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Abstract— This work proposes a method for input–output
sensor fault detection and isolation of an industrial processes
using fuzzy process models. The presented technique concerns
the identification of a piecewise affine fuzzy system based on
Takagi–Sugeno models. The process under investigation may, in
fact, be represented as a composition of several Takagi-Sugeno
models selected according to the process operating conditions.
This work also addresses a method for the identification of
the local Takagi-Sugeno models from a sequence of noisy mea-
surements acquired from the real process. The fault detection
scheme adopted to generate residuals uses the Takagi-Sugeno
fuzzy model. The developed technique was applied to fault
diagnosis of input-output sensors of a sugar cane crushing mill.

I. INTRODUCTION

The application of fuzzy logic and control to model-based

fault diagnosis has gained increasing attention in both theory

and application in recent years. The former method exploits

fuzzy set theory to express cause-effect relations in expert

systems. On the other hand, the key idea of the model-

based approaches is the generation of signals, symptoms or

residuals, obtained by using observers, parameter estimation

or parity equations designed on the basis of mathematical

models of the monitored system [1].

The majority of industrial processes cannot be modelled

by using a single model for all operating conditions because

they are non–linear and non-stationary [2].

Since a mathematical model is a description of system

behaviour, accurate modelling for a complex non–linear

system is very difficult to achieve in practice.

Sometime, for some non–linear systems, it can be im-

possible to describe them by analytical equations. Instead

of exploiting complicated non–linear models obtained by

modelling techniques, it is also possible to describe the

plant by a collection of local affine models obtained by

identification procedures.

Symptoms are signals representing inconsistencies be-

tween the model and the actual system being monitored. Any

inconsistency will indicate a fault in the system. Residual

must, therefore, be different from zero when a fault occurs

and zero otherwise. However, the deviation between the

model and the plant is influenced not only by the presence

of the fault but also the modelling error.

Several techniques had been proposed for fault detection

and isolation (FDI) in dynamic systems [1]. In particular,

in this work, fuzzy modelling is combined with the model-
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based method to formulate a FDI technique exploiting the

Takagi-Sugeno fuzzy model [3] for residual generation.

The Takagi-Sugeno fuzzy model for non–linear dynamic

systems is described by a number of local affine models.

Each submodel approximates the system locally around an

operating point and a selection procedure determines which

particular submodel has to be used. Such a multiple model

structure is be called multiple model approach [4].

Under such a fuzzy scheme, a number of local affine

models are designed and the estimate of outputs is given

by a fuzzy fusion of local outputs. The diagnostic signal

(symptom or residual) is the difference between the estimated

and actual system output.

In this paper, the different operating points are self-

selected with a fuzzy clustering method [5]. On the basis of

knowledge of the operating-point regions, the identification

of the structure and the parameters of each local Takagi-

Sugeno model can be performed [6], [7], [8], [9].

The remainder of this paper is organised as follows.

Section II presents the structure of the multiple model,

while Section III briefly illustrates how to integrate a well-

established identification method [10], [11] for the estimation

of affine systems within a general procedure for non–linear

fuzzy identification [6], [7], [8], [9]. Section IV shows the

design of the diagnostic scheme for FDI of dynamic systems.

The application of such a FDI approach to a real power

plant is described in Section V. The example demonstrates

the effectiveness of the technique proposed. Finally, some

concluding remarks are included in Section VI.

II. FUZZY PROCESS MODELS

This section deals with the decomposition of input-output

data u(t) and y(t) (t = 1, . . . , N ), acquired from the actual

process, into fuzzy subsets which can be approximated by

local affine input-output models. Each submodel represents

the system behaviour around the operating point.

Fuzzy clustering algorithms can be used as a tool to obtain

partitioning of data into subsets, which can be approximated

by local affine models.

It is assumed that the dynamics of the system under

observation can be described by the following equation error

(EE) model [12]:

y(t) = f
(
x(t)

)
+ ε(t) (1)

where the vector y(t) is the system output, x(t) is a col-

lection of a finite number of inputs and outputs, the vector

xT (t) = [y(t−1), . . . , y(t−n), u(t−1), . . . , u(t−n)], f(·)
describes the input-output link, while ε(t) reflects the fact

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoIC20.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 2053



that y(t) is not an exact function of x(t). n is an integer

related to the system order.

The objective of fuzzy clustering algorithms is to partition

the set of observed inputs and outputs {x(t)}t of an unknown

system into a number M of fuzzy subsets. Each subset, Ri,

representing an operating condition of the dynamic system,

can be approximated by an affine dynamic model.

Partition of the data set into fuzzy subset can be achieved,

for instance, by using the well-established Gustafson-Kessel

(GK) clustering algorithm in [13].

Each cluster Ri (i = 1, · · · ,M ) obtained by fuzzy

partitioning is regarded as a local approximation of the

real process. The global EE model (1) can be conveniently

represented using local affine Takagi-Sugeno rules [3] yi(t):

x(t) ∈ Ri ⇒ yi(t) = θT
i x(t) (2)

where θi is the i-th parameter vector of the i-th submodel,

with i = 1, · · · ,M .

The Takagi-Sugeno fuzzy model is a simple way to

describe a non–linear dynamic system using local affine

models. By means of Takagi-Sugeno models, any dynamic

system can be linearised around a number of operating

points. The global system behaviour is described by a fuzzy

fusion of all linear model outputs:

ŷ(t) =
∑M

i=1 µi

(
x(t)

)
yi(t)∑M

i=1 µi

(
x(t)

) . (3)

in which ŷ(t) is the estimate of the output y(t) at the

instant t. The results of the clustering algorithms are M , the

membership functions µi(·) and the subsets of input-output

data {xi(t)}M
i=1 with xi(t) ∈ Ri [5].

These subsets can be processed according the Frisch

scheme identification procedure [11], in order to estimate

the thetai and n parameters for each submodel.

III. LINEAR DYNAMIC SYSTEM IDENTIFICATION

This section shows how to integrate the fuzzy clustering

technique, described in the previous section, and the Frisch

scheme identification method.

Without loss of generality, a simple single-input single-

output (SIS0) discrete system will be considered.

For the identification in each region Ri of the local affine

model, a finite sequence of the variables xi(t) ∈ Ri observed

with a constant sampling interval is considered.

If dynamic linear relations exist among these variables,

they can be described by models of the type:

yi(t) = θT
i xi(t) (4)

which represent a linear SISO discrete-time system whose

order is n and whose parameters are the entries of the vector

θi.

If the following vectors and matrices are defined:

uN (t + k) = [u(t + k) . . . u(t + k + N − 1)]T

yN (t + k) = [y(t + k) . . . y(t + k + N − 1)]T

Xk(u) =
[
uN (t) . . . uN (t + k − 2)

]
Xk(y) =

[
yN (t) . . . yN (t + k − 1)

]
Σ̂k(uu) = XT

k (u)Xk(u)
Σ̂k(yy) = XT

k (y)Xk(y)
Σ̂k(yu) = XT

k (y)Xk(u) = Σ̂T
k (uy)

(5)

where N is assumed large enough to solve the problem

considered. Let us partition now the matrix Σ̂k as follows:

Σ̂k =
[

Σ̂k(yy) Σ̂k(yu)
Σ̂k(uy) Σ̂k(uu)

]
. (6)

To solve the realization problem (noise-free data) it is

possible to consider the sequence of increasing–dimension

matrices:

Σ̂2, Σ̂3, . . . Σ̂k, . . . (7)

testing their singularity. As soon as a singular matrix Σ̂k is

found then n = k− 1 and the 2n− 1 parameters θi describe

the dependence relationship of the n-th vector of Σ̂n+1 on

the remaining ones.

It has been assumed that N is large enough to avoid

unwanted linear dependence relationships due to limitations

in the dimension of the involved vector spaces; this means

N ≥ 2n + 1.

In the noisy case, the following identification method was

proposed [11].

In this condition, the procedure described for the solution

of the realization problem (7) would obviously be useless

since matrices Σ̂k would always be non-singular because of

the presence of noise.

In the Frisch scheme it is normally assumed that:{
u(t) = u∗(t) + ũ(t)
y(t) = y∗(t) + ỹ(t) (8)

where u∗(t) and y∗(t) are the noise-free data and noise

terms ũ(t) and ỹ(t) are independent of every other term and

only u(t) and y(t) are known. Note that, in the realization

problem, u(t) = u∗(t) and y(t) = y∗(t) since ũ(t) = 0 and

ỹ(t) = 0.

Consequently the generic positive definite matrix Σk asso-

ciated with the input-output noise-corrupted sequences may

always be expressed as the sum of two terms Σk = Σ̂k +Σ̃k

where

Σ̃k = diag[σ̃yIk, σ̃uIk−1] ≥ 0 (9)

since no correlation has been assumed among the noise

samples at different times. This condition is verified for

additive white noise with variance σ̃y and σ̃u on the input-

output sequences.

In the stochastic case, the following problem should be

solved.

Given a sequence of increasing–dimension
(
(2k − 1) ×

(2k − 1)
)

symmetric positive definite covariance matrices:

Σ2, Σ3, . . . Σk, . . . (10)
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find, for each k, all diagonal non-negative definite matrices

Σ̃k = diag[σ̃yIk, σ̃uIk−1] such that

Σ̂k = Σk − diag[σ̃yIk, σ̃uIk−1] ≥ 0 . (11)

It can be noted that for each k the solution set of relation

(11) describes, in the first orthant of the (σ̃y, σ̃u) hyperplane,

a hypersurface whose concavity faces the origin [11].

Previous results hold for every value of k. Since deter-

mination of the system order requires the increasing values

of k to be tested, it is relevant to analyse the behaviour of

the associated curves when k varies. This corresponds to

a comparison of the admissible solution sets for different

model orders. It can be shown that the solution sets of

condition (11) for different values of k are non–crossing

curves [11].

It is also important to observe that, since we assume that

a system (4) has generated the noiseless data, for k > n
all the hypersurfaces of type (11) have necessarily at least

one common point, i.e. point (σ̃y∗ , σ̃u∗) corresponding to the

true variances σ̃y∗ and σ̃u∗ of the noise affecting the output

and the input of the system. The search for a solution for the

identification problem can thus start from the determination

in the noise space of this point. The following considerations

can now be stated.

With reference to the diagonal non-negative definite ma-

trices Σ̃k = diag[σ̃y∗Ik, σ̃u∗Ik−1], the following properties

hold:

1) If k ≤ n the matrices Σ̂k are positive definite.

2) If k > n the dimension of the null space of Σ̂k and,

consequently, the multiplicity of its least eigenvalue, is

equal to (k − n).
3) For k = (n+1) matrix Σ̂k is characterised by a linear

dependence relation among its 2k − 1 vectors and the

coefficients which link the k-th vector of Σ̂k to the

remaining ones are the parameters in θi of the system

(4) which has generated the noiseless sequences.

4) For k > (n+1) all linear dependence relations among

the vectors of the matrix Σ̂k are characterised by the

same 2n − 1 coefficients in θi.

If m models of the type (4) are used to describe the

mathematical behaviour of a multivariable dynamic system

with r inputs and m outputs, the previous identification

procedure must be repeated m times. At every step the

identification procedure must lead to the same values for

the input noise variances (σ̃y∗ , σ̃u∗
1
, . . . , σ̃u∗

r
)

It is worthy to note how this approach cannot be applied

immediately to the identification of real processes, since

the hypotheses on the linearity, finite dimensionality and

time independence of the system and on the additivity and

whiteness of the noise are not usually verified, so that the

hyper-surfaces (11) have no common point for k > n. The

definition of a suitable criterion of model selection in such

cases was suggested in [14].

IV. MULTI MODEL–BASED FAULT DETECTION

The problem treated in this section regards the detection

and isolation of the input-output sensors faults of a process

on the basis of the knowledge of the measured noisy se-

quences u(t) and y(t).
In the following it is assumed that the monitored system,

depicted in Figure (1), can be described by a model of

the type (1). y(t) ∈ �m is the system output vector and

u(t) ∈ �r the control input vector. The term ε(t) takes

into account the modelling error, which is due to process

noises, parameter variations, etc. According to Eqs. (8), in

u(t)

y(t)

Plant

Output sensors

+
+

u*(t)

+

+

f (t)
u

f (t)
y

Input sensors

y*(t)

Fig. 1. The structure of the monitored system.

real applications variables u∗(t) and y∗(t) are measured by

means of sensors whose outputs are affected by noise.

Neglecting sensor dynamics, faults on the measured input

and output signals u(t) and y(t) are modelled as:{
u(t) = u∗(t) + fu(t)
y(t) = y∗(t) + fy(t) (12)

in which, the vectors fu(t) ∈ �r and fy(t) ∈ �m is

composed of additive signals which assume values different

from zero only in the presence of faults.

Usually these signals are described by step and ramp func-

tions representing, respectively, abrupt and incipient faults

(bias or drift).

There are different approaches to generate the diagnostic

signals, residuals or symptoms, from which it will be possible

to diagnose faults associated to sensors. In this work, a

model-based approach is used to estimate the outputs of the

system from the input-output measurements.

As depicted in Figure (2), residuals can be generated by

the comparison of measured and estimated outputs

r(t) = ŷ(t) − y(t). (13)

The symptom evaluation refers to a logic device which

processes the redundant signals generated by the first block

in order to estimate when a fault occurs and to univocally

identify the unreliable sensor. Faults can be detected by using

a simple thresholding logic:

|r(t)|
{ ≤ Threshold Fault-free conditions,

> Threshold Faulty conditions.
(14)

V. SUGAR CANE CRUSHING PROCESS

The proposed methodology was applied to the identifica-

tion and fault diagnosis of a sugar cane crushing mill.

The plant is shown in Figure (3) where the inputs (turbine

speed and chute flap) and the outputs (turbine torque and
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u(t)

Plant

Model

y(t)

+

+

+

_

r(t)

�

Output sensors

Residuals

y(t)^

Input sensors

f (t)y

f (t)u

+
+

u*(t) y*(t)

Fig. 2. The residual generation scheme.

Height

Flap
PID

PI

Torque

Speed

Fig. 3. The structure of the sugar cane crushing process.

chute height) are highlighted. The available data from the

control inputs (r = 2) were 1400 samples from normal

operating records of u1(t) (turbine speed) and u2(t) (chute

flap). The data from the output sensors (m = 2) were the

corresponding values of y1(t) (turbine torque) and y2(t)
(chute height). The sampling time was of 0.1 s.

Because of the underlying physical mechanisms and be-

cause of the modes of the control signals, the process has

non–linear steady state as well as dynamic characteristics.

The GK clustering algorithm was used with M = 3
clusters (operating conditions) for each output and n = 3
the number of shifts of inputs and outputs.

After clustering, the system parameters θi, with i =
1, · · · ,M for each output, were estimated using the Frisch

scheme identification method. The model was then validated

on a separate data set.

The i-th output y(t) of the plant (i = 1, · · · ,m and m = 2)

can be characterised as a TS fuzzy multiple–input single–

output (MISO) model (3) with r = 2 inputs.

The mean square errors of the output estimation errors

r(t), under no-fault conditions, are 0.2549 for the first output

and 0.0125 for the second one. The fuzzy multiple models

approximate the real process very accurately.

Using these models, a model-based approach for fault

diagnosis can be exploited and applied to the actual process.

Single faults in the sensors were generated by adding

variations (step functions of different amplitudes) in the input

and output sensor signals. It was decided to consider fault

occurrences during a transient since, in this case, the residual

error due to model approximation is maximum and therefore

it represents the most critical case in fault detection [6], [7],

[8], [9].

Single faults occurring on the input or on the output

sensors cause alteration of the sensor signals u(t) and y(t)
and therefore of the residuals r(t) given by the predictive

model (3) using u(t) as inputs. Residuals indicate fault

occurrence according to (14) whether their values are lower

or higher than the thresholds fixed in fault-free conditions.

In order to determine the thresholds above which the faults

are detectable, the simulation of different amplitude faults

in the sensor signals was performed. The threshold value

depends on the residual error amount due to the model

approximation. These thresholds were settled on the basis of

fault-free residuals. A margin of 10% between the thresholds

and the residual values was imposed.

To summarise the performance of the FDI technique, the

minimal detectable faults on the various sensors, expressed

as per cent of the mean values of the relative signals, are

collected in Table (I), in case of step faults. The minimum

TABLE I

MINIMAL DETECTABLE STEP FAULTS.

Sensor u1(t) u2(t) y1(t) y2(t)
Value 2.0% 2.5% 1.0% 7.0%

values shown in Table (I) are relative to the case in which

the fault must be detected as soon as it occurs.

VI. CONCLUSIONS

In this paper an off–line procedure was proposed for the

identification and fault diagnosis of an industrial process

using a fuzzy multiple model identified from noisy input-

output measurements. A fuzzy multiple model consists of

several local linear models each for different operating point

of the process. The identification algorithm was based on

fuzzy clustering in order to determine the regions in which

measured data can be approximated by affine local dynamic

models. Parameters and orders of submodels were estimated

using a technique based on the rules of the Frisch scheme.

This identification approach gives a reliable model of the

plant under investigation which can be exploited to generate

redundant residuals for fault diagnosis. The effectiveness of

these procedures were tested on real data acquired from a

sugar cane crushing mill.
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