N ) is a state-space realiza-

tion of Ĝd
N (z).

It is a well-known fact that P̂N is positive definite if

and only if Ŝd
N is positive. Since Sd is positive, from

Lemma 2 we have Ŝd
N positive w.p.1 for all sufficiently

large N . Due to undermodeling and noise, Ŝd
N may happen

to be non-positive. In this case, the spectral factor can

not be computed. But, this problem can be fixed by an

adjustment of the zeros of Ŝd
N . Several methods to modify

rational transfer matrices which are not positive real so that

they become positive real after the modification have been

suggested in the works [20], [22], [14], [11].

Let us summarize the final algorithm in the following.

Algorithm 3 (Generalized Fourier series based algorithm):
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1) Given the data ω
(N)
k , S

(N)
k compute ΘN in (28) with

the real-valued basis functions B̃k(z) evaluated at

θ
(N)
k defined by (27) with a scaling factor λ > 0.

2) Calculate the basis coefficient vector c(N) in (26).

3) Obtain a minimal balanced realization of ĤN and

truncate it if necessary.

4) If ĤN is strictly positive real, calculate B̂N and D̂N

from (30)–(32); otherwise, use one of the schemes in

[20], [22], [14], [11] to calculate B̂N and D̂N .

5) From the state-space parameters ÂN , B̂N , ĈN , D̂N of

Ĝd
N (z) and λ, compute the continuous-time spectral

factor ĜN (s) by the inverse bilinear transform.

The following is the main result of this paper.

Theorem 4: Let S
(N)
k be as given by (7) where η

(N)
k

satisfies (6). Consider Algorithm 3. Let S be as in Lemma 1

and suppose that zk, ω
(N)
k , and M satisfy the conditions in

Lemma 2. Then, Algorithm 3 is strongly consistent.

In Algorithm 3, c(N) can effectively be computed using

the discrete Fourier transform when Bk equals zk for

all k and θ
(N)
k are uniformly spaced. Moreover, if the

spectrum of the true system does not contain sharp peaks,

the uniformly spaced spectral data may be recovered from

the non-uniformly spaced data by interpolation; and the

resulting algorithm is still strongly consistent. The details

will be provided in the following section.

V. STOCHASTIC ROAD MODELING EXAMPLE

In this section, we illustrate Algorithm 3 in the modeling

of the road spectrum [10] by a low order rational spectrum.

In Figure 1, the spectral data are shown with the split

power law approximation [10] and the integrated white

noise approximation [8]. The split power approximation is

defined by

Ŝsp(j2πñ) ∆=
{

κ|ñ/ñ0|−2δ1 , 0 < |ñ| < ñ0

κ|ñ/ñ0|−2δ2 , ñ0 ≤ |n| < ∞
and the integrated white noise approximation by

Ŝiw(j2πñ) ∆= κ(ñ0/ñ)2. (33)

Both the approximations are made to match the spectral

data at ñ0 = 0.15708 cycles/m. Thus, κ = 0.76 × 10−5.

The values of δ1 and δ2 obtained by trial and error are

respectively, 1.6 and 1.1. It is clear that the fit by the

integrated white-noise modeling is rather poor; in particular

at the frequencies below ñ0.

The number of data is N = 63. We picked λ = 0.2
(rather arbitrarily) and piece-wise linearly interpolated S

(N)
k

to get 128-point uniformly spaced spectral data on [0, π]:

S̃l
∆= S

(63)
k +

S
(63)
k+1 − S

(63)
k

θ
(63)
k+1 − θ

(63)
k

(
πl

128
− θ

(63)
k

)
for l = 0, 1, · · · , 128; θ

(63)
k ≤ πl

128 ≤ θ
(63)
k+1 where we

let S
(63)
64 = 0 for θ

(63)
64 = π and extrapolate S

(63)
1 and

S
(63)
2 to get the spectral datum at θ

(63)
0 = 0 if θ

(63)
1 > 0.
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Fig. 1. The spectral data and its approximate modeling by the
split power law and the integrated white noise.

We expanded the 129-point spectral data S̃l to 256-point

uniformly spaced data according to:

S̃128+l = S̃128−l, l = 1, · · · , 127.

The use of piece-wise linear splines is not essential; for

example, cubic splines may also be used. We chose M =
126 and computed c(N) defined in (26) by taking 256-point

inverse discrete Fourier transform of S̃:

c
(63)
k =

1
256

257∑
l=0

S̃l e
j2πkl/256, k = 0, 1, · · · , 126.

(34)

In Step 3 of Algorithm 3, we truncated balanced realization

of ĤN to orders one and eight. The truncated transfer

functions were still strictly positive real. In step 4, we

obtained B̂N and D̂N simply from polynomial factoring.

In Figures 2 and 3, the estimation results are plotted for

the modified spectral factors χĜN denoted by G̃N with

orders n = 8 and n = 2, respectively. Here, χ(s) =
0.3/(s + 0.3) is a convergence factor rolling the frequency

response to zero at high frequencies. The modified spectral

factors are used in [19] with a quarter-car model to study

the response of the vehicle to profile imposed excitation

with randomly varying traverse velocity and variable vehicle

forward velocity.

Figure 2 demonstrates that the eighth order spectral

factor is capable of capturing the road dynamics up to

0.1 cycles/m. Beyond this frequency, the road dynamics

is negligible since the power spectral density drops below

10−4 m2/cycle/m. On the other hand, Fig 3 tells us that

the second order spectral factor is accurate up to only 0.01
cycles/m. Henceforth, it is not suitable for modeling road

profiles. Based on these limited observations, we suggest

using high-order shape filters in road modeling.

The modified spectral factors estimated for n = 8 and
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Fig. 2. The spectral data and its estimate |G̃63(j2πñ)|2 for n = 8.
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Fig. 3. The spectral data and its estimate |G̃63(j2πñ)|2 for n = 2.

n = 2 are given by

G̃63(s) = 0.0084
0.3

s + 0.3
(s + 0.0024)(s + 0.5587)
(s + 0.0023)(s + 0.0214)

× (s + 0.0042 ± j0.0254)(s + 0.0032 ± j0.0516)
(s + 0.0041 ± j0.0263)(s + 0.0028 ± j0.0514)

× (s + 0.0980 ± j0.0491)
(s + 0.0383 ± j0.0675)

(35)

and

G̃63(s) = 0.0116
0.3

s + 0.3
s + 1.0860
s + 0.0304

. (36)

The near by pole-zero cancellations in (35) suggests using

a third order modified spectral factor. We omit the results

for this case for the sake of brevity.

VI. CONCLUSIONS

In this paper, we presented a generalized Fourier series

based identification algorithm which fits rational models

to given noisy power spectrum measurements. A detailed

convergence analysis of the algorithm was carried out. A

successful application of the algorithm was the design of

a linear shaping filter with output spectrum matching the

measured road spectrum.

REFERENCES
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