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Abstract— Classical model–based fault detection schemes for
linear multivariable systems require the definition of suitable
residual functions. This paper shows the possibility of iden-
tifying residual generators even when the system model is
unknown, by following a black–box approach. The result is
obtained by using canonical input–output polynomial forms
which lead to characterise in a straightforward fashion the basis
of the subspace described by all possible residual generators.
The performance of the proposed identification method is tested
by means of Monte Carlo simulations.

I. INTRODUCTION

Most traditional fault detection methods suggested in

literature are based on filtering elaborations of the plant mea-

surements [1]–[6]. Faults are associated to residual signals

which must be insensitive as much as possible to model

uncertainties, disturbances and measurement noise.

The origins of these methods can be found in parity space

methodologies and observer–based approaches on one side

and parameter estimation techniques on the other side, with

many cross connections among the different approaches.

Many recent investigations continue to show the advantages

and disadvantages of the related residual filters. In any

case almost all these approaches require the knowledge of

the mathematical model of the process for which the fault

detection system is designed.

This work investigates the identification problem of resid-

ual generators for linear multivariable systems with additive

faults and disturbances.

By following the minimal polynomial approach suggested

in [7], [8] and by modelling the process under investigation in

terms of input–output canonical description, it is possible to

compute in a straightforward fashion an analytical expression

for the basis of the subspace described by all possible

residual generators. In this way upper and lower bounds

for the minimal order of such dynamic filters can also be

obtained.

These results show that the discrete–time residual genera-

tors with disturbance decoupling can be obtained without any

knowledge of the mathematical model of the process under

investigation, i.e. with a black–box identification approach.

The design of residual generators can thus be directly real-

ized from a finite number of input–output samples, measured

in absence of faults.
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The paper is organised as follows. The structural char-

acteristics of residual generators, with minimal order and

insensitive to the disturbances, for linear dynamical processes

described by input–output canonical models, are investigated

in Section II. The possibility of directly identifying such

residual generators is discussed in Section III. The results of

Monte Carlo simulations are reported in Section IV. Finally,

some concluding remarks are summarised in Section V.

II. RESIDUAL GENERATOR MODEL

Let us consider a linear, time–invariant, discrete–time

system described by the following input–output equation

P (z) y(t) = Q(z)u(t) (1)

where z−1 is the unitary delay operator and P (z), Q(z) are

polynomial matrices with dimension (m × m) and (m × �)

respectively, with P (z) nonsingular. The terms u(t) and

y(t) are, respectively, the �–dimensional and m–dimensional

input and output vectors of the considered multivariable

system.

Models of type (1) can be frequently found in practice by

applying well–known physical laws to describe the input–

output dynamical links of various systems and are a powerful

tool in all fields where the knowledge of the system state

does not play a direct role, such as residual generation, iden-

tification, decoupling, output controllability, etc. Algorithms

to tranform state–space models to equivalent input–output

polynomial representations and vice versa are reported in

[9].

Definition 1: For a generic input–output model{
P (z), Q(z)

}
, its canonical input–output form is

the equivalent representation
{
P̃ (z), Q̃(z)

}
(i.e.

P̃ (z) = M(z)P (z), Q̃(z) = M(z)Q(z) with M(z)
unimodular) whose polynomials satisfy the following

conditions:

deg p̃ii(z) > deg p̃ji(z) i �= j (2)

deg p̃ii(z) > deg p̃ij(z) j > i (3)

deg p̃ii(z) ≥ deg p̃ij(z) j < i (4)

deg p̃ii(z) ≥ deg q̃ij(z) ∀j. (5)

The polynomials p̃ii(z) are monic and, because of conditions

(3) and (4), the integers νi = deg p̃ii(z) (i = 1, . . . , m) equal

the corresponding row–degrees of P̃ (z).
A constructive proof of the existence and uniqueness of a

canonical form for a given pair {P (z), Q(z)} can be found

in [10]. In the same work, an efficient and simple algorithm
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for transforming a generic polynomial representation to the

equivalent canonical one is also described.

The canonical representation
{
P̃ (z), Q̃(z)

}
leads directly

to a correspondent canonical state–space realization

x(t + 1) = Ã x(t) + B̃ u(t) (6)

y(t) = C̃x(t) + D̃u(t), (7)

with order

n =
m∑

i=1

νi. (8)

The integers νi are the ordered set of Kronecker invariants

associated to the pair
{
Ã, C̃

}
of every observable realization

of
{
P (z), Q(z)

}
[9].

In order to design residual generators of minimal order,

model (1) must be firstly transformed into its canonical

representation
{
P̃ (z), Q̃(z)

}
, satisfying conditions (2)–(5);

this step can be omitted if the minimal order constraint is

relaxed. Then, matrix Q̃(z) can be decomposed according to

the following structure

P̃ (z) y(t) =
[

Q̃c(z) Q̃d(z) Q̃f (z)
]
⎡
⎣ c(t)

d(t)
f(t)

⎤
⎦ , (9)

where c(t) is the �c–dimensional known–input vector, d(t)
is the �d–dimensional disturbance vector, f(t) is the �f –

dimensional monitored fault vector and �c + �d + �f = �.

Remark 1: Equation (9) includes also the cases of additive

faults on the input and output sensors. In particular, when

only additive faults fc(t) on the input sensors of the system

are considered, the input vector measurements can be written

as

c∗(t) = c(t) + fc(t) (10)

and Eq. (9) becomes P̃ (z)y(t) = Q̃c(z)c∗(t)+ Q̃d(z)d(t)−
Q̃c(z)fc(t). Analogously, when only additive faults fo(t) on

the output sensors of the system are considered the output

vector measurements can be written as

y∗(t) = y(t) + fo(t) . (11)

In this case, it results that P̃ (z)y∗(t) = Q̃c(z)c(t) +
Q̃d(z)d(t) + P̃ (z)fo(t).

A general linear residual generator for the fault detection

process of system (9) is a filter of type

R(z) r(t) = Sy(z) y(t) + Sc(z) c(t) . (12)

System (12) processes the known input–output data and

generates the residual r(t), i.e. a signal which is “small”

(ideally zero) in the fault–free case and is “large” when a

fault is acting on the system. Without loss of generality, r(t)
can be assumed to be a scalar signal. In such condition R(z)
is a polynomial with degree greater than or equal to the

row–degree of Sc(z) and Sy(z), in order to guarantee the

physical realisability of the filter. Moreover, if R(z) has all

roots inside the unit circle filter (12) is asymptotically stable.

An important aspect of the design concerns the decoupling

of the disturbance d(t) in order to produce a correct diagnosis

in all operating conditions. Equation (9) can be rewritten in

the form

P̃ (z) y(t) − Q̃c(z) c(t) − Q̃f (z) f(t) = Q̃d(z) d(t) . (13)

Premultiplying all the terms in (13) by a row polynomial

vector L(z) belonging to the left null–space of Q̃d(z),
N�(Q̃d(z)), we obtain

L(z) P̃ (z) y(t) − L(z) Q̃c(z) c(t) − L(z) Q̃f (z) f(t) = 0 .
(14)

Starting from Eq. (14) with f(t) = 0 it is possible to obtain

a residual of type (12) by setting:

Sy(z) = L(z) P̃ (z)
Sc(z) = −L(z) Q̃c(z)
R(z) = znf ,

(15)

where nf is the maximal row–degree of the pair{
L(z) P̃ (z), L(z) Q̃c(z)

}
. The polynomial R(z) can be ar-

bitrarily selected, for simplicity we will consider the choice

R(z) = znf which guarantees the asymptotical stability of

the filter with nf poles equal to zero. In absence of faults

Equation (12) can be rewritten also in the form

r(t+nf ) = znf r(t) = L(z) P̃ (z) y(t)−L(z) Q̃c(z) c(t) = 0.
(16)

When a fault is acting on the system the residual generator

is governed by the relation

r(t + nf ) = −L(z) Q̃f (z) f(t) (17)

and r(t + nf ) assumes values that are different from zero

if L(z) does not belong to N�(Q̃f (z)). In these conditions

the design freedom in the choice of the matrix L(z) can be

used to optimize the sensitivity properties of r(t) to the fault

f(t), for example by maximizing the stady-state gain of the

transfer function L(z) Q̃f (z).
Another design choice regards the location of the roots of

the polynomial R(z) inside the unit circle, which influences

the frequency response of the residual generator and, conse-

quently, its robustness with respect to input–output measure-

ment noises, modelling errors, parameter uncertaintes, etc. In

other words the diagnostic features of a residual generator

strongly depend on an accurate selection of the terms L(z)
and R(z).

In order to determine all possible residual generators of

minimal order it is necessary to compute a minimal basis of

N�(Q̃d(z)). Under the assumption that matrix Q̃d(z) is of

full rank, i.e. rank Q̃d(z) = �d, N�(Q̃d(z)) has dimension

m − �d and a minimal basis of it can be computed as sug-

gested in [11]. It can be noted that in absence of disturbances

�d = 0 so that N�(Q̃d(z)) coincides with the whole vector

space. Consequently, a set of residual generators can be

expressed as

ri(t + νi) = zνi r(t) = p̃i(z) y(t) − q̃ci
(z) c(t), (18)

with i = 1, 2, . . . ,m, where p̃i(z) and q̃ci
(z) are the i–th

rows of matrices P̃ (z) and Q̃c(z) respectively, and νi is the

row–degree of p̃i(z), since q̃ci
(z) cannot show a greater row–

degree.
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In general, for 0 < �d < m matrix Q̃d(z) can be

partitioned in the following way

Q̃d(z) =
[

Q̃d1(z)
Q̃d2(z)

]
, (19)

where matrices Q̃d1(z) and Q̃d2(z) have dimension �d × �d

and (m − �d) × �d respectively. It can be assumed, without

loss of generality, that matrix Q̃d1(z) is non singular. In this

case it can be easily verified that a basis of N�(Q̃d(z)) (not

necessarily of minimal order) is given by the polynomial

matrix

B(z) =
[

Q̃d2(z) adj Q̃d1(z) −det Q̃d1(z) Im−�d

]
(20)

where adj Q̃d1(z) = 1 if �d = 1.

By partitioning P̃ (z) and Q̃c(z) as Q̃d(z) in (19)

P̃ (z) =
[

P̃1(z)
P̃2(z)

]
Q̃c(z) =

[
Q̃c1(z)
Q̃c2(z)

]
(21)

a basis for the residual generators (12) of system (9) is

obtained by replacing in relation (15) the row polynomial

vector L(z)with the polynomial matrix B(z), i.e.

Sy(z) = Q̃d2(z) adj Q̃d1(z) P̃1(z) − det Q̃d1(z) P̃2(z)
Sc(z) = −Q̃d2(z) adj Q̃d1(z) Q̃c1(z) + det Q̃d1(z) Q̃c2(z)
R(z) = diag

[
znf1 znf2 . . . z

nfm−�d

]
,

(22)

where nfi
(i = 1, . . . , m− �d) is the row–degree of the i–th

row of matrix Sy(z). It can be noted that relation (5) leads

to the following inequality

row deg
{
Syi

(z)
} ≥ row deg

{
Sci

(z)
}

, (23)

where Syi
(z) and Sci

(z) denote the i–th rows of matrices

Sy(z) and Sc(z) respectively, so that the residual generator

is physically realizable.

Previous considerations can be summarised in the follow-

ing theorem.

Theorem 1: The order n∗
f of a minimal order residual

generator for the system (9) is constrained in the following

range

νmin ≤ n∗
f ≤ min

{
(�d + 1) νmax, n

}
. (24)

where νmin and νmax are the least and the greatest Kronecker

invariant respectively and n is the order of the system.

The lower bound can be obtained in the no–disturbance

case (�d = 0) from relations (18) by selecting the rows of

P̃ (z) associated to the minimal Kronecker invariant. The

upper bound follows by considering the maximal degree of

the polynomials of the matrices in (22). A similar result,

obtained with a different approach, can be found in [7].

III. RESIDUAL GENERATOR IDENTIFICATION

In this section we will consider the problem of identifying

the residual generators with minimal order n∗
f . More pre-

cisely, among the m− ld difference equations in the relation

Sy(z) y(t)+Sc(z) c(t) = 0, we are interested in determining

those with minimal order n∗
f . Note that the number of such

equations is not a priori known. A minimal order residual

generator can be expressed by a difference equation of the

type

m∑
i=1

n∗
f∑

k=0

αik yi(t + k) +
�c∑

j=1

n∗
f∑

k=0

βjk cj(t + k) = 0, (25)

where, in general, some coefficients αik, βjk can be equal

to zero. In absence of noise in the data, the identification

problem can be stated as follows.

Problem 1: Given a finite sequence of variables yi(t)
(i = 1, . . . , m) and cj(t) (j = 1 . . . , �c) with t = 1, . . . , N
generated by a system of type (9) in absence of faults,

determine the order n∗
f and the parameters αik, βjk of the

equations of type (25).

Define now the following vectors and matrices

Yi(t) =
[
yi(t) . . . yi(t + L − 1)

]T

Cj(t) =
[
cj(t) . . . cj(t + L − 1)

]T

Xh(yi) =
[
Yi(1) . . . Yi(h + 1)

]
Xh(cj) =

[
Cj(1) . . . Cj(h + 1)

]
,

(26)

for i = 1, . . . , m, j = 1, . . . , �c. Define also the Hankel

matrix

Hh =
[

Xh(y1) . . . Xh(ym) Xh(c1) . . . Xh(c�c
)

]
,

(27)

and compute the sample covariance matrix

Σh =
1
L

HT
h Hh . (28)

If the integer L satisfies the condition

L ≥ (m + lc) (h + 1), (29)

the number of rows in matrix Hh is greater than or equal to

the number of columns and it is easy to verify that

Σh > 0 for h < n∗
f (30)

Σh ≥ 0 for h ≥ n∗
f . (31)

In particular

Σn∗
f

Θ = 0, (32)

where Θ is a matrix with dimension ((m+ lc) (n∗
f +1))× ν

and the dimension ν of ker(Σn∗
f
) equals the number of the

residual generators with minimal order n∗
f . The entries of Θ

are the coefficients of ν relations of type (25). For simplicity,

these vectors will be considered with unitary Euclidean norm.

On the basis of these considerations, Problem 1 can be

solved by means of the algorithm described below.

Algorithm 1.

1) Consider the sequence of symmetrical increasing di-

mension non negative definite matrices

Σ1,Σ2, . . . (33)

and test the linear independence of their columns as

long as a singular matrix Σh̄ is encountered. Then

n∗
f = h̄ and the number of residual generators of

minimal order is ν = (m + �c) (h̄ + 1) − rank Σh̄.
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2) Compute the basis Θ of the null space of Σn∗
f

.

¿From (26) and (29) it can be verified that the number of

the available samples N must satisfy the condition N ≥
(m + lc) (n∗

f + 1) + n∗
f .

Remark 2: In order to perform correctly the indepen-

dence test in step 1 of Algorithm 1, the Hankel matrix[
Xh(c1) . . . Xh(c�c

)
]

must be of full rank, i.e. the known

inputs c1, c2, . . . , c�c
must be persistently exciting of suffi-

cient orders (identifiability conditions). A check of this rank

should thus be included in step 1.

When the input–output sequences c(·) and y(·) are cor-

rupted by noise, the previous procedure is obviously useless

since the matrices in the sequence (33) are always non

singular. As a natural assumption we can state that

Assumption 1: All the variables are affected by additive

noise, i.e.

y∗
i = yi + ỹi i = 1, . . . , m (34)

c∗j = cj + c̃j j = 1, . . . , lc (35)

and only the noisy variables y∗
i and c∗j are available. The

processes ỹi (i = 1, . . . , m) and c̃j (j = 1, . . . , lc) are

zero–mean, ergodic and mutually uncorrelated white noise,

whose variances are known up to the same scalar factor λ
(unknown).

In the noisy case Problem 1 can be re–formulated as

follows.

Problem 2: Given a finite sequence of noisy variables

y∗
i (t) (i = 1, . . . , m) and c∗j (t) (j = 1 . . . , �c) with t =

1, . . . , N generated by a system of type (9) in absence of

faults and corrupted by noise according to Assumption 1,

determine the order n∗
f and the parameters αik, βjk of the

equations of type (25).

Under previous assumptions, it can be easily proved that

the following relation holds

Σ∗
h = Σh + Σ̃h, (36)

where the covariance matrices are defined as

Σh = lim
L→∞

1
L

HT
h Hh (37)

Σ̃h = lim
L→∞

1
L

H̃T
h H̃h (38)

Σ∗
h = lim

L→∞
1
L

H∗
h

T H∗
h, (39)

with obvious meaning of the terms. Since no correlation is

assumed between the noise samples at different time lags we

have

Σ̃h = (40)

diag
[
σ̃y1Ih+1 . . . σ̃ym

Ih+1 σ̃c1Ih+1 . . . σ̃c�c
Ih+1

] ≥ 0.

Note that Assumption 1 implies the following relation

Σ̃h = λ Σ̃#
h (41)

where Σ̃#
h is known and the scalar λ is unknown, so that

equations (30) and (31) become

Σh = Σ∗
h − λ Σ̃#

h > 0 h < n∗
f (42)

Σh = Σ∗
h − λ Σ̃#

h ≥ 0 h ≥ n∗
f . (43)

Relation (43) leads to

Σ∗−1
h Σ̃#

h − 1
λ

Ih ≤ 0 h ≥ n∗
f , (44)

i.e. 1/λ is the maximum eigenvalue of Σ∗−1
h Σ̃#

h .

The solution of Problem 2 in the asymptotic case N → ∞
can thus be obtained by performing the following algorithm.

Algorithm 2.
1) Consider the sequence of symmetrical increasing di-

mension positive definite matrices Σ∗
1, Σ∗

2, . . . and

construct the corresponding noise covariance matrices

Σ̃#
1 , Σ̃#

2 , . . .. Compute

µh = max eig Σ∗−1
h Σ̃#

h (45)

and the terms
1
µ1

,
1
µ2

, · · · (46)

as long as it results 1/µh̄+1 = 1/µh̄. Then n∗
f = h̄

and λ = 1/µh̄.

2) Compute the matrix

Σn∗
f

= Σ∗
n∗

f
− λ Σ̃#

n∗
f

(47)

and determine the basis Θ of the null space of Σn∗
f

.

This procedure can be used also in presence of a finite

number of data, i.e. when only sample covariance matrices

Σ∗
h =

1
L

H∗
h

T H∗
h (48)

are available. In this case an exact value n∗
f can not be

determined in step 1 because the sequence in (46) does

not exhibit a stabilization for a certain value h̄. However,

when the assumptions are only slightly violated, n∗
f can be

estimated as the first value of h for which it results∣∣∣∣ 1
µh+1

− 1
µh

∣∣∣∣
/∣∣∣∣ 1

µh

∣∣∣∣ <<

∣∣∣∣ 1
µh

− 1
µh−1

∣∣∣∣
/∣∣∣∣ 1

µh−1

∣∣∣∣ .

(49)

Remark 3: Note that when the system structural indexes

{ν1, . . . νm} are known, test (49) can be performed only for

the values νmin ≤ h ≤ min
{
(�d + 1) νmax, n

}
.

IV. NUMERICAL EXAMPLE

The method described in previous sections has been tested

on a simulated system with m = 2, �c = 1, �d = 1,

characterized by the following canonical representation

P̃ (z) =
[

z2 − 0.2 z + 0.4 0.2
−0.2 z − 0.1 z + 0.4

]
(50)

Q̃c(z) =
[

z2 − 0.1
0.5 z + 0.5

]
(51)

Q̃d(z) =
[

z2 − 2 z − 0.65
0.8 z + 1.1

]
. (52)

It can be easily verified that ν1 = 2, ν2 = 1 and the system

admits only one residual generator with order n∗
f = 3. The

known input c(t) is a piecewise constant binary sequence

while the disturbance d(t) is a pseudo random binary se-

quence. Both sequences have zero–mean and unit variance

7654



TABLE I

TRUE AND ESTIMATED PARAMETERS OF VECTOR Θ (SNR = 15 DB).

α10 α11 α12 α13

true −0.1072 0.0658 −0.1830 −0.2859

ident. −0.1062 ± 0.011 0.0637 ± 0.013 −0.1832 ± 0.012 −0.2850 ± 0.007

α20 α21 α22 α23

true −0.1372 −0.4603 −0.4575 0.2859

ident. −0.1409 ± 0.032 −0.4590 ± 0.016 −0.4549 ± 0.022 0.2857 ± 0.013

β10 β11 β12 β13

true 0.0615 0.3560 0.4575 0.0858

ident. 0.0636 ± 0.029 0.3596 ± 0.029 0.4520 ± 0.026 0.0875 ± 0.027

10 12 14 16 18 20 22 24 26 28 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

RMSE

S
N

R

Fig. 1. RMSE versus SNR.

and are corrupted by zero–mean mutually uncorrelated white

noise with variances⎡
⎣ σ̃y1

σ̃y2

σ̃c1

⎤
⎦ = λ

⎡
⎣ 0.9574

0.2663
0.1116

⎤
⎦ , (53)

where λ is unknown.

The effectiveness of the method has been tested by consid-

ering different conditions of signal-to-noise ratio (SNR). For

each SNR a 100 runs Monte Carlo simulation with N = 500
has been performed by assuming that the structural indexes

of system (50)–(52) are known. In this case test (49) has

been performed with 1 ≤ h ≤ 3 and it has led to the correct

estimation of the order n∗
f in every run.

Figure 1 shows the root–mean square error (RMSE) versus

the SNR, where the RMSE is defined as

RMSE =
1

‖Θ‖

√√√√ 1
100

100∑
i=1

‖Θ̂i − Θ‖2, (54)

and Θ̂i is the estimate, from the i–th trial, of the coefficient

vector Θ.

Table 1 refers to the case SNR=15 dB and reports the true

values of the coefficients of vector Θ, the means of their

estimates and the corresponding standard deviations.

V. CONCLUSIONS

The problem of identifying residual generators for fault

detection purposes in linear multivariable systems has been

addressed in this work.

The paper shows that the order and the parameters of these

filters can be determined by following a black–box approach,

starting from the knowledge of a finite number of input–

output samples describing the behaviour of the process in

absence of faults.

This result is obtained by using canonical input–output

polynomial representations, which lead to a simple charac-

terisation of the polynomial basis of the subspace described

by all residual generators.

The robustness of the suggested identification approach

has been verified by means of a Monte Carlo simulation.

The use of this procedure in real fault detection and isolation

problem is currently under investigation.
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